
A Framework for Block-Based Timing Sensitivity Analysis 
Sanjay V. Kumar 

University of Minnesota 
Minneapolis MN 55455 

Chandramouli V. Kashyap 
Intel Corporation 

Hillsboro OR 97123 

Sachin S. Sapatnekar  
University of Minnesota 
Minneapolis MN 55455           

ABSTRACT 
Since process and environmental variations can no longer be 
ignored in high-performance microprocessor designs, it is 
necessary to develop techniques for computing the sensitivities of 
the timing slacks to parameter variations. This additional slack 
information enables designers to examine paths that have large 
sensitivities to various parameters: such paths are not robust, even 
though they may have large nominal slacks and may hence be 
ignored in traditional timing analysis. We present a framework for 
block-based timing analysis, where the parameters are specified as 
ranges – rather than statistical distributions which are hard to know 
in practice. We show that our approach – which scales well with 
the number of processors – is accurate at all values of the 
parameters within the specified bounds, and not just at the worst-
case corner. This allows the designers to quantify the robustness of 
the design at any design point. We validate our approach on circuit 
blocks extracted from a commercial 45nm microprocessor. 
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1. Introduction 
Microprocessors are designed under the nominal or typical 
conditions where the process parameters, such as channel length 
(Le), threshold voltage (Vt) etc, which affect the transistor drive 
strengths, and environmental parameters, such as supply voltage 
(Vdd), are assumed to be at fixed values. Unlike ASICs, which are 
designed under worst case assumptions, microprocessor designers 
have relied upon at-speed testing of manufactured parts to grade 
parts by frequency, with higher frequency parts selling at higher 
prices. However, due to increasing levels of parameter variations, 
as well as aggressive design styles striving for the best performance 
at the lowest power, designing at the nominal point causes surprises 
in silicon [2]. Often paths with large positive slacks turn out to be 
speed limiting in silicon. Therefore, from a designer’s perspective, 
ordering paths by nominal slack, as is customary, does not provide 
a complete prioritization of paths to work on. For example, a 
representative slack1 distribution of paths in a modern 
microprocessor is shown in Fig 1(a). Due to power performance 
tradeoffs, a steep timing “wall” is created, where a large number of 
paths have the same slack. When the first silicon arrives, it may so 
happen that the drive strength of certain kinds of devices – for 

example, low power devices – turns out to be lower than was 
assumed during design. As a result, paths that are more susceptible 
to variations in this device type are likely to show up as speed 
limiting in silicon, necessitating costly design re-spins. 
In the above example, however, if in addition to nominal slacks the 
slack sensitivity of paths to the drive strength of the low power 
devices were available, it would have been possible to fix paths that 
are very sensitive to the drive current variations of this particular 
device before tape-out. Here, by slack sensitivity we mean the 
change in slack for a given change in a parameter. For example, the 
slack sensitivity distribution of the same set of paths, when the 
drive current of all low-power devices is weaker by 20% is shown 
in Fig 1(b). Note that the steep timing wall now has a finite slope 
when viewed from a sensitivity perspective – paths that appeared 
equivalent in terms of slack appear different in terms of 
sensitivities. Thus, by taking into account the nominal slack and the 
sensitivity of the slack to parameters in conjunction with the 
amount of variations in the parameters – often specified as a range, 
rather than a statistical distribution – a more effective prioritization 
of paths to work on can be provided to the designer. A case for 
sensitivity analysis was also made in [4]. However, the paper does 
not provide any algorithmic details of how sensitivities can be 
propagated in a block-based manner in a non-statistical setting. 

Fig 1: cdf  of top 1000 paths of a block showing: (a) nominal slack1 (b) 
slack sensitivity when Id of all low power devices is 20% weaker 

In this paper, we propose a block-based algorithmic framework for 
solving the following problem: Given a set of parameters and their 
ranges (bounds), compute accurate arrival times (slacks) for all 
settings of the parameters within the specified ranges in a single 
timing run. This allows us to compute the arrival time (slack) 
sensitivity at any given point – within the range of variations – by 
simply querying for timing information in the neighborhood of the 
point. For instance, referring to Fig 1(b), this framework allows us 
to compute the change in slack – slack sensitivity – for any 
variation in drive current within the 20% bound.  
It is generally accepted that  block-based techniques have certain 
advantages over path-based methods – fast run times, 
incrementality and timing aware optimization, etc., – and is the 
method of choice in industrial timing analyzers. We distinguish our 
approach from block-based SSTA [1], [6] which assumes that the 
distributions and their correlations are known a priori. This is 
usually not the case, but the bounds or ranges of parameters are 
easier to obtain. Further, certain parameters such as Vdd and Miller 
Coupling Factors (MCF) are not statistical in nature, and are 
therefore naturally described in terms of ranges. 

                                                                                                            
1 Slack values are normalized with respect to the FO4 delay of an inverter, 
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Recently, a block-based static timing algorithm that also works 
with parameter ranges was presented in [3].  The primary goal of 
that work was to preserve the accuracy at only the worst-case 
corner. To achieve this goal, the arrival time sensitivities to the 
parameters were adjusted during the output arrival time 
computation. As a result, the arrival times at non-worst case 
settings were not accurate (we show this in Table 7 of Section 4). 
Our goal in this work is different: we wish to compute accurate 
timing at all points, not just the worst case point. This enables us to 
compute the sensitivity of a timing parameter by evaluating the 
timing at two different points in the parameter space and computing 
the change in the timing quantity. 
This paper is organized in four sections as follows. In the next 
section we establish some notation and background for our method, 
with comments on a couple of papers relevant to our work. In 
Section 3, we introduce the various algorithms for propagating the 
arrival times through the circuit. We present experimental results in 
Section 4 based on a 45nm commercial microprocessor design.   

2. Preliminaries 
The timing graphs for an inverter and a two-input NAND gate are 
shown in Fig 2. The label on the edge is the delay of the input-
output transition of the gate. We also associate the notion of an 
arrival time at every node in the graph.  For a single input gate, 
such as an inverter, as shown in Fig 2(a), the output arrival time A2
is given by: 

1212 dAA += (1) 

where A1 is the input arrival time and d12 is delay of the arc 
between 1 and 2. For a two input NAND gate shown in Fig 2(b), 
the output arrival time A3 is given by: 

),max( 2321313 dAdAA ++= (2) 

which generalizes in an obvious way for gates with more than two 
inputs. A timing path is a sequence of nodes such that a delay arc 
exists between two successive nodes in the sequence. The first node 
in the sequence is the input node of the path and the last node in the 
sequence is the output node of the path. 

Fig 2: Timing graph of (a) inverter, and (b) NAND gate 

Suppose the delay of a gate depends on n parameters. Assuming a 
first order variation model, the delay can be written as: 

i
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1

(3) 

where ai are the delay sensitivities and 11 ≤≤− iX  with i=1,...,n. 
We refer to (3) as the delay hyperplane. We assume that the 
physical parameters such as L, Vdd, etc. have been transformed into 
the abstract parameters Xi by means of the affine transformation as 
described in [3],[5].  We use X to denote the set of points in the 
hypercube defined by 11 ≤≤− iX . Since the arrival time at the 
output node of a timing path is simply the summation of delays 
along the path, we express the arrival time A at the output node, as 
the arrival time hyperplane: 
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 (4) 

where A  is the nominal arrival time. Thus, the arrival time at the 
output node of a path has a simple representation that faithfully 
captures the sensitivity of the path to the parameters, given by the 
bi terms in (4).   
However, such a simple linear representation of arrival times is not 
helpful for computing sensitivities when many paths converge on a 
node. Consider the scenario depicted in Fig 3(a) which shows four 
different paths with different arrival times (denoted as A1, A2, A3, 
and A4 respectively), and different sensitivities to some parameter 
Xi. If these four paths converge at the same node, the arrival time at 
that node is given by the maximum of the arrival time of the four 
paths (generalized from (2)) and unlike (4), the arrival time is a 
nonlinear function of the parameters. The maximum arrival time at 
the nominal value of Xi is given by path 2 (hyperplane A2). 
However, if the parameter changes by -0.5, path 1 is the dominant 
path whereas if the parameter changes by +0.7, path 3 is dominant. 
Therefore, we need a representation of an arrival time that is 
faithful to the fact that different paths dominate for different 
settings of the parameters, and as a result gives the correct arrival 
time for any setting of the parameters.  
One representation of the arrival times in the presence of a max 
function is to use a bounding hyperplane as shown by the dotted 
line in Fig 3(b) (in one dimension it is a line) [3]. The authors 
propose an algorithm that provides a tight upper bound on the worst 
case arrival time value at the node. The advantage of this method is 
that the representation remains linear and canonical, and that it 
ensures that the worst case delay of the circuit is an upper bound on 
the true delay of the circuit. However, as mentioned in the 
introduction, in microprocessor design we are interested in the 
sensitivities around a design point rather than the worst case delay. 
As the figure shows, the bounding hyperplane is significantly 
inaccurate at non-worst case settings of the parameters, particularly 
around the nominal value. Further, no information as to which path 
is dominant and under what conditions is provided. Additionally, 
since the method artificially raises the delay hyperplanes during the 
MAX computation, the sensitivity of the delay with respect to the 
parameters is not preserved.  
However, if we relax the requirement that we propagate only a 
single arrival time hyperplane, then a piecewise-planar
representation of the MAX function is possible (see Fig 3(c)). We 
allow a set of hyperplanes such that each can be a maximum 
hyperplane for some setting of the parameters within the allowed 
ranges. Intuitively, each hyperplane represents a path up to that 
node in the timing graph. 

Fig 3(a) MAX arrival time (AT) of 4 paths using: (b) a bounding hyperplane 
using [3], and (c) an exact piece-wise planar representation 

More formally, for a set of m arrival time hyperplanes given by: 

mjXbAA i

n

i
jijj ,,1,

1
�=+= �

=

(5) 

We say that a hyperplane Aj is prunable if and only if: 
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For example, in Fig 3(c), A4 can be pruned because it does not 
contribute to the MAX function (shown by the dotted line). A set of 
hyperplanes is called irreducible if no hyperplane in the set is 
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prunable. Applying this definition to the four paths in Fig 3(a), we 
see that the three hyperplanes {A1, A2, A3} form an irreducible set 
and the MAX is shown by the dotted line in  Fig 3(c) which forms a 
piece-wise linear representation (piece-wise planar in higher 
dimensions). While this raises the possibility of exponential blowup 
in the number of hyperplanes under the worst case, since every path 
(there are exponential number of paths in the worst case) could 
become critical at some setting of the parameters, we show in 
Section 4 that this is not the case on practical industrial designs. In 
the next section, we also describe an algorithm that trades accuracy 
for run-time and avoids the potentially exponential run-times. 
We mention in passing that recently in [5], a branch and bound 
method was proposed to compute the exact worst case path delay 
using the method of [3] to provide the bounds needed to prune the 
search space. While the method could be adapted to compute the 
circuit delay at any settings of the parameters, it involves searching 
through the path space any time the parameter setting changes. 
Further, the run time depends on the quality of the upper bounds. 
As shown in Fig 3(b), the upper bound can be very loose at non-
worst case settings of the parameters, particularly at the nominal 
corner. Finally, this method does not explicitly provide us with a 
technique for determining under what conditions a particular path 
could become the most critical, something that is useful for the 
designers to know.  

3. Propagation of Arrival Times 
In this section, we describe techniques to propagate and prune the 
arrival times on the timing graph. The basic operations of static 
timing are the SUM and the MAX.  Considering the inverter in Fig 
2(a), the SUM operation is defined as: 

}|{ 12 12 AA ∈+= jj AdA (7) 

where A1 is the set of input hyperplanes and A2 is the set of output 
hyperplanes. In the rest of this section, we focus our attention on 
the more complex MAX operation2. 
Given a set of arrival times at the inputs of a gate, the arrival time 
at the output of the gate is the union of the sets of arrival times at 
the inputs. We refer to the set of hyperplanes at the output node as 
U= {A1,..,Am}. We need to perform a pruning operation on U to 
determine UA ⊆ (ideally A would be irreducible). Such a pruning 
operation is necessary in order to ensure that the number of 
hyperplanes on every node does not increase exponentially as we 
perform a forward propagation along the timing graph.  

3.1 Pairwise Pruning Algorithm 
We first describe a simple algorithm that compares the arrival times 
in a pairwise manner. Given two hyperplanes A1 and A2, we write  

12 AA �  if 021 ≥− AA  for all values of X in X. That is (using (4)):  
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Since the parameters have all been normalized to lie between -1 
and +1, (8) is always true if: 
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Note that given two hyperplanes A1 and A2, we have one of:  

1. 21 AA �  in which case we prune A1,  

2. 12 AA �  in which case we prune A2,  

                                                                
2 The algorithms described in the paper can be adapted for the MIN 

operation in a straightforward manner. 

3. neither 21 AA �  nor 12 AA �  and we keep them both.  

Given a set of hyperplanes U={A1,..,Am} the pruning algorithm is 
outlined in  Fig 4. The PAIRWISE algorithm begins with the set U, 
and initially assumes that all the hyperplanes in U are non-
prunable. A hyperplane in U is compared against all other non-
prunable hyperplanes in U and if it is not prunable, it is added to 
the set A. The overall run-time for this operation is O (m2).  

Fig 4: PAIRWISE pruning algorithm 

3.2 Necessary and Sufficient Condition for Pruning 
The PAIRWISE algorithm does not guarantee that the set A is 
irreducible. This can be illustrated by Fig 3 where the PAIRWISE 
algorithm does not mark A4 as non-prunable since (9) does not hold 
for any hyperplane that is compared with A4. Therefore, the 
condition described in (9) to prune a hyperplane is sufficient but 
not necessary. In order to determine if a hyperplane in U is 
prunable or not, it must be simultaneously compared with all other 
non-prunable hyperplanes in U. Thus, to determine if a hyperplane 
Aj in U can be pruned, the following condition must be satisfied: 

niX
jkmkAA

i

kj

,,1,11
,,...,1
�=≤≤−

≠=∀≥

has no feasible solution 

(10) 

(10) is a necessary and sufficient condition to determine if a 
hyperplane can be pruned.  The FEASCHK algorithm that performs 
pruning based on (10) is shown in Fig 5. Since feasibility checking 
is done by all LP solvers, we use the commercial optimization 
package CPLEX [6] which performs feasibility check efficiently. 
We note that the algorithm is inherently parallelizable since the 
feasibility check for each hyperplane can be performed in parallel, 
if a multi-processor machine were available. Also, unlike the 
method in [5], FEASCHK can be easily adapted to find a point in X
where a given hyperplane (path) is non-prunable (critical). 

Fig 5: FEASCHK pruning algorithm 

While the feasibility checking can be done in time polynomial in 
the size of (10), the theoretically exponential number of 
hyperplanes that are possible at a node makes this exponential. 

PAIRWISE(In:U;Out:A)
//U={A1,…,Am} 
A={}; 
Mark all hyperplanes non-prunable; 
for i=1:m 
  if (Ai is marked pruned) continue; 
  for j=1:m 
    if (Aj is marked pruned) continue; 

    if( ij AA � ) mark Aj pruned; 

  end //for j=1:m 
end //for i=1:m 
Add all non-prunable hyperplanes to A 

FEASCHK (In:U;Out:A)
//U={A1,…,Am} 
A={}; 
Mark all hyperplanes non-prunable; 
for j=1:m 
  if (Aj is marked pruned) continue; 
  formulate (10), check for feasibility; 
  // only include Ak not marked pruned 
  if(solution to (10) is feasible) 
      A= A U Aj; 
  else  
      mark Aj as pruned 
end //for j=1:m
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However, as we show in the next section, FEASCHK is in practice 
efficient on realistic circuits. 
In order to optimize the run-time spent in determining the set of 
hyperplanes to propagate, FEASCHK algorithm can be applied 
selectively. If the number of hyperplanes on the node exceeds a 
certain user-specified threshold, we apply FEASCHK; else the 
PAIRWISE algorithm is used to prune the hyperplanes. This 
implies that some redundant hyperplanes that can be pruned are 
carried forward, until the threshold is reached. This algorithm is 
denoted as PAIRWISE_FEASCHK_THRESH. 

3.3 Exploring Run-time Accuracy Trade-offs 
While the algorithms described in the previous subsections are 
exact, the run-time depends on the nature of the logic cone and the 
number of parameters considered. In the worst-case, the run-times 
could be exponential since exponential number of hyperplanes may 
be carried. We now describe two methods which trade-off accuracy 
for runtime. 

3.3.1 A Soft-Pruning Strategy 
As explained in the previous section, the PAIRWISE pruning 
strategy can often be inefficient, leading to an exponential blow-up 
of the number of non-prunable hyperplanes, if most of them cannot 
be pruned using (8). Instead, if we relax (8) as follows, then 
additional pruning can be achieved: 
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n
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Intuitively, this implies that we mark A2 as prunable even if it can 
exceed A1 by a small amount �. In order to account for the fact that 
pruning A2 may lead to an inaccurate timing estimate at some 
setting of the parameters, we raise hyperplane A1 by increasing its 
nominal arrival time 1A , by the minimum amount required for (8) 
to be satisfied.  This not only allows us to prune A2 but may also 
allow several other planes to be pruned by the raised hyperplane of 
A1, thereby considerably decreasing the number of hyperplanes that 
need to be propagated. 
There is a tradeoff between the number of hyperplanes pruned and 
the pessimism in the actual arrival time numbers due to raising 
some of the hyperplanes, based on the value of �. However, in 
practice, a small value of �, (-0.5% of 1A based on our experiments) 
provides a considerable speedup without significantly over-
estimating the arrival times. In our implementation, we use this 
idea of a soft threshold for pairwise-pruning our hyperplanes as a 
preprocessing stage to reduce the cardinality of U, before applying 
FEASCHK. Each hyperplane is allowed to be raised at most once 
during PAIRWISE pruning if (11) is true but (8) is still false. This 
algorithm is referred to as PAIRWISE_SOFT_PRUNE_FEASCHK 
and the results are shown in Section 4.2. 

3.3.2 Shrinking Hypercube Method 
We now describe a method that allows accuracy to be traded-off for 
run-time by limiting the number of hyperplanes carried. This idea is 
explained in Fig. 6 where four hyperplanes in an irreducible set A 
are shown. Xi is in [-1, 1] as before. However, if Xi is restricted to 
lie in [-0.5, 0.5], A1 and A4 are prunable as shown in (b), while at 
the nominal value of Xi (interval size is zero) A1, A3, and A4 are all 
prunable. Thus, by reducing the size of the range of parameters, 
fewer hyperplanes can be propagated.  
Hyperplanes that are not prunable outside the range are replaced 
with a bounding hyperplane using the method of [3]. While this 
method is pessimistic outside the reduced range of Xi, it is faster 
since fewer hyperplanes are propagated. Further, by preserving 
accuracy within the reduced range which is centered on the 

nominal point, the arrival times around the nominal are still 
calculated accurately. 

Fig 6: (a) Four non-prunable hyperplanes (A1, A2, A3, A4) (b) Shrunk 
hypercube  for the four planes in (a), (given by -0.5 � Xi� 0.5) such that 

only A2 and A3 are non-prunable 

More formally, for every node we have a triple consisting of the 
non-prunable hyperplanes, the hypercube where the hyperplanes 
are non-prunable, and a bounding hyperplane which is an upper 
bound of all the hyperplanes at that node. Consider an m-input gate: 
At the ith input we have the triple: <Ai, Xai, Bi> where Ai is an 
irreducible set, Xai is the set of points in the reduced hypercube 
given by iji aXa ≤≤−  ( 10 ≤≤ ia , j=1,…,n) and Bi is the 
bounding hyperplane. To compute the triple at the output, we start 
with the initial triple <U, X0, Ub> where mAAU �∪= 1 , X0 is the 
smallest hypercube from the inputs, and is given 
by ama XXX �∩= 10 , and },,{ 1 mb BB �=U . We prune U such 
that the number of non-prunable hyperplanes is less than the user 
specified threshold. We do this by iteratively shrinking X0 if 
necessary (by some delta), as shown in the algorithm 
SHRINK_HYPERCUBE in Fig 7. We also compute the bounding 
hyperplane B on Ub, using [3]. 

Fig 7: SHRINK_HYPERCUBE algorithm 

The SHRINK_HYPERCUBE method is equivalent to FEASCHK 
when X is [-1,1], and reduces to the method in [3] if N = 1. This 
algorithm can be extended to shrink each dimension by different 
amounts and to also use binary search in the while loop in Fig 7.  

4. Results 
In this section, we present the simulation results obtained on a 
45nm based commercial microprocessor design. Global variations 
in four different parameters types, namely supply voltage (Vdd), 
Miller Coupling Factor (MCF), channel length of NMOS 
transistors (Ln), and channel length of PMOS transistors (Lp), are 
considered.  Ln and Lp are each divided into two different types, 
based on whether the device is nominal or low power, and further 
into three types based on layout dependent information. Each of the 
individual L parameters is assumed to vary independently of each 
other, thereby resulting in 14 different parameters (12 for L, MCF, 
and Vdd). The ranges of these parameters are shown in Table 1.  

A1 A2 A3 A4

(a) (b) 

SHRINK_HYPERCUBE(In:U,X0,Ub,N;Out: A,X,B))
//U={A1,…,Am}, Ub={B1,…,Bm} 
//N = maximum number of non-prunable  
  hyperplanes allowed 
//X0 = Initial hypercube 
Apply FEASCHK algorithm with bounds on X from 
   X0, to obtain the irreducible set of A. 
while (size(A) > N) 
  Shrink hypercube X0 by delta
  Apply FEASCHK with new bounds on X to 
  obtain the new irreducible set of A.
end 
Compute bounding hyperplane B on Ub
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Table 1: Range of variations for parameters 

Parameter (total of 14) Range of Variations 

Vdd 
3 0 to -18%  

Ln and Lp (12 different types) ±10%  

MCF ±33%  

The bounds on these parameters are provided as an input to the 
timing engine. We found that the delay is linear in the parameter 
variations within these ranges.  The library characterization flow 
has been enhanced to compute the delay sensitivities on all timing 
arcs with respect to each of the above parameters as a function of 
input slopes and output loads.  The pruning algorithms described in 
Section 3 are applied on four different design blocks. Table 2 
presents information about the benchmark circuits. The timing 
engine is implemented in C++, with an interface to CPLEX [7], to 
perform FEASCHK pruning. The arrival times are computed for 
RISE and FALL transitions at the MAX and MIN modes as is 
typical in a static timing tool. 

Table 2: Benchmark information 

 Block1 Block2 Block3 Block4 

# of registers 623 1086 2510 1021 

# of  nodes 21425 22384 40972 50599 

# of timing arcs 14143 10044 16879 46647 

4.1 Run-time Comparisons 
The run-times for performing a forward propagation on the timing 
graph computing the set of irreducible arrival time hyperplanes on 
every node are shown in Table 3. The run-time numbers are 
relative to the timing run where a single parameterized hyperplane 
(the hyperplane with the largest (smallest) arrival time at the 
nominal point for MAX (MIN) analysis) is propagated. The results 
indicate significant difference between the run-times on Block1 
versus the other blocks. As shown in Fig 8, this is because there are 
a large number of reconvergent paths in Block1 and consequently a 
larger fraction of nodes that contain 100 or more hyperplanes. It is 
also interesting to see that, for Block1, PAIRWISE takes an order 
of magnitude more runtime than FEASCHK although the 
complexity of PAIRWISE is less than that of FEASCHK, which 
can be explained as follows. 

Table 3: Run-times (relative to nominal) with 14 parameters 

Method Block1 Block2 Block3 Block4 

PAIRWISE - 4 1.2x 1.15x 1.69x 

FEASCHK 14.11x 1.67x 1.40x 1.74x 

PAIRWISE_FEASCHK_
THRESHOLD (N=50)  

14.44x 1.2x 1.16x 1.76x 

Since PAIRWISE is a sufficient but not a necessary condition for 
pruning, it carries forward a significant number of prunable 
hyperplanes, which has a cascading effect as the hyperplanes are 
propagated through the circuit. FEASCHK on the other hand does 
more work to find truly prunable hyperplanes at every node and the 
number of hyperplanes it carries forward is therefore significantly 
reduced. For example, there were 93 nodes that had more than 1000 
hyperplanes with PAIRWISE whereas there were only 15 such 
nodes with FEASCHK. 

                                                                
3 The normalized parameter for Vdd is assumed to vary from [-1,0] with -1 

representing the case where Vdd is at -18%. The pruning algorithms are 
modified to handle this special case, accordingly. 

4 This run did not finish due to insufficient memory.  

To summarize, our experiments on the four blocks indicate that 
PAIRWISE_FEASCHK_THRESH provides significantly better 
run-time performance over the PAIRWISE method for circuits with 
large number of hyperplanes (as seen in Block 1). At the same time 
it performs better than FEASCHK on Blocks 2-4. Thus, the runtime 
of these methods is very dependent on the topology of the circuits. 
Since Block1 has a large number of equally critical paths, we focus 
on that block in the rest of the section. 
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 Fig 8: cdf of the number of hyperplanes on the four blocks for MAX 
operations, performed using FEASCHK  

4.2 Approximate Methods 
In order to explore run-time accuracy trade-offs, the 
SHRINK_HYPERCUBE method, described in Section 3.3.2 is 
applied on Block 1 for different values of N, where N denotes the 
maximum number of hyperplanes that can be propagated at every 
node. The run-times and the smallest size of the hypercube, 
computed across the inputs of the 623 sequential gates in the 
design, for the case of 14 parameters, are shown in Table 4.  

Table 4: SHRINK_HYPERCUBE method on Block 1 

Number of hyperplanes 
allowed  

Run-time relative to 
FEASCHK 

Size of 
hypercube  

50 0.69x 0.25 

100 0.74x 0.25 

200 0.83x 0.50 

400 0.93x 0.75 

800 0.99x 0.75 

A step-size of 0.25 is used to shrink the hypercube in each iteration 
of the while loop in Fig 7. The run-times are compared with respect 
to the FEASCHK run-time in Table 3. The results indicate a good 
trade-off between the run-times, the size of the hypercube (denoted 
in Section 3.3.2 by a , where njaXa j ,,1, �=≤≤− ), and the 
maximum number of hyperplanes allowed (N). 

Table 5: Distribution of the hypercube size in Block 1 

Size of Hypercube No. of cones Cumulative % 

0.25 2 1.19% 

0.5 2 2.38% 

0.75 51 3.28% 

1 1619 100.00% 

A cdf of the size of the hypercube for each of the timing cones in 
Block 1 is shown in Table 5, for the case where N was set to 100, 
in the SHRINK_HYPERCUBE algorithm. The results indicate that 
more than 95% of the timing cones have a hypercube of size 1, 
implying less than 100 hyperplanes on them, and hence the arrival 
times computed on all these cones are exact, for any setting. 
To further explore run-time accuracy trade-offs, the 
PAIRWISE_SOFT_PRUNE_FEASCHK algorithm, explained in 
Section 3.3.1 was applied on Block 1. The results are compared 
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with FEASCHK algorithm in Table 6. The table shows a reduction 
in the maximum number of hyperplanes on a node by a factor of 
three, when compared with FEASCHK. Accordingly, a 33% 
speedup over FEASCHK is obtained at the expense of a small 
overestimation (maximum of 1.6%) in the nominal arrival times. 

Table 6:PAIRWISE_SOFT_PRUNE_FEASCHK on Block 1  

 FEASCHK PAIRWISE_SOFT_ 
PRUNE_FEASCHK 

Run-time 14.11x 9.58x 

Number of hyperplanes on 
the largest cone 

948 382 

4.3 Slack Computation 
We briefly explain how we compute the slacks at the inputs of all 
registers in the blocks. Consider the cone shown in Fig 9. In our 
framework, the arrival times at the data and clock inputs of the 
sampling register are irreducible sets of hyperplanes denoted as Ad
and Ac, respectively. The required arrival time at the data input of 
the sampling register is given by: 

}|{ cd AR ∈−+= jccj ASTA (12) 

where T  is the cycle time and S is the setup time. We do not 
consider setup time variations in this work. On all our benchmarks, 
the cardinality of Ac was one since there was no fanin in the clock 
network. The margin at the data input of the register is given by: 

},|{ ddd RAM ∈∈−= idjdjddi RAAR (13) 

Fig 9: A timing cone  

Thus, (13) can be computed in ).( dd RAO time. Md may be 
pruned further using the techniques of Section 3.  
In order to evaluate the sensitivity of the slack of the various paths 
to parameter variations, we first compute the set of irreducible 
slack hyperplanes at the data input of each of the registers on Block 
1, for the case of 14 parameters. We now consider the cone with the 
highest number of irreducible slack hyperplanes on Block 1 
(consisting of 948 hyperplanes). Table 7 shows the slacks 
(computed as a minimum of the margins of the 948 irreducible 
hyperplanes) at different settings of the parameters, (none of which 
are worst case): 1) nominal (Nominal), 2) all devices 5% faster 
(Fast L), 3) low Vdd, high MCF (Low Vdd, High MCF), 4) certain 
layout type devices being 5% slower (Slow Layout) 5) low power 
devices being 5% slower (Slow Low Power) and 6) all parameters 
at their worst values (Worst Case). The slack at each of these 
settings is significantly different from the nominal slack, 
demonstrating that different paths have different sensitivities and 
the ability of our method to predict that.  
We also compute the upper bound on the arrival times (AT) at each 
of these settings using the upper bounding hyperplane method in 
[3] in order to determine the extent of pessimism induced by using 
such an upper bounding method, and the results are shown in the 
last column in Table 7. Expectedly, at the worst case corner setting, 
the arrival time computed using [3] is exact, and there is no 
overestimation, whereas at other settings of the parameters, 

                                                                

particularly at the nominal, the arrival times computed using [3] are 
higher by as much as 20-30%. 

Table 7: Slacks at different settings of the parameters 

Setting Normalized 
Slack 

Delta Slack 
w.r.t. Nom. 

AT Overestima-
tion using [3] 

Nominal -0.16 - 24.42% 

Fast L +0.64 +0.80 33.21% 

Low Vdd, High 
MCF 

-1.13 -0.98 20.23% 

Slow Layout -0.74 -0.58 17.47% 

Slow Low 
Power 

-1.45 -1.29 17.57% 

Worst Case -5.28 -5.12 0.00% 

Fig 10 shows the plot of the nominal slacks versus the new slack 
for the 948 hyperplanes at a different setting X. This new setting is 
computed such that the path marked with a P in the figure, which 
has a large nominal slack, becomes the most timing critical at that 
setting. The setting corresponded to a 9% droop in Vdd, worst case 
MCF, certain layout transistor types being fast, others being slow. 
The set of paths that are encircled are the most sensitive when the 
parameters are at this particular setting. Note that this information 
is not obtained in current timing flows based on nominal slacks. In 
this case, the path marked with P would not have been considered 
critical. However, in our flow we can compute the slack at any 
setting of the parameters, thus enabling a what-if analysis. 
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Fig 10: Slacks at a different setting of X s.t. the path (marked P in the 
figure) with a large nominal slack becomes the most timing- critical 

CONCLUSION 
We present a block-based framework for computing the arrival 
times and slacks at all settings of the parameters, where only ranges 
on the parameter variations are known. We describe various 
pruning techniques in this paradigm. Results on industrial circuits 
show the viability of our approach. 
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