
Joint Precision Optimization and High Level Synthesis for
Approximate Computing

Chaofan Li*, Wei Luo*, Sachin S. Sapatnekar+ and Jiang Hu*

*Department of ECE, Texas A&M University
+Department of ECE, University of Minnesota

{chaof,lw-1022}@tamu.edu; sachin@umn.edu; jianghu@ece.tamu.edu

ABSTRACT
Approximate computing has been recognized as an effec-
tive low power technique for applications with intrinsic error
tolerance, such as image processing and machine learning.
Existing efforts on this front are mostly focused on approx-
imate circuit design, approximate logic synthesis or proces-
sor architecture approximation techniques. This work aims
at how to make good use of approximate circuits at system
and block level. In particular, approximation aware schedul-
ing, functional unit allocation and binding algorithms are
developed for data intensive applications. Simple yet cred-
ible error models, which are essential for precision control
in the optimizations, are investigated. The algorithms are
further extended to include bitwidth optimization in fixed
point computations. Experimental results, including those
from Verilog simulations, indicate that the proposed tech-
niques facilitate desired energy savings under latency and
accuracy constraints.

Keywords
High level synthesis, approximate computing

1. INTRODUCTION
Near the end of Moore’s law, the advances of VLSI technol-
ogy are increasingly constrained by the fundamental limit
of chip power density. As such, almost any opportunity for
improving chip/circuit power efficiency is worth close study.
In this context, approximate computing recently arises as
new research trend [1–6]. In conventional designs, datapath
computations are precise for its bitwidth, i.e., the error is re-
stricted to those less than the least significant bit weight. We
term them as per-bitwidth precise computing. Approximate
computing exploits intrinsic error tolerance in certain ap-
plications, such as image processing and machine learning,
and allow occasional small errors beyond the quantization
error caused by limited bitwidth. By doing so, circuits can
be implemented in a less power hungry fashion compared
to per-bitwidth precise circuits. The research on approxi-
mate computing so far encompasses approximate arithmetic
circuit design [1, 2, 4], logic synthesis [3], modeling [7–10],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC ’15 June 07 - 11, 2015, San Francisco, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-3520-1/15/06$15.00
http://dx.doi.org/10.1145/2744769.2744863

specific applications [6] and architectural level techniques.

Besides power, the growing chip complexity also becomes
a challenge and increasingly necessitates the use of auto-
mated system level design or high level synthesis (HLS).
High level decisions usually generate large impact to the
overall system performance and power. Given a rich body
of low/circuit level approximation techniques, how to effi-
ciently utilize them at system level is of great importance but
not well studied yet. In [5], an automated design space ex-
ploration technique is introduced to choose between approx-
imate and per-bitwidth precise implementations for each op-
eration. However, it pays little attention to scheduling and
resource allocation/binding algorithms, which are the core
techniques in HLS.

This work attempts to find techniques that make efficient
use of approximate circuits at system/block level by consid-
ering them in HLS. While conventional HLS mostly empha-
sizes performance and power/area, the notion of approx-
imate computing requires error control in addition. Ex-
isting error models for approximate computing [7–10] are
mostly targeted to post-design analysis and very difficult to
be used within optimizations. In this work, we first study
optimization-friendly error models. Then, we propose and
investigate two HLS approaches that cover scheduling, Func-
tional Unit (FU) allocation/binding together with approxi-
mation assignment. We focus on data-intensive applications
as opposed to control-intensive applications since approxi-
mate computing mostly occurs at datapaths.

The error control in approximate computing is akin to
bitwidth optimization [11, 12] where bitwidth of each op-
eration is selected to minimize implementation cost sub-
ject to precision constraints. Bitwidth optimization has also
been studied together with HLS [13,14] where the HLS and
bitwidth optimization interact with each other but are car-
ried out separately. In per-bitwidth precise designs, the
quantization error analysis must be accurate and thus is too
complex to be incorporated within HLS. By contrast, the
requirement for accuracy is less strict in approximate com-
puting. Thus, we can integrate bitwidth optimization and
approximation assignment with HLS such that the solution
space is searched more thoroughly.

The proposed techniques are evaluated by simulations on
benchmark applications including Verilog simulations. The
results confirm the effectiveness of our techniques. To our
knowledge, this is the first work on scheduling and resource
allocation/binding for approximate computing systems. The
contributions of this paper include:

• We propose a variance-based error model that is very
simple to use in optimizations. It is enhanced by error
sensitivity to capture structural correlations in error
propagation. Its credibility is validated by Verilog-
based Monte Carlo simulations.

• A multiple choice multiple dimension Knapsack for-
mulation is introduced for precision optimization that
concurrently considers approximation selection and
bitwidth optimization.

• An iterative list scheduling heuristic is developed
to perform simultaneous scheduling, FU alloca-
tion/binding with consideration of approximation.

• An ILP (Integer Linear Programming) formulation is
presented for integrated precision optimization and
HLS.

2. FORMULATION AND NOTATIONS
The input to our algorithms is a task graph or dataflow
graph G(V,E) where the node set V is composed by disjoint
subsets of primary inputs PI, computation operation nodes

V̂ and primary outputs PO, and the edges E indicate data
dependencies. In this work, we focus on topology of directed

acyclic graph. Each node ω ∈ V̂ has an operation type τω,
such as addition and multiplication.

In approximate computing, a key part is precision control.
When there are multiple approximation options, e.g., the
approximate adder [1] can be implemented with different
numbers of imprecise bits, we need to decide how to choose
among different approximate implementations. Further, ap-
proximate implementation can be considered together with
bitwidth optimization [11], which decides how many bits are
utilized in implementing a computation. The conventional
bitwidth optimization [11] consists of two parts: one that
decides the data range and the other that affects the com-
puting precision. We focus on the precision part as it coheres
better with approximate computing.

For each operation type τ , there is a set of implementations
Iτ = {Fφ1

τ , Fφ2
τ , ...} of different precisions φ1, φ2, ... and we

use I�φτ to represent the subset in Iτ that has at least pre-
cision φ. The precision optimization is to find the lowest

precision level φ(ω) for each ω ∈ V̂ such that the system
precision specification is satisfied.

The HLS in this work considers FU allocation, binding and

scheduling. Binding is to associate an operation ω ∈ V̂ with
an FU instance f of implementation F ∈ Iτω and we also
use the notation F (ω) and f(ω) to tell the implementation
and FU instance for ω, respectively. We allow operation ω to
be bound to an FU of precision higher than φ(ω) in order to
encourage FU sharing, i.e., ω can be bound to any instance

of F ∈ I�φ(ω)
τω . Given a latency constraint Q, the scheduling

is to find start time 0 6 s(ω) < Q − ΛF (ω),∀ω ∈ V̂ , where
ΛF (ω) is the execution latency for the FU of ω. When we try
to bind/schedule an operation but there is no corresponding
FU available, a new FU is allocated. Thus, the allocation
is decided along with binding and scheduling. The overall
objective is to minimize total leakage energy consumption
while latency and system precision constraints are satisfied.
The extension to include dynamic energy is not difficult.
Leakage energy is also highly correlated with FU cost, which
is a typical objective function in conventional HLS.

3. ANALYTICAL ERROR MODELS
If not carefully used, approximation may result in errors
that are extravagant and beyond acceptable level. Hence,
precision control and error models are of critical importance
for approximate computing. An error model should quantify
the difference between the precision of a system implemen-
tation and the precision specification. If a model is to be
employed within optimization algorithms, i.e., to guide each
solution search step during optimization, it must be simple
to compute as it would be called very frequently. Meanwhile,
it must be credible and close to accurate analysis.

The work of [8] attempts to find a couple of error mod-
els that do not rely on time consuming simulations. One
is based on interval arithmetic, which can be overly pes-
simistic, and the other is based on affine arithmetic, which
has poor storage scalability. Moreover, both techniques en-
tail lookup tables in error propagation, which is restrictive
to use in optimizations. Error rate [10], which is the proba-
bility that an approximate result is different from its precise
counterpart, is simple to use by taking logarithm. However,
it only addresses error frequency without attention to er-
ror magnitude. A variance based error model is described
in [12]. However, it neglects structural correlations among
signal propagations, which can be quite remarkable.

We now discuss how errors are propagated in a couple of
typical operations. Consider addition operation y = a + b
and let errors of a, b, the addition and s be denoted by εa,
εb, ε+ and εy, respectively. Then, the approximate addition
can be represented by

y + εy = (a+ εa) + (b+ εb) + ε+. (1)

Likewise, the error propagation in multiplication p = a × b
is described by

p+ εp = a · b+ aεb + bεa + ε×���+εaεb . (2)

For the sake of simplicity without significant loss of accuracy,
we neglect the second order error εaεb.

We propose an error model where each error ε is treated as
a random variable. Then, an error can be characterized by
its mean µ(ε) and variance ν(ε). We argue that the mean
error µ(ε) at a system/block output under the operations of
approximate computing is systematic and can be compen-
sated by a constant offset. Then, the overall computation
precision is determined by the variance ν(ε).

Lemma: If an error ε is a random variable, its variance
after the constant compensation is equal to the Mean Squared
Error (MSE)1.

MSE is a common error model in approximate comput-
ing [10] and equivalent to Peak Signal Noise Ratio, which
is employed in [1, 2]. According to Equations (1) and (2),
the error of system output is a linear combination of the
operation errors. The variance of a linear combination of
random variables X1, X2, ..., Xn is

ν(

n∑
i=1

kiXi) =

n∑
i=1

k2
i ν(Xi)

������������

+2

n∑
i=1

n∑
j=i+1

kikjcov(Xi, Xj) ,

(3)

1The proof is simple and omitted due to space limit.

where ki denotes constant coefficient and cov(Xi, Xj) is the
covariance between Xi and Xj .

The overall system error is a composite effect due to error
generation, like the ε+ in Equation (1) and ε× in Equation
(2), and error propagation like εa and εb in Equation (1)
and (2). The error generations among different operations
are largely independent of each other, except a rare case
where two operations use the same implementation and the
same input data. Therefore, we drop the covariance term in
our model. This simplification also helps to avoid nonlinear
terms of decision variables in optimization.

+

+

-

+
error

Approx.

Figure 1: An error from an approximate adder may
cancel itself along reconvergent paths.

Error propagations exhibit strong structural correlations that
cannot be ignored. For example, an error from the approx-
imate adder in Figure 1 is propagated along two paths and
it is subtracted in the upper path. When the two paths re-
converge, the error from the lower path is canceled by the
one propagated along the upper path. We propose the con-
cept of error sensitivity (ES) to capture the first order effect
of such structural correlation. For a single error εω from

operation ω ∈ V̂ and the error εω,o incurred by εω at a
primary output o ∈ PO, the error sensitivity is defined as
ESω,o =

εω,o
εω

. Then, the error variance of an output o ∈ PO
can be expressed as

ν(εo) =
∑
∀ω∈V̂

ES2
ω,o · ν(εω). (4)

Please note that ES is squared here like the coefficient k in
Equation (3).

The ES of each node ω ∈ V̂ can be obtained through an
extension to depth first search (DFS) of G. If all operations
are addition, εω,o is simply n × εω, where n is the number
of distinct paths from node ω to output o, and thus ESω,o
is n. If the error εω experiences a scaling ×K operation
along one of the paths to o, ESω,o is (n − 1) + K. If it
is multiplied by another variable, the error propagation is
approximated by scaling of an empirical value. Given a task
graph, the DFS-based ES estimation is performed once as a
pre-processing.

4. KILS: KNAPSACK AND ITERATIVE LIST
SCHEDULING

We describe a sequential heuristic that first decides preci-
sions, considering both approximation selection and bitwidth
optimization, and then performs a list scheduling-based HLS
algorithm with consideration of approximation.

4.1 Knapsack-Based Precision Optimization
In the simplest case, each operation ω ∈ V̂ has only one ap-
proximate implementation, i.e., |Iτω | = 1. A binary decision
variable xω ∈ {0, 1} tells if to choose approximation for ω
or not. If the energy saving for using approximation at ω is
Ψω, we wish to maximize the total energy savings subject to
error variance constraint at the output. If there is a single
output at G, the formulation is

maximize
∑
ω∈V̂

Ψω · xω (5)

s.t.
∑
ω∈V̂

ES2
ω · ν(εω) · xω 6 νB (6)

where νB is the error variance bound at the output. This
formulation is the well-known 0-1 knapsack problem. Note
that inequality (6) has a linear form as a result of removing
the covariance term in Equation (3).

When we consider multiple approximation implementations,
simultaneous bitwidth optimizations and multiple output
nodes, the above formulations can be extended as a Multi-
ple choice Multiple dimension Knapsack Problem (MMKP).
In MMKP, a set of items are partitioned into n classes and
k dimensions. One needs to choose exactly one item from
each class such that the overall benefit is maximized while
the capacity constraint of each dimension is satisfied. To our

case, each operation ω ∈ V̂ is a class, which corresponds to
a set Iτω of implementations, and each dimension is for one
output o ∈ PO with error variance bound νBo . The deci-
sion variable becomes xω,F ∈ {0, 1}, which tells if to choose

F ∈ Iτω for operation ω ∈ V̂ . The formulation is:

maximize
∑
ω∈V̂

∑
F∈Iτω

Ψω,F · xω,F

s.t.
∑
ω∈V̂

∑
F∈Iτω

ES2
ω,o · ν(εω,F) · xω,F 6 νBo , ∀o ∈ PO∑

F∈Iτω

xω,F = 1, ∀ω ∈ V̂

Please note the set Iτω includes implementations of differ-
ent bitwidths, different approximation and their combina-
tions for operation type τω. As such, bitwidth optimiza-
tion and approximation selection are carried out in an inte-
grated manner. We solve this MMKP problem using an ILP
solver. The result tells the lowest precision φ(ω) for each

node ω ∈ V̂ such that the overall system precision specifica-
tion is satisfied. Please note the φ(ω) is not a commitment
but a guidance to the subsequent HLS.

4.2 Approximation-Aware HLS
4.2.1 Conventional List Scheduling

One popular heuristic for HLS is the list scheduling [13],
which has two variants: one is to minimize resource cost
subject to latency constraint and the other is to minimize
latency subject to resource constraint. We take the former
variant as a basis due to its similarity to our problem for-
mulation, and make a remarkable extension to take approx-
imation/precision into account. The list scheduling handles
FU allocation/binding as well.

The core part of conventional list scheduling is preceded by
ASAP (As Soon As Possible) and ALAP (As Late As Pos-

sible) schedulings. For each node ω ∈ V̂ , the lower (upper)
bound of its start time tω (t̄ω) is its ASAP (ALAP) sched-
ule. Then, the range of its schedule is initially [tω, t̄ω]. Next,
the core algorithm is a one-pass topological order traversal
of the task graph G. During the traversal, a ready list main-
tains the nodes whose precedent nodes are either in PI or
have already been scheduled. Among all nodes in the ready

list, the one ω ∈ V̂ with the minimum t̄ω is selected to be
scheduled. If an FU f that implements ω has already been
allocated and is available in [tω, t̄ω], then ω is bound to f
and scheduled to the earliest available time of f in [tω, t̄ω]. If
no such FU can be found, a new FU is allocated and bound
to ω. This procedure is repeated till all nodes are scheduled.

4.2.2 Problems of Conventional List Scheduling
When approximation/precision is considered, a binding has
multiple implementation options of asymmetric compatibil-
ity. That is, a low precision operation can be bound to a
high precision FU of the same type, but not vice versa. This
creates a subtlety that makes the conventional list schedul-
ing inefficient. Consider the example in Figure 2 where an
adder delay is 1 and a multiplier delay is 2. In conventional
list scheduling, the approximate multiplication is first bound
to an approximate multiplier and later a precise multiplier
must be allocated and bound to the precise multiplication,
as shown in Figure 2 (b). However, the two multiplications
can share a single precise multiplier as in Figure 2 (c).

+ X

+

X

Approx.

Approx.
+

+

X

X
Precise

Adder Multiplier 1

Multiplier 2

+

+

Adder Multiplier

X

X

(a) (b) (c)

A

B

C

D

A

B

C

D

D

C

Figure 2: (a)Task graph; (b) Conventional list
scheduling results in two multipliers; (c) The two
multiplications can share one multiplier.

Even if approximation is not considered, the conventional
list scheduling may be inefficient due to its myopic nature.
This is illustrated by the example in Figure 3, where the
latency deadline is 3 and an adder delay is 1. In the conven-
tional scheduling, when node B is considered for scheduling,
it can be bound to Adder1 without violating latency con-
straint. Then, node C can no longer use Adder1 due to
the latency constraint and Adder2 is allocated. In the last
time step, all of nodes D, E and F must be scheduled to
satisfy the latency constraint. Overall, three adders are al-
located. However, one can see that actually only two adders
are necessary, as shown in Figure 3 (c).

4.2.3 New Iterative List Scheduling
In order to solve the aforementioned problems, we propose
two significant changes to the list scheduling and show the
overall pseudo code in Algorithm 1. We first change the
algorithm to be iterative instead of one-pass graph traversal.

+ +

+ +
+

AB
C

D E

F

+

+ +

+ + +

A

B C

D E F

+ +

+ +

+ +

(a) (b) (c)

A B

C D

Adder1 Adder2

+

Adder3 Adder1 Adder2

E F

1

2

3

Figure 3: (a)Task graph; (b) Conventional list
scheduling results in 3 adders for latency constraint
of 3; (c) Two adders are sufficient.

The iterations are shown as the while loop in step 7, where
F i indicates the set of FUs allocated in iteration i. The
first iteration generates the initial FU allocation and the
subsequent iterations try to reduce the FU allocation.

1 Approximation Aware HLS(G(V,E)) begin

2 foreach ω ∈ V̂ do
3 tω ← ASAP schedule, t̄ω ← ALAP schedule

4 F0
τω
← ∅ // Initialize allocated FUs for τω

5 end
6 i = 0

7 while i 6 1 or |F i| < |F i−1| do
8 i+ +

9 foreach ω ∈ V̂ do
10 F iτω ← ∅
11 end
12 Initialize Ready List from PI
13 while Ready List 6= ∅ do
14 ω ← node with min t̄ in Ready List

15 Candidatesi−1 ← f ∈ F�φ(ω),i−1
τω & free in [tω , t̄ω]

16 Candidatesi ← f ∈ F�φ(ω),i
τω & free in [tω , t̄ω]

17 if Candidatesi−1 6= ∅ or Candidatesi 6= ∅ then
18 if ΥCandidates

i−1

≺ω < γ ·ΥCandidatesi−1
then

19 Find f̂ ∈ Candidatesi−1 with min start time
20 break tie with max Υ
21 else

22 Find f̂ ∈ Candidatesi with max Υ
23 break tie with min start time
24 end
25 else

26 Allocate f̂ of F
φ(ω)
τω

27 end

28 F iτω ← F
i
τω
∪ {f̂}, f(ω)← f̂ // binding

29 s(ω)← earliest available time for f̂ in [tω , t̄ω]

30 Update Ready List, update [tω , t̄ω], ∀ω ∈ V̂
31 end
32 end
33 end

Algorithm 1: Algorithm for approximation aware HLS.

The second and more important change is step 15-24. In
step 15 and 16, a set of candidate FUs are identified from

the FUs F�φ(ω)
τω that are allocated in current and the pre-

vious iterations. The “free in [tω, t̄ω]” means that the FU is
available from a time in [tω, t̄ω] to an extent long enough to
accommodate one complete operation on the FU. The selec-
tion of FUs among the candidates is based on two factors. (i)
Early start time: if an operation is scheduled to start early,
greater slack (or mobility) is left to subsequent nodes, which

consequently have greater chance to share FUs and reduce
the number of FUs. (ii) Utilization: if we move operations
from FUs with low utilization to those with high utilization,
there would be greater chance to empty some FUs.

We define utilization ΥF of a set F of FUs as the ratio of
the total time the FUs are used versus the total latency
multiplied by the number FUs in the set. For example, the
utilization of Adder3 in Figure 3 (b) is 1

3
and the utilization

for all three adders is 6
3×3

. We also define ancestor utiliza-

tion ΥF≺ω with respect to operation ω ∈ V̂ as the ratio of
the total time the FUs in F being used by ancestor nodes
of ω versus the wall-to-wall time of these uses multiplied by
the number of FUs in F .

Ideally, we wish all FUs are fully and equally loaded by op-
erations. In other words, at any specific time step, the FU
utilization is preferred to be equal to the overall utilization
among all FUs. In step 18, we choose the utilization for all

candidates ΥCandidatesi−1

scaled by a correction factor γ as
the target. If the utilization of candidate FUs by ancestor
nodes of ω is less than the target, the utilization so far is rel-
atively low and we prefer to schedule ω as early as possible.
Otherwise (step 22), we only use FUs allocated in current
iteration and prefers to squeeze the operation into the FU
with high utilization. Steps 20 and 23 tell how break tie.

Now let us see how our algorithm solves the case of Figure 2.
After the first iteration, as in Figure 2 (b), one approximate
multiplier and one precise multiplier are allocated. In the
second iteration, when node C is considered, both multipli-

ers are candidates and the corresponding ΥCandidates1 is 1
2
.

As there is no node preceding C, we go to branch of step
19. Since both multipliers can be scheduled to time step 1,
we break tie according to utilization. Excluding operation
C, the utilization of the approximate multiplier is 0 while
the utilization of the precise multiplier is 1

2
. Thus, node

C is bound to the precise multiplier and the approximate
multiplier is no longer used in the second iteration.

For the example in Figure 3, we reach (b) after the first
iteration. When we try to schedule node B in the second

iteration, the ΥCandidates1

≺B means the utilization of Adder1
in time step 1, which is 1

3
. This is less than the overall

utilization of 2
3

and therefore we go to step 19 to bind B
with Adder2 and start B at time step 1. Eventually, the
second iteration would reach a result like Figure 3 (c).

5. INTEGER LINEAR PROGRAMMING
The precision optimization, scheduling, FU allocation and
binding can be performed simultaneously through ILP:

Min
∑
F LF · uF ·Q (7)

s.t.
∑

06t<Q

∑
F xω,t,F = 1, ∀ω ∈ V̂ (8)∑

t

∑
F xω,t,F · t− s(ω) = 0, ∀ω ∈ V̂ (9)

s(v) +
∑
t

∑
F xv,t,F · ΛF 6 s(ω), (v, ω) ∈ E (10)

s(o) 6 Q, ∀o ∈ PO (11)∑
t|t6t̂<t+ΛF

∑
ω∈V̂ xω,t,F 6 uF 6 UF , 0 6 t̂ < Q, ∀F(12)∑

ω∈V̂
∑
t

∑
F ES

2
ω,oν(εF)xω,t,F 6 νBo , ∀o ∈ PO (13)

The latency constraint is denoted as Q and thus all op-
erations must be executed in the time range 0 6 t < Q.

Decision variable xω,t,F ∈ {0, 1} tells if operation ω ∈ V̂ is

scheduled to start at time t and bound to an FU of imple-
mentation F . The leakage power and latency of implemen-
tation F are represented by LF and ΛF , respectively. The
number of FUs of implementation F being allocated is uF
and UF is a constant upper bound for uF . The start time
of operation ω is denoted by s(ω).

The objective here is to minimize the total leakage energy.
Constraint (8) ensures that each operation is scheduled to
only one time and bound to only one FU. Inequality (10) is
the precedence constraint and inequality (11) is the latency
constraints at PO. The FU allocation is realized through
inequality (12). The last constraint is to bound variance at
each PO node.

6. EXPERIMENT
We implemented gate level designs of approximate adder [1]
and approximate multiplier [4], along with 24-bit, 28-bit and
32-bit precise adder/multipliers using 15nm technology. En-
ergy and latency are characterized through SPICE simula-
tions while error variance is obtained through Verilog-based
Monte Carlo simulations. The experiments are performed
on a set of MediaBench applications [15] and some other
common applications like FIR, IIR and ARF, each of which
has about 10 to 100 nodes. The ILP and Knapsack prob-
lems are solved by the CPLEX Optimizer [16]. Since there
is no previous work on scheduling/binding considering ap-
proximate computing, we compare the following methods:

• All-Prcs: all FUs take the most precise implementation
upon the conventional list scheduling result.

• All-Apprx: all FUs choose an approximate implemen-
tation upon the conventional list scheduling result.

• K-LS: our Knapsack based precision optimization fol-
lowed by conventional list scheduling.

• KILS: our Knapsack based precision optimization fol-
lowed by our iterative list scheduling.

• ILP: our integer linear programming approach.

The main results are shown in Figure 4, where (a) is for en-
ergy and (b) is for error standard deviation, which is equiv-
alent to variance. Unlike variance that is in the dimension
of square of data, standard deviation has the same dimen-
sion as data and provides more intuitive sense. The right-
most clusters of bars are the average results. All results
satisfy latency constraints. The energy savings from K-LS,
which is the conventional list scheduling, is about 11% while
our ILP can achieve average energy reduction of 40%. Our
KILS heuristic also outperforms the conventional approach
by reducing 16% energy. ILP often results in less energy
than All-Apprx as it uses less number of FUs. Figure 4 (b)
shows that all methods except All-Apprx satisfy the error
constraint. Without error control, the All-Apprx method
causes standard deviation about 5× of the constraints, al-
though it provides 20% energy savings.

In order to confirm the credibility of our variance-based
model, we implement the ILP results in Verilog for two
cases - ARF (Auto Regression Filter) and FIR filter. We
run Verilog-based 20K-run Monte Caro simulations to ob-
tain MSE at the outputs, which are compensated by con-
stant offsets to nullify the mean errors. We observe that
there is about 10% difference between our variance and the

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

fir	
 arf	
 sds	
 pyr	
 jbmp	
 iir4	
 mv	
 AVE	

En
er
gy
	

Normalized	
 Energy	

K-­‐LS	

KILS	

All-­‐Apprx	

ILP	

(a) Energy normalized with respect to All-Prcs results.

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

fir	
 arf	
 	
 sds	
 pyr	
 jbmp	
 iir4	
 mv	
 AVE	

St
an
da
rd
	
 D
ev
ia
Ao

n	

Normalized	
 Error	
 Standard	
 Devia2on	

K-­‐LS	

KILS	

All-­‐Apprx	

ILP	

(b) Error standard deviation normalized with respect to
standard deviation constraints.

Figure 4: Results from MediaBench applications.

simulated MSE. However, the correlation coeffcient between
them is 0.94, which means they are highly correlated. We
further plot the energy-error tradeoff curves using the two
different error models in Figure 5. For each of FIR and AFR
cases, the curves from the two models are almost identical.
This reminds the Elmore delay model, which is inaccurate
but has high fidelity and provides reliable guidance in op-
timizations. Figure 5 also confirms that our approach can
realize different energy-error tradeoffs.

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 1.2	

N
or
m
al
ize

d	

En

er
gy
	

Normalized	
 Error	

FIR	
 Var.	

FIR	
 MSE	

ARF	
 Var.	

ARF	
 MSE	

Figure 5: Energy-error tradeoff from ILP result.
The MSE results are from Verilog simulations.

We compare runtime of KILS and ILP in Figure 6. One can
see that KILS is usually one order of magnitude faster than
ILP. Moreover, KILS has better scalability. KILS has an
advantage in handling large cases, although its solutions are
not as good as those from ILP.

0.01	

0.1	

1	

10	

100	

1000	

0	
 20	
 40	
 60	
 80	
 100	
 120	

Ru
n,

m
e	

(s
ec
on

ds
)	

Number	
 of	
 nodes	

CPU	
 Run(me	

ILP	

KILS	

Figure 6: Runtime (in log scale) comparison.

7. CONCLUSIONS AND FUTURE WORK
To our knowledge, this is the first work on schedul-
ing/binding algorithms considering approximate circuits. A
simple yet credible error model is proposed. We develop a
sequential heuristic and an ILP based exact approach for
joint precision optimization and approximation-aware HLS.
The approaches provide energy vs. error tradeoff at system
level. In future research, we will consider interconnect/mux
and register binding. We will also investigate cases which
are both data-intensive and control-intensive.

8. REFERENCES
[1] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and

K. Roy. IMPACT: imprecise adders for low-power approximate
computing. ISLPED, pages 409–414, 2011.

[2] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling
and synthesis of quality-energy optimal approximate adders.
ICCAD, pages 728–735, 2012.

[3] J. Miao He, A. Gerstlauer, and M. Orshansky. Approximate
logic synthesis under general error magnitude and frequency
constraints. ICCAD, pages 779–786, 2013.

[4] C. Liu, J. Han, and F. Lombardi. A low-power,
high-performance approximate multiplier with configurable
partial error recovery. DATE, 2014.

[5] K. Nepal, Y. Li, R. I. Bahar, and S. Reda. ABACUS: a
technique for automated behavioral synthesis of approximate
computing. DATE, 2014.

[6] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan.
AxNN: energy-efficient neuromorphic systems using
approximate computing. ISLPED, pages 27–32, 2014.

[7] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan.
MACACO: modeling and analysis of circuits for approximate
computing. ICCAD, pages 667–673, 2011.

[8] J. Huang, J. Lach, and G. Robins. Analytic error modeling for
imprecise arithmetic circuits. SELSE, 2011.

[9] J. Liang, J. Han, and F. Lombardi. New metrics for the
reliability of approximate and probabilistic adders. IEEE
Trans. on Computers, 62(9):1760–1771, June 2012.

[10] W.-T. J. Chan, A. B. Kahng, S. Kang, R. Kumar, and
J. Sartori. Statistical analysis and modeling for error
composition in approximate computation circuits. ICCD, pages
47–53, 2013.

[11] D.-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk,
and G. A. Constantinides. Accuracy-guaranteed bit-width
optimization. IEEE TCAD, 25(10):1990–2000, October 2006.

[12] S. Lee and A. Gerstlauer. Fine graind word length optimization
for dynamic precision scaling in DSP systems. VLSI-SoC,
pages 266–271, 2013.

[13] K.-I. Kum and W. Sung. Combined word-length optimization
and high-level synthesis of digital signal processing systems.
IEEE TCAD, 20(8):921–930, August 2001.

[14] J. Cong, Y. Fan, G. Han, Y. Lin, J. Xu, Z. Zhang, and
X. Cheng. Bitwidth-aware scheduling and binding in high-level
synthesis. ASPDAC, pages 856–861, 2005.

[15] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: a tool for evaluating and synthesizing multimedia
and communications systems. MICRO, pages 330–335, 1997.

[16] IBM. CPLEX Optimizer. http://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/,
2014.

