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ABSTRACT 
This paper presents a power grid analyzer based on a random 
walk technique. A linear-time algorithm is first demonstrated for 
DC analysis, and is then extended to perform transient analysis. 
The method has the desirable property of localizing computation, 
so that it shows massive benefits over conventional methods when 
only a small part of the grid is to be analyzed (for example, when 
the effects of small changes to the grid are to be examined). Even 
for the full analysis of the grid, experimental results show that the 
method is faster than existing approaches and has an acceptable 
error margin. This method has been applied to test circuits of up 
to 2.3M nodes. For example, for a circuit with 70K nodes, the 
solution time for a single node was 0.42 sec and the complete 
solution was obtained in 17.6 sec. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – simulation. 

General Terms Algorithms, Reliability, Verification. 

Keywords Random walk, power grid. 

1. INTRODUCTION 
Ensuring the reliability of the power grid is an indispensable part 
of high-performance design and there is a strong need for efficient 
supply grid analyzers. The problem of IR drops on supply grids 
becomes worse in successive technology generations as wire 
resistances increase due to the reduced interconnect widths, and 
the currents through the grid increase. These effects are magnified 
with the decreasing noise margins that accompany VDD reductions 
from one technology node to the next. 
The problem is often solved at two levels of detail. The steady-
state case corresponds to DC analysis of the network, while the 
transient analysis problem includes the effects of capacitors/ 
inductors and time-varying current waveform patterns. We will 
first focus our attention on the DC analysis problem, and later, we 
will extend our algorithm to perform transient analysis. 

 
Figure 1. A typical circuit model for a part of a power grid. 

The power grid model is illustrated in Figure 1.  It consists of 
wire resistances, wire capacitances, decoupling capacitors, VDD 
pads, and current sources that represent the currents drawn by 
logic gates or functional blocks. For DC analysis, all capacitors 
are open-circuited and inductors are short-circuited, so that the 
DC model contains no capacitors and has ideal voltage sources at 
the pads. The DC analysis problem is formulated as: 

                G X = E                                       (1) 
where G is the conductance matrix for the interconnected 
resistors, X is the vector of node voltages, and E is a vector of 
independent sources. Traditional approaches to solving the DC 
analysis problem often exploit the sparse and positive definite 
nature of G to solve this system of linear equations for X. 
However, the cost of doing so can become prohibitive for a 
modern-day power grid with tens of millions of nodes, with the 
growing from one technology generation to the next. 
Different methods have been proposed to address this issue. For 
example, [10] utilizes the hierarchical structure of a power grid, 
divides it into a global grid and multiple local grids, and solves 
them separately. The approach in [4] proposes a grid-reduction 
scheme to coarsen the circuit recursively, solves a coarsened 
circuit, and then maps back to find the solution to the original 
circuit. These methods sacrifice a certain degree of accuracy for a 
lower time and space computational complexity. 
In this paper, we apply a statistical approach based on the 
relationship between random walks and electrical networks to 
solve the problem of power grid analysis, and use test results to 
show that it reaches a good accuracy-runtime tradeoff, compared 
with other methods.  A significant advantage of this method over 
prior methods is that it is particularly useful and efficient when 
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only a small fraction of the nodes in the grid are to be analyzed, 
as may be the case when a small part of the grid is modified. 
This paper is organized as follows. Section 2 presents the 
theoretical basis of the proposed algorithm, followed by a simple 
illustrative example in Section 3. Experimental results for DC 
analysis on larger circuits are provided in Section 4.  The 
proposed algorithm is extended to RC-network transient analysis 
in Section 5, and Section 6 presents some concluding remarks. 

 
Figure 2. A representative node in the power grid. 

2. RANDOM WALK PRINCIPLES 
The random walk is a classical problem in statistics that has had 
numerous applications in engineering. A prominent example of 
the use of random walks in CAD is [6], which applies this idea to 
capacitance extraction. Other applications can be found in 
[2][5][9]. The work in this paper is inspired by the results due to 
Doyle and Snell [1], which interprets the relationship between 
resistive networks and probabilities.  Specifically, the solution to 
any network with resistors and voltage sources can be interpreted 
as being equivalent to an equivalent probabilistic problem.  We 
apply and extend this method to the problem of DC analysis of a 
power grid, and develop practical implementational strategies that 
allow the solution to be applied to large instances.  
We will focus our discussion on the description of a VDD grid, 
pointing out the difference for a ground grid where applicable. 
For the DC analysis of a power grid, let us look at a single node x 
in the circuit, as illustrated in Figure 2. Applying Kirchoff’s 
Current Law, Kirchoff’s Voltage Law and the device equations 
for the conductances, we can write down the following equation: 

Σi = 1 to degree(x)  gi (Vi – Vx) = Ix                        (2) 
where the nodes adjacent to x are labeled 1, 2, … degree(x), Vx is 
the voltage at node x, Vi is the voltage at node i, gi is the 
conductance between node i and node x, and Ix is the current load 
connected to node x. Equation (2) can be reformulated as follows: 
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We can see that this implies that the voltage at any node is a 
linear function of the voltages at its neighbors.  We also observe 
that the sum of the linear coefficients associated with the Vi’s is 1. 
For a power grid problem with N non-VDD nodes, we have N 
linear equations similar to the one above, one for each node. 
Solving this set of equations will give us the exact solution. 

 
Figure 3. An instance of a random walk "game." 

Now let us look at a random walk “game.” Given a finite 
undirected connected graph (for example, Figure 3) representing a 
street map. A walker starts from one of the nodes, and goes to an 
adjacent node k every day with probability px,k for k = 1,2,…, 
degree(x), where x is the current node, and degree(x) is the 
number of edges connected to node x. These probabilities satisfy 
the following relationship: 

px,1 + px, 2 + … + px,degree(x) = 1                 (4) 
The walker pays an amount mx to a motel for lodging everyday, 
until he/she reaches one of the homes, which are a subset of the 
nodes. If the walker reaches home, he/she will stay there and be 
awarded a certain amount of money, m0. We will consider the 
problem of calculating the expected amount of money that the 
walker has accumulated at the end of the walk, as a function of 
the starting node, assuming he/she starts with nothing. 
The gain function for the walk is therefore defined as 

f(x) = E[total money earned |walk starts at node x]     (5) 
It is obvious that 

f(one of the homes) = m0         (6) 
For a non-home node x, assuming that the adjacent nodes of x are 
labeled 1, 2, …  degree(x), we can write down the following 
equation 
    f(x) =  px,1 f(1) + px, 2 f(2) + … + px,degree(x) f(degree(x)) - mx   (7) 

For a random-walk problem with N non-home nodes, we have N 
linear equations similar to the one above, and the solution to this 
set of equation will give us the exact values of f at all nodes. 
It is easy to draw a parallel between these two problems. Equation 
(7) becomes identical to Equation (3), and Equation (6) reduces to 
the condition of perfect VDD nodes if we set 
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The calculations for ground net analysis are analogous; the major 
differences are that (i) the Ix’s have negative values, (ii) VDD is 



replaced by zero. As a result, the walker earns money in each 
step, but gets no award at home. 
In other words, for any power grid problem, we can construct a 
random walk problem that is mathematically equivalent, i.e., 
characterized by the same set of equations. It can be proven, 
easily that such an equation set has and only has one unique 
solution [1]. It is both the solution to the random walk problem, 
and the solution to the power grid problem. Therefore, if we find 
an approximated solution for the random walk, it is also an 
approximated solution for the power grid. 
A natural way to approach the random walk problem is to perform 
a certain number of experiments and uses the average money left 
in those experiments as the approximated solution. If this amount 
is averaged over a sufficiently large number of walks by playing 
the “game” a sufficiently large number of times, by the law of 
large numbers [8], an acceptably accurate solution can be 
obtained. This is the idea behind our proposed algorithm. 
According to the Central Limit Theorem [8], the error is a 0-mean 
Gaussian variable with variance inversely proportional to M, 
where M is the number of experiments. Thus we have an 
accuracy-runtime tradeoff. Instead of fixing M, we employ a 
stopping criterion driven by a user-specified error margin, ∆: 

P[-∆ < Ve-V < ∆] > 99%                             (9) 
where Ve is the estimated voltage from M experiments. If Var is 
the variance of these results, the above criterion can be written as 
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In a normal power grid, each node is in a similar environment, 
with similar-value-range devices around it and similar distances to 
perfect-voltage nodes. Therefore, different nodes have similar 
Var, and M is roughly a constant. 
In the implementation, we will impose a limit, L, on the number 
of steps in a walk; details are provided in Section 4. Thus, for a 
power grid with N non-VDD nodes, we can estimate worst-case 
time complexity as O(LMN), where each unit corresponds to one 
random-number generation, a few logic operations and one 
addition. Practically, since both L and M are upper-bounded by 
constants, we have worst-case time complexity that is linear in the 
number of nodes. For average case, since each node is in a similar 
environment, the M experiments take similar CPU times for 
processing each node. Therefore, the average-case runtime is also 
linear in the number of nodes. 
A desirable feature of the proposed algorithm is that it localizes 
the computation, i.e., it can calculate a single node voltage 
without having to solve the whole circuit. This is especially 
meaningful when the designer knows which part of his power grid 
is problematic, or when the designer makes a minor change in the 
design and want to see the impact. 
For example, if the objective of the analysis is to find the voltage 
at a single node, then this approach can perform a number of 
random walks starting from that node.  In a typical supply net that 
has a sufficiently large number of pads that are reasonably close 
to any node, such a walk is likely to reach home soon.  As 
compared to a conventional approach that must solve the full set 

of matrix equations to find the voltage at any one node, the 
computational advantage of this method could be tremendous, and 
we validate this in Section 4. We will also demonstrate the 
usefulness of this method for the solution at all nodes in the grid. 

3. A SIMPLE EXAMPLE 
In order to show how the proposed algorithm works, let us look at 
a simple circuit, as shown in Figure 4. The true voltage values at 
node A, B, C and D are 0.6, 0.8, 0.7 and 0.9, respectively. 
Applying Equation (8) to this circuit, we construct an equivalent 
random walk game, as shown in Figure 5, where numbers inside 
circles represent motel prices and home awards, and numbers 
beside the arrows represent the transition probabilities from each 
node to a neighboring node. 

 
Figure 4. A simple circuit example. 

 
Figure 5. The random walk game corresponding to the circuit 

in Figure 4. 

Table 1. Convergence of the simple example. 

M Exp #1 Exp #2 Exp #3 Exp #4 Exp #5 

100 0.6108 0.6316 0.6456 0.6250 0.6001 

1000 0.5955 0.6090 0.5898 0.5861 0.5887 

5000 0.6033 0.5998 0.6043 0.6049 0.5978 

Let us say we want to find out the voltage of node A, we start the 
walker at node A. He/she pays the motel price of $0.2, then either 
goes up with probability 0.33 to the terminal and end this walk, or 
goes down with probability 0.67 to node C, then pays 0.022, and 
continues from there. Such a walk could be very short: for 
example, the walker may directly goes up and ends up with $0.8. 
Alternatively, the walk could be very long, if it keeps going back 
and forth between A, B, C and D, so that the walker ends up with 
very little money; however, the probability of such a walk can 
easily be verified to be low. We perform M such experiments and 



take the average of the M results as the estimated money earned 
during the walk, and change the units from dollars to volts to 
obtain the estimated voltage of node A. 
Table 1 shows how the estimated voltage of node A converges to 
the true value of 0.6V. The Columns in the table represent five 
different runs of the proposed algorithm. 

4. RESULTS OF DC ANALYSIS 
We now apply the proposed algorithm to a real-life power grid 
model. Our benchmark is a 70729-node industrial circuit, and we 
solve for the 15876 bottom-layer VDD nodes and 15625 bottom-
layer GND nodes, as they are the voltages of interest. The VDD 
value is 1.2V.  Because we need HSPICE to provide the correct 
answer to evaluate the accuracy of the method, the circuit size is 
limited by the maximum size that HSPICE can handle in a 
reasonable amount of time and within the memory constraints of 
the machines available to us. However, we can be assured that the 
proposed algorithm will have the same accuracy for a larger 
circuit, and the runtime will be proportional to the number of 
nodes, as it is a linear-time algorithm. Our computations are 
carried out on a Linux workstation with 2.8GHz CPU frequency. 

 
Figure 6. Estimated voltages at a single node for various 

values of M. 

Figure 6 shows the result of computing the solution for only one 
node, where the markers are estimated values of the voltage for 
different M, and the dashed line is the true voltage. The ultra-
accurate right-most point, for which M=4000, only takes 0.42 
second runtime, and thus shows the efficiency of using our 
algorithm to solve individual nodes without solving the whole 
circuit.  
When solving for multiple node voltages, several efficiency-
enhancing techniques can be used. Since the voltage at each 
already calculated node is known, it becomes a new home in the 
game with an award amount equal to its calculated voltage. This 
operation speeds up the algorithm dramatically, as there are more 
terminals to end a walk, and therefore the average number of 
steps in each walk is reduced. At the same time, this operation 
improves accuracy without increasing M, because each 
experiment that ends at such a node is equivalent to multiple 
experiments.  
As indicated in Section 2, another implementation issue is that, in 
order to avoid any possible deadlock, we need to set a limit, L, on 

the number of steps in a walk. Any walk that fails to end within L 
steps will be forced to end, and be awarded VDD if inside the VDD 
net, be awarded 0 if inside the GND net. This operation is 
optimistic and will results in a bias in the estimated voltage; 
however, if the limit is chosen appropriately, the error will be 
very small as the probability of a walk of this length is minute. 
Thus a new degree of accuracy-runtime tradeoff is introduced, 
and we empirically set this limit to be 10000 steps as a good 
tradeoff point, where the bias error is acceptable and not much 
runtime is wasted.  
The above tradeoff only affects runtime indirectly, while the error 
margin ∆ in Equation (9) decides M, which is directly 
proportional to runtime and needs careful investigation. Figure 7 
plots the relation between ∆ and runtime for the industrial circuit. 
The runtime is always larger than 8 seconds because the minimum 
value of M is set to be 40.  

 
Figure 7. CPU time-accuracy tradeoff for the computation of 

all nodes in the test circuit. 

In practice, the user decides the tradeoff point by choosing ∆ 
according to the needs of the analysis. Here we choose ∆=4mV as 
a good tradeoff point. By definition, 99% nodes have an 
estimation error less than 4mV. In fact, among the 15876 bottom-
layer nodes in the VDD net, the average error is 1.5mV, and the 
maximum error is 7.4mV. Considering the true voltage range 
1.1324—1.1917, this accuracy is sufficient. The corresponding 
runtime is 17.60 seconds.  
To compare runtime with other algorithms, we use the runtimes 
reported in [10] as the baseline. [10] reports both serial runtime 
and parallel runtime. Since the random-walk algorithm is 
inherently compatible with parallel computing, and it is likely that 
it could beat any other method in that case, we only compare 
serial mode runtime.  
The runtime comparison for a complete analysis of all nodes in 
the supply grid is shown in Table 2. In viewing these numbers, it 
is important to note that our computer is approximately 3 times 
faster than the computer used by [10], according to SPEC 
benchmarks [7]. The six circuits in [10] have much larger sizes 
than our benchmark, Chip-2 is the smallest, and Chip-6 is the 
largest. The runtime per thousand nodes increases with circuit 
size for [10] due to its superlinear time complexity. Since our 
algorithm has linear time complexity, as power grid size 
increases, it will outperform [10] even further. Additionally, as 



mentioned earlier, if the objective is to analyze a small subset of 
the grid, the random walk approach has major speed advantages. 

Table 2. Runtime comparison. 

Method Runtime per thousand nodes (sec) 
Random walk 0.25 

Chip-1 0.66 
Chip-2 0.55 
Chip-3 1.09 
Chip-4 1.33 
Chip-5 1.44 

Method in 
[10]  

Chip-6 1.70 

5. TRANSIENT ANALYSIS: EXTENSION 
The proposed method can be extended to transient analysis of RC 
supply grids, where the transient effects of capacitances and time-
varying current waveforms are considered. In this case the 
equations to be solved may be written as follows [3]: 

G y(t) + C y’(t) = b(t)                       (11) 
where G is a conductance matrix, C is the matrix introduced by 
capacitors, y(t) is the vector of node voltages, and b(t) is the 
vector of independent sources. Applying the backward Euler 
formula with a time step of h, the equations become 

(G + C/h)  y(t) = b(t) + C/h y(t-h)      (12) 
This transformation translates the problem to that of solving a 
circuit with resistors and capacitors, as before, and considering 
node x at one time step at time t, we have: 

( ) ( ) )()()()()(
)(degree

1
tIhtVtV

h
C

tVtVg xxx
x

x

i
xii +−−=−∑

=

 (13) 

where Vx, Vi, Ix and gi are as defined in Equation (2), and Cx is the 
capacitance between node x and ground. 
For RC-network with capacitors between nodes, those capacitors 
can be replaced by resistors and voltage-controlled current 
sources, while a current source between two nodes can be 
replaced by two current sources between the two nodes and 
ground. The following algorithm is still applicable. Here we only 
discuss the case described in Equation (13). 
Equation (13) can be converted to the following form 
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The rules of the random walk game are changed to accommodate 
the changes in the above equation. As shown in Figure 8, each 
node x has an additional connection, and the walker could end the 
walk and be awarded the amount Vx(t-h) with probability 
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Intuitively, this rule is equivalent to replacing each capacitor by a 
resistor and a voltage source. 

 
Figure 8. Rules for the transient analysis “game.” 

For transient analysis, traditional direct linear equation solvers are 
efficient in computing solutions for succeeding time steps after 
initial matrix factorization since only a forward/backward 
substitution step is required for each additional time step. 
Analogously, our random walk algorithm employs a speed-up 
mechanism. We first perform a DC analysis that is used as the 
initial condition. Next, when computing the first transient 
timestep, we keep a record for each node. This record keeps a 
count of, in these M walks, how many times the walker ends at 
VDD, how many times the walker ends at some V(t-h), how many 
times the walker pays for a motel at some node, and so on. Then, 
in the follow-up timesteps, we do not need to walk any more, 
simply use these records recursively and assume that the walker 
gets awards at same locations, pays for same motels, and only the 
award amounts and motel prices have changed. Thus new 
voltages can be computed by some multiplications and additions 
efficiently. The space complexity demanded by this bookkeeping 
is approximately linear in the number of nodes, and is not worse 
than the space complexity of a traditional direct solver. 

Table 3. Transient analysis results. N is the circuit size, S is 
the number of timesteps, ∆ is the voltage range, T is CPU time 

per timestep for subsequent timesteps, E1 is the average 
error, and E2 is the max error. 

Ckt N S ∆          
(V) 

T 
(sec) 

E1 
(mV) 

E2 
(mV) 

#1 2500 30 0.9297–
1.1950 

0.7m 1.0 8.6 

#2 400 300 1.0886– 
1.1731 

0.06m 1.4 5.9 

#3 3700 500 1.0881–
1.1774 

2.6m 1.6 11.9 

#4 2.3M 1000 N/A 0.65 N/A N/A 

In order to evaluate the transient analysis, since we were unable to 
obtain real-life RC power grid circuits, we generated four random 
circuits with realistic parameters. The results of our approach are 
shown in Table 3. The CPU times correspond to the runtimes for 
the time steps that follow the initial DC analysis and the first 
transient step. The solutions for circuits 1, 2 and 3 are compared 
with HSPICE, while circuit 4 is too large to be simulated in 



HSPICE. The runtimes are several times faster than traditional 
direct solver runtimes reported in [10], even after normalization 
by the speed factor of 3 (estimated in Section 4). 
The efficiency of transient analysis can be improved by taking 
advantage of the property of localization for random walks. 
Because the voltage value at the previous time step, V(t-h), must 
be updated for every node for each timestep, we cannot restrict 
the computation to only a single node any more. However, the 
computation can still be limited to a small region because of the 
inherent locality of the problem. As shown in Figure 9, the 
smallest circle is the region that we are interested to solve, and we 
define a larger area around this, called the “active area,” which 
consists of nodes whose voltages are likely to affect nodes in the 
area to be solved.  Since faraway nodes are unlikely to influence 
the solution significantly, we ignore all the capacitors in the 
faraway region, and thus do not update their V(t-h) values. 

 
Figure 9. A scheme for localizing transient analysis. 

The border is defined such that any walk from a node in "area to 
be solved" to a node in "faraway region" needs at least K steps. 
Because error is induced if and only if a walk from the center 
region reaches outside the border, and that error can be viewed as 
an incorrect estimation of the border voltage, the induced error is 
upper-bounded as follows. 

Error ≤ Pescape * ∆        (15) 
where ∆ is a upper bound of the voltage swing of this power grid, 
and Pescape is the probability that a walk reaches outside the 
border. The value of ∆ can be estimated by the initial DC analysis 
and that of Pescape by experiments. Thus, we can achieve a 
tremendous speed-up by localizing computation, and yet choose K 
to control the induced error within a user-specified margin. 
 

 
Figure 10. A pad model with self-inductance. 

Incorporating pad inductances: A realistic power grid model 
uses RLC models at the pads, as shown in Figure 10, where L 
corresponds to a self-inductance.  It is easy to extend our transient 
analysis method to handle these self-inductances.  The application 
of the Backward Euler method at each time point creates a 
companion model for an inductor that consists of a voltage source 

in series with a resistor.  We have already shown in our discussion 
on capacitances that such a structure can easily be handled within 
our formulation. 

6. CONCLUSION 
An efficient power grid DC analysis algorithm has been proposed 
based on random walk technique, and can be extended to RC 
transient analysis. It has linear time complexity, and is shown to 
reach a good accuracy-runtime tradeoff. It has the meaningful 
feature of localizing computation, making it especially useful 
when only a part of the supply grid is to be solved. 
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