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ABSTRACT

Today’s methodologies for electromigration (EM) identify
EM-susceptible wires based on their current density, using
the Blech criterion to filter out wires that are EM-immortal.
The Blech criterion is agnostic to the product lifetime and
temperature conditions: many Blech-mortal wires may never
experience EM during the product lifetime. We develop new
methods that evaluate the transient evolution of stress, rel-
ative to the product lifetime, and present an improved set
of simple and practical mortality criteria. On a set of power
grid benchmarks, we demonstrate that the actual number
of mortal wires may depend strongly on the lifetime and
reliability conditions.
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1. INTRODUCTION
Technology scaling has resulted in a monotonic increase in
the current density, causing electromigration (EM) in inter-
connects to be a major concern [1]. As EM considerations
become more critical, there is a need for circuit analysis and
design techniques to incorporate the knowledge of EM reli-
ability physics to realize a design which meets the expected
performance as well as the reliability targets.

Today’s signoff flows [2] first filter out EM-immortal wires
based on Blech criterion [3], which compares the jL product,
of the length L and current density j of a wire, against a
threshold value: if this threshold is not exceeded, the wire is
immortal. For the remaining wires, a current density limit,
based on Black’s equation [4], is applied to check mortality.

In this work, we perform a rigorous analysis of the dy-
namics of EM stress evolution to provide concrete product-
lifetime-specific criteria for mortality. Figure 1 shows the
stress evolution for a wire with length, L = 100µm, which is
carrying a current density j = 0.5MA/cm2 at an operating
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temperature T = 105◦C. We use the process parameters cor-
responding to modern Cu Dual Damascene (Cu DD) based
technology, listed in Table 1. For a product lifetime of 5
years, the wire is immortal, since the stress does not cross
the critical stress, σc, in this interval. For a 20-year lifetime,
the same wire is mortal since its stress crosses σc.
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Figure 1: Wire mortality and product lifetime.

Most designers realize that compared to long-lifetime (e.g.,
automotive) parts, products with shorter lifetimes (e.g., mo-
bile clients) should have fewer EM-susceptible mortal wires.
The Blech criterion is inherently unable to capture lifetime
considerations because it is valid only for wires that achieve
steady state [5, 6], and it does not consider transient EM
behavior. While the current density check based on Black’s
equation [4] is lifetime-dependent, it is limited due to its
simple and empirical nature: it does not capture the depen-
dence on all process parameters [7], and its current density
limit is the same for all wires, and cannot capture the de-
pendence of EM on wire length [8].

The idea of comparing the nucleation time with lifetime
to determine mortality has been introduced in [9], and also
addressed in [10], but their analysis is simpler and less rig-
orous than our approach. Unlike [9] and [10], we concretely
incorporate the effects of line lengths, which can be signif-
icant. The Blech criterion also predicts immortality, but it
is based on a steady state, and unlike our work, does not
consider the transient, which can be long. The work in [11]
proposes an approximate physics-based model, but it relies
on the Blech criterion, and as shown in Section 3.2, its ap-
proximate truncation for finite lines incurs significant errors
for medium to long wires.

We present a new criterion that accounts for the role of
product lifetime and temperature in determining wire mor-
tality for a given set of process parameters. Our criterion for
mortality analyzes the stress evolution in the interconnect.
This work presents a method that overcomes all of the dis-
advantages listed above: it is accurate, valid over a range of
wire lengths, does not assume steady state and includes the
transient, and is physics-based rather than empirical.



2. BACKGROUND: EM MODELING
EM-induced degradation in Cu interconnects occurs due to
the nucleation and growth of voids [6,12]. As the void grows,
it results in an increase in the wire resistance, which ulti-
mately causes functional failure. As the current flows in the
interconnect, atoms move in the direction of electron flow,
creating a tensile stress near the cathode and a compressive
stress near the anode. This resulting stress gradient causes
the generation of a back-stress force in the wire.

Figure 2 illustrates the two driving forces – the electron
wind force, due to the current flow, and the back-stress force,
which is generated as a result of the stress gradient gener-
ated due to EM-induced mass redistribution. As the move-
ment of migrated atoms is blocked at either end due to the
atom-impermeable Ta barrier layer, the electron wind force
results in atomic depletion at the cathode, resulting in a
tensile stress generation at the cathode. At the anode, the
migrated atoms accumulate, creating a compressive stress.
As a result, voids tend to form at the cathode. In principle,
voids may form either inside the via or along the line. How-
ever, process advances using improved liner deposition [13]
virtually remove the possibility of voids inside the via.
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Figure 2: Cross section of a Cu wire indicating the back-stress
and the electron wind force.

The temporal evolution of EM-induced stress involves the
interaction between electron wind and back-stress. This is
modeled by the partial differential equation [14]

∂σ

∂t
=

∂

∂x

[

κ

(

∂σ

∂x
+G

)]

(1)

Here, the part involving G corresponds to the electron wind
force and the one including ∂σ

∂x
represents the back-stress

force. Other terms are defined as: κ =
Deff B Ω

kBT
, G =

eZ⋆

eff ρ j

Ω
, Deff is the EM effective diffusivity, given by Deff =

D0 exp (−Ea/kBT ), where D0 is the diffusivity constant, Ea

is the activation energy, kB is Boltzmann’s constant, T is the
temperature, e is the elementary electron charge, B is the
effective bulk modulus for the metal-ILD system, Ω is the
atomic volume for the metal, Z⋆

eff the effective charge num-
ber, and ρ is the resistivity. The partial derivatives are with
respect to x, the distance from the cathode, and time, t.

2.1 Traditional EM modeling
The conventional method for EM analysis for interconnects
involves a two-step process. The first step involves filtering
out EM immortal wires using the Blech criterion [3]. Mor-
tal wires are susceptible to EM and can potentially cause
EM failure. In the second step, the current density flowing
through these wires is checked against a global limit, which
is determined using the Black’s equation [4].

2.1.1 The Blech criterion

The work in [3] observed that for a certain range of current
and wire length combinations, the wire is immune to EM
degradation if the product of the current density through
the wire, j, and the wire length, L is below a threshold.
For these wires, no EM-induced damage occurs because an
equilibrium between the back-stress force and the electron
wind force is accomplished. This steady state is reached
once the two forces balance, and no further net EM-induced
atomic flow occurs. The stress does not change with time
after the achievement of the steady state, i.e., ∂σ

∂t
= 0.

Using the above condition in (1) along with the assump-
tion that there is no initial stress at time t = 0 implies that

∂σ

∂x
+G = 0 (2)

For a constant current flow (i.e., constant G), the slope of
the stress profile at steady state is a constant, i.e.,
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At steady state, the stress gradient at the cathode is ∆σ
L

=
2σ
L

[6]. If the tensile stress at steady state is smaller than
the critical stress, σc, the wire will be literally immortal to
EM damage, for all time, i.e., the stress σ < σc. Using the
above relations, along with (3), we obtain

G =
2σ

L
≤

2σc

L
(4)

=⇒
eZ⋆

eff ρ j

Ω
≤

2σc

L
(5)

=⇒ (j L) ≤
2σcΩ

eZ⋆
eff ρ

= (j L)crit (6)

This is the threshold used in the Blech criterion. Conversely,
the wire mortality condition can be written as

j L ≥ (j L)crit (7)

Despite the simplicity of the Blech criterion, one of its lim-
itations is that it is based on the assumption that a steady
state is achieved between the electron wind and back-stress.

However, recent Cu DD process enhancements for perfor-
mance improvement may challenge the above assumption.
Recent technology upgrades, such as the introduction of
low-k interlayer dielectric (ILD), and usage of ultra-thin Ta
barrier layer has resulted in lower back-stress compared to
earlier interconnect technologies [5, 8]. This can result in
an increase in the time required for sufficient mass trans-
fer to generate a back-stress to balance the electron wind
force [15]. For some wires, the time to steady state may
surpass the product lifetime, and the Blech criterion may
estimate the stress at a time later than the circuit lifetime.

2.1.2 Black’s equation

Wires that are rendered mortal by the Blech criterion need
further analysis to check if they can use EM damage dur-
ing the lifetime of the product. This is done using the
Black’s equation [4], which describes the mean time to fail-
ure, MTTF for a wire under EM as

MTTF =
A

jn
exp

Ea

kBT
(8)

Here, A and n are constants and typical values of n are
between 1 and 2. Industry practice involves setting up a
current density limit using the above equation for a given



target MTTF . The issue with using a current density limit
derived from (8) has to do with its empirical nature, which
does not capture the impact of some EM related circuit and
process parameters. Moreover, the value of the exponent n,
is a matter of controversy for Cu DD interconnects [7].

Further, the current density limit imposed is not context-
dependent, but is identical for all wires. Experiments show
that short and long wires show different EM characteristics
due to the role of mechanical properties [8].

3. TRANSIENT STRESS MODELING
For modern interconnect Cu interconnects, steady state may
not be achieved during the product lifetime. We check for
EM-susceptibility based on the evolution of stress as a func-
tion of time. For our analysis, we are interested in the gen-
eral solution for stress evolution. We will discuss the two
solutions relevant to our analysis, corresponding to the two
cases – a semi-infinite (SI) line and a finite (F ) line as de-
scribed in [14]. The cathode for the line is at x = 0 in both
cases; for the semi-infinite case, the anode is at ∞, while for
the finite line, the anode is at a finite x = L.

For each case, the solution is based on the boundary con-
dition that the net atomic flux at the endpoints enclosed
by vias is zero. The zero flux at an interconnect endpoint
occurs because the Ta barrier at the vias in a Cu DD pro-
cess blocks the flow of metal atoms. The zero flux boundary
conditions (BC) for each of these two scenarios are given as

BCSI :
∂σ

∂x
+G = 0, at x = 0, for all t (9)

BCF :
∂σ

∂x
+G = 0, at x = 0, x = L, for all t (10)

3.1 Stress evolution at cathode
For copper interconnects voids typically form near the cath-
ode [16], and the stress evolution at the cathode (x = 0) is
of primary interest. The stress solutions at x = 0 are [14]

σSI(0, t) = 2G

√

κt

π
(11)

σF (0, t) = GL

(

1

2
− 4

∞
∑

n=0

e
−m2

n
kt

L2

m2
n

)

(12)

where mn = (2n + 1)π. The solution for the SI bound-
ary condition is compact, and thus useful in circuit anal-
ysis [9, 17]. However, σSI is pessimistic since the SI case
experiences lower back-stress. Moreover, the SI model has
no length dependence since the wire has infinite length.

For wires in power grids, the length, L, may vary from a
scale of micrometers to hundreds of micrometers. The solu-
tion corresponding to the finite line BC is a realistic choice,
since it directly models the length dependency. However,
the finite wire solution, σF , includes an infinite series, which
makes its exact evaluation computationally difficult.

3.2 Analysis: Semi-infinite and finite line model
Figure 3 shows the stress as a function of time, for the SI
and F cases, for two values of wire length, L = 50µm and
75µm. The current density used for the above simulation,
j = 0.5MA/cm2. The process parameters along with the
sources are listed in Table 1. It can be seen that the solutions
for the SI and F cases differ for L = 50µm (as shown in
Figure 3(a)), and the differences reduce for a larger value of
L = 75µm, as shown in Figure 3(b). Notice that the two

solutions begin to diverge after an initial period. The work
in [14] observes that the steady state for a line of length, L,

can be achieved in time t ≈
L2

4κ
, and we can observe that

at this instant the stress prediction between the two lines
can differ significantly. However, we observe that the two
solutions do not differ significantly, during initial stages up
to t = 5 years for both cases. This is because sufficient
back-stress has not built up during this time.
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(a) σ(0, t) for L = 50µm.
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(b) σ(0, t) for L = 75µm.

Figure 3: Stress at the cathode, as predicted by SI and F
model at multiple wire length, L.

To predict the wire mortality as a function of the product
lifetime, we use the formulation for stress at the cathode in
the SI line, as in (11), and the F line, as in (12).

In fact, the solution corresponding to the semi-infinite
line, σSI , shown in (11) is an upper bound on σF , which is
also observed in Figure 3. This occurs because a finite line
sees a larger back-stress than the semi-infinite line, and the
larger back-stress attenuates the net stress at the cathode.
This larger back-stress is a result of a larger stress gradient
compared to the semi-infinite line. The implication of this
observation is that if the stress predicted by the SI solution
shown in (11) is less than the critical value, σc, the wire is
sure to be immortal. In this case, we do not need to evaluate
the more accurate stress using the F solution shown in (12),
which involves the evaluation of an infinite series.

Additionally, for the solution corresponding to the finite
line σF in (12), we study the variation in the error in pre-
dicting σF by considering truncation of the infinite series
for multiple values of n, for multiple wire length, L. The
accurate stress corresponds to the truncation at n = 100.
The analysis in [11] truncates the series to only one term,

corresponding to n = 0. For L = 100µm, Figure 4(a) shows
that such a truncation does not differ from the accurate
solution. In contrast, for L = 300µm, Figure 4(b) demon-
strates that the stress computed by the n = 0 truncation
leads to significant deviation from the correct value. The
truncated sum converges as the number of terms increases
from n = 0 to n = 4, and the plots corresponding to n = 4
matches the accurate solution. We choose a value of n = 20
to cover the range of wire length up-to a worst-case limit
of 2000µm and a worst-case current density of 3MA/cm2.
We use the process parameters from Table 1. For a different
process, the number of terms may be determine through a
single characterization for the longest wire length.

For this technology, for wire lengths larger than 100µm,
the solution corresponding to the semi-infinite line (SI) closely
matches the numerical solution corresponding to the finite
line (F ). This is also indicated by observing the reduction
in the difference between stress prediction using the SI and
F models as the wire length increases, as shown in Figure 3.
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(a) Finite line: L =
100µm, j = 0.5MA/cm2
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(b) Finite line: L =
300µm, j = 0.5MA/cm2
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(c) Finite line: L =
100µm, j = 0.75MA/cm2
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Figure 4: Finite line model prediction, for different values of n
in (12), at multiple scenarios of j, L.

3.3 Hierarchical mortality criteria
We discuss our framework, which uses the previous obser-
vations to predict wire mortality in power grid. We take as
input the current density j and the length L for every wire,
and the process and environment specifications. The output
of our framework is the set of EM-susceptible wires. Note
that we use “mortal” and “EM-susceptible” as synonyms.

As shown in the schematic in Figure 5, our framework se-
quentially filters out wires that are immortal stage-by-stage
in order to reduce the number of candidates for the finite
wire model F , since it is the most computation intensive
by virtue of its structure as it involves computation of non-
linear series involving wire length, L.

Filter2: tnuc-SI > tlife

Filter3: tnuc-F > tlife

M2

M3

Filter1: jL < jLcrit

M0: {jw,Lw} for all wires w

M1: Output of

Conventional 

Blech criterion

M3: Output of 

product lifetime 

based criterion

M1

Immortal 

wires

MN: Mortal wires 

after applying FilterN

INPUT:

1. Product

 lifetime (tlife)

2. Temperature (T)

3. EM kinetics 

parameters (Ea, Deff)

Figure 5: Sequential filtering of mortal wires.

We sequentially use the Blech criterion, the semi-infinite
line (SI) solution (11), and the finite line (F ) solution (12).
This enables us to tackle the trade-off between the limited
accuracy and lifetime-independence of the easy to compute
Blech-criterion, against the more accurate, but computation
intensive finite line formula. We now discuss the three stages
utilized to filter out the immortal wires in order to obtain
the final, realistic estimate for the number of mortal wires

corresponding to the lifetime, and process specifications.
Filter 1: We first use the Blech criterion discussed in Sec-
tion 2.1.1 to filter out wires that are immortal under any
product lifetime. The Blech criterion is based on the peak
stress achievable, and if this never crosses the critical stress,
σc, then the wire is immortal regardless of lifetime.
Filter 2: Next, for the remaining wires, we obtain an opti-
mistic estimate of the nucleation time, tnuc–SI by using (11)
to solve for the time at which the stress at the cathode
reaches the critical stress, i.e., σSI(0, tnuc–SI) = σc, i.e.,

tnuc–SI =
π σ2

c

4 G2 j2 κ
(13)

The estimate is optimistic because the actual stress is at
most σSI , and the actual value of tn is no smaller than
the value predicted here. Therefore, any wire for which the
estimated tnuc–SI > tlife also has the property that its real
nucleation time tn > tlife, i.e., it is effectively immortal.
Filter 3: For the remaining wires, the actual nucleation
time may or may not exceed the product lifetime. For these
potentially mortal wires, we compute the precise nucleation
time, tnuc–F, for the wire by numerically solving the stress
expression in (12), truncated to 20 terms, to solve for tnuc–F

σF (0, tnuc–F) = σc (14)

using a Newton-Raphson approach. If the final value of
tnuc–F, as predicted by our iterative procedure, exceeds the
product lifetime, tlife, then the wire is effectively immortal.

As indicated previously, the first two criteria are simple
to evaluate and involve closed-form expressions. The last
criterion requires a numerical procedure to solve (12). This
step involves more (but manageable) computation than the
first two criteria, but applied to a smaller set of wires that are
not already eliminated as immortal by the previous criteria.

4. RESULTS
We implement our method described in Section 3.3, using

MATLAB and C++, and we test our analysis on a set of standard
power grid circuits to estimate the number of mortal wires
as a function of the product lifetime for a set of temperature
and Cu DD process specifications, listed in Table 1.

Symbol Definition Value

ρ Resistivity 2.25×10−8Ohm-m

Ω Atomic volume 1.18×10−29 m3

B Effective bulk modulus 28GPa [17]

σc Critical stress 41MPa [17]

Z⋆

eff Atomic charge number 1 [17]

D0 Diffusivity constant 1.3×10−9m2/s [17]

Ea Activation energy 0.8eV [17]

Table 1: EM process parameters for Cu DD interconnects.

The power grid circuits used in our simulations are a set
of industrial benchmarks imported from [18]. Note that the
percentage nominal IR drop, defined as the worst IR drop
value among all the nodes as a percentage of supply voltage
at time t = 0, was unrealistically high in some of the original
benchmarks (> 20%), and is scaled in a similar manner as
discussed in [11], we have scaled the original value of cur-
rent loads for these benchmarks, such that the percentage
nominal IR drop is in the 11-12% range for all the circuit
benchmarks.

We take as input the process parameters, corresponding to
the Cu DD technology from Table 1, along with the current
density and wire length for every wire.
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Figure 8: Distribution of mortal wires for IBMPG2 at different
lifetime, tlife, for T = 105◦C
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Figure 9: Distribution of mortal wires for IBMPG2 at different
temperature, T , at tlife = 10 years

the traditional current density filter derived from Black’s
equation. Figure 9 shows the distribution of wires filtered
as immortal using our criterion and the Black’s equation,
for two different temperature values of T = 105, 100◦C.
The Blech filter removes many wires below the jL=constant
curve and to reduce clutter, we only show the frontier of the
curve in these plots. To characterize the pre-exponential
constant in Black’s equation, we assume that a wire with
current density 0.5MA/cm2, has a lifetime of 10 years at
temperature, T = 105◦C. This assumption enables us to
have the same current density limit at T = 105◦C, as shown
by Jmax

Black and Jmax
SI in Figure 9(a). However, both of these

criteria miss wires (green points) that are captured only by
our Filter 3. A constant j filter would mix these green points
with red mortal wires, because neither Black’s equation nor
our Filter 2 can fully capture the role of wire length in EM
evolution.

From Figure 8(b), we observe that at a slightly smaller
temperature value T = 100◦C, the maximum current den-
sity limit as obtained using the Black’s equation and our
filter 2 increases. This is because of the exponential depen-
dence of EM dynamics on temperature, which is modeled
by both the above formulations. However, the jump in the
current density criterion from using the Black’s equation is
larger than that observed by our Filter 2. This is because
the pre-exponential factor in Black’s equation is tempera-
ture independent in the way it is used today in industry
settings. However, in reality the pre-exponential factor has
a temperature dependency [7]. Our model and framework
explicitly captures this temperature dependency.
Impact of process: Lastly, we perform simulations which
use different specifications of process parameters correspond-
ing to the Cu Dual Damascene interconnect technology, which
are listed in Table 1 and Table 2. We perform our simula-
tion, corresponding to two alternate Cu DD process, which
are differ the Cu-capping materials used. The EM diffusion
process parameters are taken from [12] and listed in Table 2.
The grain size is assumed to be 0.1µm.

Cu DD Process

Grain size = 0.1µm Set I Set II

Ea = 0.84eV Cu/dielectric Cu/CoWP

Z⋆

effD0(m
2/s) 5×10−9 4×10−9

Lifetime Blech % Mortal wires for IBMPG2

(years) Mortal Set I Set II

5 1418 11.6 5.3

10 1418 51.2 35.7

20 1418 84.8 73.8

Table 2: Mortal wire prediction for IBMPG2.

Notice that, the conventional Blech criterion, predicts the
same number of mortal wires (=1418), for two processes.
This is because the conventional criterion is oblivious to EM
parameters like D0, as they do not appear in (6) or (8). In
contrast, the number of mortal wires as predicted by our
work vary depending on the process parameters. Table 2
list the number of mortal wires predicted by our criterion as
a percentage of the number of mortal wires predicted by the
conventional Blech criterion. Notice, that for a larger value
of EM diffusivity constant D0, corresponding to process Set
I, the percentage mortal wires are larger. This is intuitive,
since a larger diffusivity implies faster mass transfer.
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