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Abstract— Electromigration (EM), a growing problem in on-chip in-
terconnects, can cause wire resistances in a circuit to increase under
stress, to the point of creating open circuits. Classical circuit-level EM
models have two drawbacks: first, they do not accurately capture the
physics of degradation in copper dual-damascene (CuDD) metallization,
and second, they fail to model the inherent resilience in a circuit that
keeps it functioning even after a wire fails. This work overcomes both
limitations. For a single wire, our probabilistic analysis encapsulates
known realities about CuDD wires, e.g., that some regions of these wires
are more susceptible to EM than others, and that void formation/growth
show statistical behavior. We apply these ideas to the analysis of on-chip
power grids and demonstrate the inherent robustness of these grids that
maintains supply integrity under some EM failures.
Keywords: Electromigration, process variation, robustness, power grid

I. INTRODUCTION

Electromigration (EM) in interconnects occurs due to the move-
ment of metal atoms, activated by momentum transfer from collisions
with free electrons [1]. When bounded by a blocking boundary such
as a barrier layer, this movement causes a depletion of atoms at the
cathode end and a surplus at the anode; this depletion eventually leads
to void nucleation and subsequent growth [2]. Since the critical stress
for void nucleation is very small for copper dual damascene (CuDD)
structures, voids can form early in the lifetime of a design [3].
There is a large gap between what is known about the physics

of EM in CuDD wires and the knowledge used at the circuit
level. Traditional EM analysis is based on failure criteria measured
under accelerated aging. An interconnect whose resistance crosses a
predetermined threshold under stress is deemed to have failed, and
the time-to-failure parameters are extrapolated to normal operating
conditions using Black’s equation [4]. This analysis, supplemented
with the Blech-length thresholding criterion [5] that defines wires
that are immortal under EM, is used by circuit designers to derive
maximum current density limit rules on individual wires.
There are several problems with such an approach. First, in a real

circuit, the impact of such failures is context-dependent. In some
cases, a large failure may be tolerated due to the inherent resilience in
the circuit, e.g., due to redundancy in a power grid, where the failure
of one wire may be compensated by current flow through other paths.
Therefore, the use of a single threshold for the resistance change
may either be excessively conservative, or not conservative enough,
depending on how the threshold is chosen and how robust the circuit
is. Second, for CuDD interconnects, previous work [3] has shown that
the Blech-length approach, where wires with a sufficiently small jL
product (j is the current density, L is the length) can be considered
immortal, is invalid, and it has been observed that some lines fail
probabilistically even if they satisfy the Blech criterion on their jL
value. The root cause of this difference is that the critical stress for
void nucleation in Cu is 10× lower than that for Al, implying that it is
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possible for voids to nucleate soon, before providing the opportunity
for opposing back-stresses to build up to balance them. Third, there
are known effects such as the current divergence effect (discussed in
Section III-D) that are not widely considered at the circuit level.
These peculiarities for CuDD metallization indicate the need to

develop models for EM to enable probabilistic circuit analysis in a
context-sensitive way. The probabilistic viewpoint reflects both the
fact that mechanisms for EM are stochastic, and that the number of
interconnects on a chip is large enough that such statistical effects
may show up in different parts of the chip. There have been few prior
works in this direction: the work in [6] built up on [7] to consider
some EM issues beyond the conventional Black’s equation, but was
based on the problematic Blech length criterion.
In this work, we first present an analytical model to predict the

distribution of void growth and consequently, the resistance change
in a wire. Next, we demonstrate how this affects the probabilistic
distribution of voltage drops in standard power grid benchmarks.

II. DETERMINISTIC EM MODELS FOR CU INTERCONNECTS

The fundamental phenomenon of EM consists of forces that drive
atoms from the cathode to the anode. This produces regions of
uneven concentration, i.e., depletion and accumulation, which lead
to diffusion through various possible mechanisms: grain boundary,
volume, surface, and/or interface diffusion.
EM failure occurs in Cu interconnects in two phases:

• Void nucleation: After a wire has been stressed, the depletion
of atoms at the cathode creates a tensile stress. Once a critical
stress threshold value has been crossed, the void nucleates.

• Void growth: After nucleation, further movement of metal atoms
from the void results in void growth. This results in increased
wire resistance due to the effectively reduced cross-section. If
the void grows large enough, it may result in a break in the wire,
resulting in either an open circuit or a vastly increased resistance,
in cases where the current through the wire can flow through
the higher-resistivity barrier layer of the CuDD interconnect.

We begin by introducing deterministic models for the void nucle-
ation and growth phases. The foundation for modern models for EM,
incorporating the impact of stress, is based on the stress evolution
model in [8], which details a set of differential equations describing
the interplay between electron wind force and back stresses in the
interconnect. To model void nucleation, we use this stress evolution
model, extended to incorporate thermal stress effects using the
formulation as presented in [9]. The time, tn, at which a void
nucleates is given by

tn =
Ktn

Deff

(1)

where Ktn =
π

4

(

(σc − σth)
2ΩkBT

(eZ⋆
eff

ρ j)2B

)

The symbol Ktn groups together a number of terms to reflect the
dependency of tn on the effective diffusivity, Deff. In the detailed
expression for Ktn , σc is the effective critical stress for void
nucleation; σth is a term that accounts for the effects of thermal



stresses; Ω is atomic volume; kB is Boltzmann’s constant; T is
the temperature; q⋆ = eZ⋆

eff is the effective charge, where e is the
elementary charge on an electron and Z⋆

eff is the apparent effective
charge number; E = ρj is the electric field, where ρ is the resistivity
of copper and j is the current density in the wire; B is the effective
bulk modulus for the Cu–dielectric system.

In a CuDD process, a trench is first etched into the interlayer
dielectric, and a Ta-based liner is deposited therein to prevent Cu from
diffusing through. Next, the Cu used to construct the interconnect is
deposited, and finally, the lines are capped above. The diffusivity,
Deff, for EM can be considered as a sum of contributions of atomic
transport along various diffusion paths: the Cu capping interface I
between Cu and the Ta liner, the surface S, the grain boundaries GB,
and the bulk B. The product of effective diffusivity and the effective
atomic number along a CuDD interconnect can be written as [10]:

Z⋆
effDeff = Z⋆

IDI

(

δI
h

)

+ Z⋆
SDSδS
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1

h

)

+

Z⋆
GBDGBδGB

(

1

d
−

1

w

)

+ nBDB

where δI , δS , δGB , and δB denote the width of the capping interface,
surface, grain boundary, and bulk, respectively, h is the line height,
d is the grain size, and nB is the fraction of atoms diffusing
through the bulk. For thin copper interconnects at nanometer-scale
geometries, which are the subject of this work, the primary diffusion
paths for void nucleation is along the surface [10]–[13] and grain
boundaries play a significant role only in much wider wires that show
polycrystalline grain structures. However, once the void nucleates
the surface of the void which is an open copper surface acts as a
fast diffusion path [12]. Accordingly, we consider only the dominant
surface diffusivity term for each stage and neglect the other terms.

After nucleation at time tn, given by (1), the void starts to grow.
Various void growth kinetics have been observed in CuDD structures,
depending on the direction of the current. The scenario where the
electron flow is downwards, shown in Fig. 1(a), corresponds to the
via-above case, and results in potential void formations at the via
or in the wire, as illustrated in the figure. For the case where the
electron flow is upwards, illustrated in Fig. 1(b), an upstream void
is potentially formed in the upper wire, typically at a corner of the
wire or within the wire, as shown. The mechanics of void formation
in each case – span growth (for both the via-above and via-below
cases), when the void spans the entire interconnect, and slit growth,
where it forms along the via (for the via-above case) – is different
and necessitates a different model.

(a) Via-above case

(b) Via-below case

Fig. 1. Mechanisms of void evolution for the via-above and via-below cases.

In either case, once a void is formed, the primary mechanism of
increase in the void size is due to drift with a constant drift velocity
vd [2], [14], which is related to the effective mobility and the driving
force expressed as the Nernst-Einstein relation given by:

vd =

(

Deff

kBT

)

eZ⋆
eff ρ j (2)

If the void nucleates at time tn, then at an observation time to, the
void has been growing for a length of time, to − tn. The length of
the void increases due to drift, as given by:

Lvoid(to) = vd · (to − tn) =

(

Deff

kBT

)

eZ⋆
eff ρ j (to − tn) (3)

III. PROBABILISTIC MODELING OF EM FAILURE

The conventional explanation of EM in Al interconnects was
predicated on the interaction between the electron wind force and
the back stress force. For some interconnects, with low current
and/or small length, the two forces could be in equilibrium in the
steady state, so that critical stress σc for void nucleation is never
reached, implying that these wires are immortal to EM effects. For
a wire of length L with current density j, it was shown that the
criterion for immortality was jL ≤ (jL)crit, where (jL)crit is a
property of the material and the fabrication process. However, as
noted in Section I, it has been observed that for CuDD interconnects,
the immortality property does not hold, and lines are apt to show
probabilistic behavior [3].

A. Probabilistic Models for Activation Energy

The diffusivity is related, through an Arrhenius relationship, to
temperature T and the activation energy Ea as

Deff = D0 exp

(

−
Ea

kBT

)

(4)

where D0 is a constant. Recent work has observed EM failure is cor-
related to uncertainties in the microstructure and physical parameters
of an interconnect, which relates to the statistical distribution of the
normally-distributed activation energy.

Strictly speaking, since the activation energy is a property of the
microstructure, it can vary within the wire depending on the grain
boundary orientation. For instance EM activation energy can vary
between grains depending on the orientation of the grain with respect
to each other and with respect to the interfacial layer [25], [26].
However, at a macroscopic level, it is reasonable to assume that
the effective activation energy is same for a wire and varies only
between the wires [2], [12], [15]–[18]. Therefore, we work with the
idea of the “effective activation energy” for each wire, which is an
averaged activation energy value for that wire. As observed above,
the activation energy is normally distributed, and so we model the
effective activation energy, Ea, for each wire using an independent
Gaussian random variable.

B. Statistical Models for Void Dimensions

Since effective activation energy, Ea, for a wire follows a Gaussian
distribution, it is obvious from (4) that diffusivity, which contains Ea

in an exponential term, follows a lognormal distribution.

In our discussion below, for a distribution Z = N(µ, σ) with
mean µ and standard deviation σ, we denote a lognormal X =
eZ as LogN(µ, σ). Therefore, if Ea = N(µ, σ), then Deff =
LogN(µDeff

, σDeff
), where

µDeff
= logD0 −

µ

kBT
(5)

σDeff
=

σ

kBT

2



As discussed in Section II, the mechanisms responsible for Deff

are different in the nucleation and growth phases: interface diffusivity
for nucleation, and surface diffusivity for growth. We refer to the
effective diffusivity for the nucleation and growth phases as Deff,n

and Deff,g, respectively.
Nucleation: The expression for nucleation time tn was provided in
Equation (1). From this, it is clear that tn = LogN(µtn , σtn),

µtn = log(Ktn)− µDeff,n
(6)

σtn = σDeff,n

The proof of this is straightforward, and relies on the observation that
the distribution of a reciprocal of a lognormal logN(µ, σ) is another
lognormal characterized as logN(−µ, σ).
Growth: During void growth, the length of a void evolves with
time according to Equation (3). Grouping together all deterministic
parameters in this equation, if a void nucleates, then its length at
observation time to is given by:

Lvoid(to) =

(

Deff,g

kBT

)

eZ⋆
eff ρcu j (to − tn) (7)

= c1Deff,g − c2tnDeff,g (8)

Here, c1 and c2 are deterministic constants. The first term, c1Deff,g,
is clearly lognormal since Deff,g is lognormal; the second term,
c2tnDeff,g is a scaled product of lognormals, which is also a log-
normal. Therefore, Lvoid is a difference of two lognormals, c1Deff,g

and c2tnDeff,g, and it can be approximated by a lognormal using the
widely-used Wilkinson approximation [19].
If µX , σX (µY , σY ) are the mean (standard deviation) of the

underlying normal distribution for c1D (c2tnD), then

µX = log c1 + µDeff,n
;σX = σDeff,n

µY = log c2 + µDeff,g
+ µtn

σY =
√

σ2
Deff,g

+ σ2
tn

where µtn and σtn are given by Equation 6. This provides us with
an analytical expression for the distribution of the random variable,
Lvoid(to). For this lognormal distribution, logN(µLvoid

, σLvoid
), we

can compute the parameters of the distribution using Wilkinson
approximation as follows:

u1 = e(µX+σ2
X/2) − e(µY +σ2

Y /2)

u2 = e(2µX+2σ2
X) + e(2µY +2σ2

Y ) − 2e(µX+µY +(σ2
X+σ2

Y )/2)

µLvoid
= 2 log(u1)− log(u2)/2

σ2
Lvoid

= log(u2)− 2 log(u1)

C. Probability Distribution of the Resistance Change due to EM

We will now use the void length distribution to evaluate the
distribution of resistance change for different scenarios of void
growth. Our resistance evolution model considers separately the cases
of the span growth and slit growth mechanisms shown in Fig. 1. For
the case of the span void, the change in resistance, ∆R, is [14]:

∆R

Ro
=

(

ρTa

ρCu

ACu

ATa
− 1

)

Lvoid

Lwire
(9)

where ρCu and ρTa are, respectively, the resistivities of copper and
Tantalum, Ro = ρCuLwire/ACu is the resistance of the interconnect
wire segment, which is assumed to have length Lwire and cross-
sectional area ACu, and ATa is the cumulative cross-sectional area
of the tantalum barrier. Recall that the void length, Lvoid, was shown
in Section III-B to be lognormally distributed after nucleation.
Since all other terms are constants, it can be seen that for span

growth voids, for both the via-above and via-below cases, ∆R is
lognormal with the same σ as Lvoid, but with a shifted mean.

Fig. 2. CuDD via-liner alignment to limit resistance increase under EM [20].

For the slit growth scenario, as shown in Fig. 2, the via size may
be chosen so that the via overlaps with the liner (case (i)) or not
(case (ii)). As reported in [20], in the former case, the liner provides
a conductive path that enables a continued connection, and this may
be used to ensure electrical connectivity after a slit void is formed.
A derivation similar to that in [14] can be used to show:

∆R

Ro
=

(

ρTa

ρCu

ACu

ATa
− 1

)

Hvoid

Lwire
(10)

where Hvoid is the height of the slit void. We use this to ignore
the impact of slit growth voids in our evaluation of ∆R: although
slit voids tend to form earlier than span voids, it is easy to build
redundancy into the power grid to guard against slit voids by inserting
redundant vias; in fact, this is often done anyway. Therefore, we focus
our attention on the impact of span voids.
To write the expressions for the mean and standard deviation of

∆R more simply, we introduce the notation

kR =

(

ρTa

ρCu

ACu

ATa
− 1

)

1

Lwire
(11)

The resistance change distribution can then be expressed as ∆R
LogN(µ∆R, σ∆R), where

µ∆R = µLvoid
+ log kR + logRo (12)

σ∆R = σLvoid
(13)

We now summarize the conditions that must be satisfied to achieve
a resistance change of ∆R at an observation time to. First, a void
must nucleate, and then this nucleated void must grow to the point
where the wire resistance increases by ∆R. Using these notions,
we can now determine the probability that a given wire will have a
resistance change ∆R as:

Pr (∆R) =

{

Pr (∆R | nucleation) · Pr (nucleation)∆R > 0

1− Pr (nucleation) ∆R = 0
(14)

For the first case, the first term, for ∆R for a nucleated void is given
by LogN(µ∆R, σ∆R) as derived above, with the mean and standard
deviation given by Equation (13). For the second, the nucleation
probability is given by LogN(µtn , σtn) in Equation (6), and this
quantity corresponds to the probability that the nucleation time, tn,
is less than the observation time, to, i.e., the CDF of tn at to.
Therefore, the right-hand-side is a lognormal times a constant, i.e.,
the PDF of ∆R has the shape of a lognormal function. The second
case corresponds to the scenario where the void does not nucleate,
with a probability of 1− CDF (tn = to).

D. Incorporating the Effect of Current Divergence

The conventional approach to estimating EM failure is based on
a current density-based model. Under this model, for two wires of
equal length, the one with the larger current density should fail sooner.
However, the work in [21] demonstrated experimentally that this is
not always the case, by showing test circuit where one wire has
twice the current density as another, but experiences consistently later
failures. This is consistent with other reported work where the current
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divergence effect comes into play: for example, [22] shows fabricated
test structures where the failure rates on a wire segment depends not
only on the current density on the segment, but also on those on
adjacent segments that share via(s) with this segment.

Fig. 3. A via-tree structure where the effective current density is more than
the density of current flowing through the wire.

We compute the effective current density on a wire by considering
the magnitude and directions of currents in neighboring wires. The
effective current density for a wire is computed in terms of the
flux-divergence criterion, consistent with [21]. This is illustrated in
Figure 3, which shows two wires on metal layers Mx and Mx + 1
connected by a via. A via in a CuDD interconnect structure acts as
a blocking layer so that metal atoms are not permitted to migrate
through it. Therefore, any flux that would have gone to the via is
transmitted to a neighboring wire.

In the example shown here, the current on both segments of the
wire on layer Mx flows towards the via, i.e., the direction of electron
flow is away from the via for both segments. Assuming equal current
densities j on each of the two segments, this implies that there is an
effective divergence, which can eventually lead to void nucleation
and growth, equivalent to a current density of 2j on both wires. In
other words, as compared to the case where the left-hand segment is
missing and the right-hand segment has the same current density of
j, the expected rate of atomic transfer is doubled at this node. Using
the via node vector notion [21], an effective current density of 2j is
used for this wire instead of the actual current density of j.

E. Monte Carlo Analysis of Power Grids Using Importance Sampling

We now use our probabilistic resistance model to perform Monte
Carlo analysis of power grids in the presence of resistance variations.
Our PDF for the resistance change, derived in Section III-C builds
a simple circuit-level abstraction for complex physical phenomena,
facilitating simplified analysis at the circuit level by considering ∆R
as a random variable. However, given that EM is (and should be) a
relatively unlikely event, it is essential for our Monte Carlo analysis
to be biased appropriately: a truly random set of samples would
probably see no resistance change in most (and possibly, for a small
set of samples, no) wires. Most importantly, such an approach would
see a large number of samples go to waste as they provide little
meaningful information.

To overcome this, we use the notion of importance sampling, which
biases the distribution, but “unbiases” it as it interprets the results
of sampling. Importance sampling is a Monte Carlo method that
computes the expected value of a function f(x) of a random variable
x, which is specified in terms of a distribution p(x). This method
is particularly useful when p(x) is skewed or unevenly distributed,
i.e., some values of x have a low probability of occurrence and are
not sampled frequently enough, causing sampling errors. Importance
sampling resolves this by sampling according to a function q(x) that
is uniformly distributed over the range of x, and then correcting
the error due to sampling from this different distribution by adding
appropriate weights to f(x). For example, the expectation of f(x)
under the distribution p(x), denoted Ep[f(x)], is computed as:

Ep[f(x)] =

∫

f(x)p(x) =

∫

f(x)p(x).q(x)/q(x)

=

∫

w(x)q(x) = Eq[w(x)]

where w(x) = f(x)/q(x) and Ep[f(x)] is the expectation of f(x)
under the new distribution q(x).

In this work, we use a sampling distribution q(x), which is a
uniform distribution that stretches from 0 to the tail of the lognormal
distribution of ∆R: the values of this lognormal go from ∆R = 0 to
the (µ+3σ) point of the underlying Gaussian, log(∆R). If K is the
span of this distribution, then every point has a uniform probability
of 1/K. The method samples points on this uniform distribution,
feeds them into a power grid simulator based on DC modified nodal
analysis, and determines the voltage distribution at each node. The
voltages are then translated back to the original distribution by scaling
them by to the original lognormal distribution using the w(x) factor.

IV. RESULTS

A. Calibration of Correctness under Accelerated Aging

1) Failures in a Single Wire: To calibrate the correctness of
our models, we first work under assumptions similar to [2], which
computes tg , the time at which Lvoid becomes equal to Lvia, i.e.,
allowing the void to grow until it spans across the length of the
via, so that we can compare our predicted values against their
published Finite Element Analysis (FEA) simulations. Here, we use
the statistical framework derived in Section III under accelerated
aging under temperature and current stress.

Parameters for accelerated aging are set to ensure a fair compar-
ison, drawing parameter values from [2] where available. We use
T = 295◦C and j = 1.33MA/cm2 (reflecting temperature and
current stress), σc = 41MPa, Z⋆

eff = 5, ρCu = 2.5 × 10−8Ωm,

Lvia = 0.07µm, and Deff = 6.7×10−9cm2/s. Some parameters that
were unavailable were extracted from the literature. Specifically, the
mean of Ea = 0.47eV [18], the standard deviation for the underlying
Gaussian in the lognormal Ea was extracted from the Arrhenius plot
of Ea vs. 1/T in [12] as 0.005eV, and B = 1GPa [1].

We run a Monte Carlo (MC) simulation to validate our analytical
predictions of distribution of tn and Lvoid. Our MC simulation uses
106 samples on a normal distribution of activation energy. Fig. 4
shows the values obtained from from the analytical model and the MC
simulation. As in [2], the PDF for both the nucleation time and growth
time is observed to follow a lognormal distribution. The close match
that is seen between these curves is expected, since our analytical
formulation makes no approximations.
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Fig. 4. Comparing analytical vs. MC distributions under accelerated aging.

Table I lists the expected mean and standard deviation for the
failure parameters tn and tg obtained by our model against the FEA-
based values mentioned in [2]. The values show a reasonable but not
perfect match. The discrepancies could be attributed to factors such
as the unavailability of some parameters in [2], and differences in the
simulation setup, e.g., explicit consideration of grain size variation on
a microstructural level. Clearly, our method is much faster than FEA
since it merely involves the evaluation of an analytical expression.
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Phase Nucleation Growth
µ, σ µtn σtn µtg σtg

From [2] 8.5h 0.38h 8h 0.7h
Analytical 7.27h 0.74h 8.44h 0.86h

TABLE I

COMPARISON OF OUR ANALYTICAL METHOD WITH [2].

2) Statistical vs. deterministic approach: Continuing under the
assumptions in [2], where failure is defined as the time when Lvoid =
Lvia, the time to failure (TTF) is the sum of the nucleation time, tn,
and the growth time, tg . We use the distribution of tn and tg to
plot the distribution of TTF, and this distribution provides insights
about the importance of incorporating the statistical behavior when
modeling the effect of EM in circuits. From the CDF shown in
Fig. 4(c), the time to failure, the 0.27%, 50% percentile and 99.73%
points under accelerated aging are 12.73h, 15.68h, and 19.11h,
respectively. This has two implications. First, it means that every wire
has a nonzero probability of failure, which is not linked to its Blech
length of jL. Indeed, wires that satisfy the Blech length criterion will
fail: this has been observed experimentally in many of the references
cited in this paper. Second, there is very low probability that the wire
will fail in any manufactured part before 12.73h, and a probability
that is so small implies that the wire is effectively immortal.

B. Applying the Single-Wire Model at Normal Operating Conditions

Next, we evaluate the resistance change ratio, ∆R/R, of a wire
according to our probabilistic formulation in Equation (14). We use
a similar setup as described in Section IV-A.1, but we change the
temperature to normal operating conditions at 25◦C and the current
density to 0.5MA/cm2, and we return to the assumption that slit voids
are not significant since we assume that redundant vias are used. As
expected, the use of normal operating conditions for aging analysis
results in a reduction in the rate of EM degradation as compared to
an accelerated aging case, where TTF is of the order of several hours,
to a scenario where the TTF values are of the order of several years.
Using Equation (14), we obtain the probability distribution of the

∆R/R at an observation time of 12 years. Fig. 5 compares the CDF
of the change in ∆R/R as predicted by our formulation against MC
simulations. The small mismatch in the two CDFs can be attributed
to the error generated by our approximate moment matching method
for estimating the difference of two lognormals.
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Fig. 5. Distribution of tn and ∆R/R under normal operation.

C. Power grid simulation

Having verified our probabilistic resistance change formulation
for a single wire against published data due to slit voids, we use
our model to analyze the effect of resistance change due to EM
at the circuit level. The analysis is based on DC analysis of a

set of power grid benchmarks from [23], enumerated in Table II.
To perform a Monte Carlo simulation over the values of ∆R, we
implement a statistical importance sampling MC approach, described
in Section III-E, in C++ and MATLAB. We analyze the interconnects
for EM risk in the power grid and simulate the distribution of voltage
drops. We run our stochastic MC simulation for 1200 iterations for
the benchmarks. Using the runtime per iteration from Table II we
can estimate realistic runtimes if a specialized power grid simulator
were used; in our implementation, for convenience, we have used
the matrix solver from MATLAB. This table indicates that the MC
simulation can be carried out in a computationally efficient manner
with a better solver.

Name Total Runtime Memory Expected runtime
# wires [24] in MB [24] 1200 iterations

PG1 30027 0.20s 4MB 4min
PG2 208325 1.42s 72MB 29min
PG3 1401572 8.29s 172MB 166min
PG4 1560645 19.35s 606MB 387min
PG5 1076848 9.36s 296MB 187min

TABLE II

LIST OF P/G BENCHMARKS EVALUATED IN THIS PAPER.

We set the observation time to 2.5 years for PG1–PG4, consistent
with the results reported in [6]. For PG5, which shows a low nominal
voltage drop after 2.5 years, the observation time is set to 5 years.
All circuits are evaluated at a temperature of 105◦C.
To compare results of our statistical framework against previous

work with deterministic mortality approach, we predict the set of
mortal wires using the Blech-length [5] criterion. In the second and
third columns of Table III, for each benchmark, we compare the
results of the newly formulated statistical approach (“Stat.”) with
those from a deterministic Blech-length approach (“Blech”). As stated
earlier, for our approach, “mortality” is defined in terms of a 3σ
deviation from the mean in the underlying normal of the lognormal.
From the table, it can be seen that our implementation shows that
a larger number of wires must be considered mortal under the
probabilistic formulation, as compared to the deterministic Blech-
length based approach. This is entirely expected, and makes the case
for not using the Blech length criterion for CuDD interconnects.
Next, we evaluate the variation in the IR drop due to the statistical

distribution of EM. This distribution is observed to be non-Gaussian,
and we compute the spread of the distribution by taking the difference
(referred to as ∆V ) between the 99.73 and 0.27 percentile points. We
characterize the normalized spread by expressing ∆V as a fraction
of the median (i.e., 50 percentile point) of V .
The next column of Table III presents the largest realistic normal-

ized resistance change, estimated as the point that is three standard
deviations from the mean of the underlying Gaussian of the lognormal
∆R. This data indicates the spread in resistance change due to
EM. The subsequent columns show the variance in ∆V/V , and the
corresponding median, V50%, for the nodes in the network that have
the largest variance and largest median, respectively. In each case,
our approach provides a precise metric for the impact of EM on the
variation in power grid voltage.
Most significantly, this table demonstrates that contrary to the

assumptions in many other works on power grid analysis that assume
that a failing wire causes a failed circuit, the power grid may continue
to work even if a single wire fails. This is exemplified, for example,
by PG2, where, in spite of a large spread in the resistance change in
the wire, the spread for the IR drop is small.
Finally, we run MC simulations for PG5 at different observation

times, to, to analyze how the worst case IR drop varies with time.
For three values of to, Fig. 6 shows the CDF of IR drop for the node
having largest median IR drop value. For to = 5 years, the CDF is to

5



Ckt
Number of mortal Largest At largest At largest

wires ∆R/R variance node median node
Stat. Blech (in %) V50% ∆V/V V50% ∆V/V

PG1 16932 13272 218.4 0.73V 15.4% 0.89V 8.2%
PG2 81393 26723 113.6 0.39V 4.7% 0.50V 0.8%
PG3 63231 34998 65.9 0.19V 6.2% 0.24V 0.1%
PG4 140133 79737 36.4 0.006V 7.8% 0.01V 4.7%
PG5 131094 38746 120.4 0.035V 11.5% 0.07V 1.7%

TABLE III

RESULTS OF MONTE CARLO SIMULATION

the left, and it moves rightwards as the observation time increases.
For a given threshold value (e.g., 70mV) on the x-axis, it is clear that
the probability of seeing this value of IR drop increases with time,
since a larger fraction crosses the threshold value.
Fig. 6 provides further insight about the circuit behaviour with

respect to time. If we fix the threshold IR drop as 70mV, there can
be many wire failures that result in an increase in the resistance, but
almost all samples have IR drop below 70mV at to = 5 years. For
a slightly higher threshold value of 80mV (off the scale), there is a
high probability that the power grid will still be functional, for an
even higher observation time of 7.5 years – even though the circuit
does see wires that fail within 7.5 years. This indicates that for a
given specification, the circuit lifetime, which is characterized by
a threshold IR drop, can be longer than the lifetime of the EM-
degraded wire, i.e., an individual wire whose resistance exceeds a
specific threshold. In other words, the power grid is robust to some
EM failures in individual wires.
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Fig. 6. CDF plots for worst node IR drop at various observation times.

V. CONCLUSION

We have developed a method for EM analysis of power grids
taking into account two effects that were neglected in past work: first,
that EM is a probabilistic phenomenon for CuDD interconnects, and
second, that the power grid has inherent resilience to EM failures.
Our results indicate that both effects are substantial.
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