Technology Mapping for SOl Domino Logic
Incorporating Solutions for the Parasitic Bipolar Effect

Srirang K. Karandikar
Department of ECE,
University of Minnesota.

srirang@ece.umn.edu

ABSTRACT

We present a technology mapping algorithm for implement-
ing a random logic gate network in domino logic. The target
technology of implementation is Silicon on Insulator (SOI).
SOI devices exhibit an effect known as Parasitic Bipolar
Effect (PBE), which can lead to incorrect logic values in
the circuit. Our algorithm solves the technology mapping
problem by permitting several transformations during the
mapping process in order to avoid the PBE, such as tran-
sistor reordering, altering the way transistors are organized
into gates, and adding pmos discharge transistors. We min-
imize the total cost of implementation, which includes the
discharge transistors required for correct functioning. Our
algorithm generates solutions that reduce the number of dis-
charge transistors needed by 44.23%, and reduces the size
of the final solution by 11.66% on average.

1. INTRODUCTION

As the scaling of bulk CMOS proceeds along the roadmap,
interest in SOI as an alternative technology has increased.
Manufacturing processes have recently matured enough to
allow large circuit implementations in SOI at acceptable
defect levels. However, current algorithms used for imple-
menting circuits in bulk CMOS are inadequate for SOI. The
best approaches and traditional design techniques from bulk
CMOS could be disastrous if applied to SOI. An example is
the use of precharge transistors in bulk CMOS, to offset the
charge sharing effect. If these are used in SOI, we would
obtain circuits that would not function correctly. Current
EDA techniques too do not adequately address the needs of
SOI design. There is a requirement for new algorithms and
tools targeted towards SOI designs. Simply modifying ex-
isting algorithms and adding post-processing steps leads to
solutions that are sub-optimal. This paper address the tech-
nology mapping problem in the context of SOI. We present
an algorithm that maps an arbitrary 2-input logic gate net-
work to domino logic eliminating the “Parasitic Bipolar Ef-
fect” (PBE) by applying transformations such as reordering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.

Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

Sachin S. Sapatnekar
Department of ECE,
University of Minnesota.

sachin@ece.umn.edu

transistor stacks in the gate, altering the structure of the
gates to reduce their susceptibility to PBE, and inserting
pmos pre-discharge transistors at appropriate points in the
circuit. In doing so, the algorithm minimizes the cost of
this implementation: for example, for an area objective, it
would minimize the total number of transistors, including
pre-discharge transistors.

This paper is organized as follows. We briefly introduce
SOI and domino logic, and present problems typical to SOI
implementations, with emphasis on overcoming the PBE.
We then present an algorithm that performs the technology
mapping taking the PBE into consideration, and show the
effectiveness of this algorithm in the results section. We
conclude with directions for future work.

2. BACKGROUND

2.1 Silicon-on-Insulator

SOI has long been used in a variety of fields, such as
radiation-hardened and high-voltage applications [13], [14].
Circuits implemented in SOI have attractive properties as
compared to bulk CMOS, such as reduced source- and drain-
substrate capacitances, no body effect in series stacks of
transistors and suitability for reduced V44 operation for given
performance [4], [9]. Due to reduced capacitances, SOI de-
vices consume less power. Since transistors are isolated from
each other by an insulator, they require smaller area. In
spite of being smaller, faster and consuming less power than
bulk CMOS, SOI has not found widespread use in the VLSI
community until recently. This has been due to the rapid
progress and scaling of bulk CMOS technology. However,
recent advances in manufacturing processes have led to a re-
newed interest in SOI. Increased understanding of how SOI
devices behave, and possible solutions to their quirks has
lead to a wider acceptance of SOI in the VLSI community.
A number of high end microprocessor designs have recently
been implemented in SOI, e.g. HP-PA 8700 [11], IBM Power
PC [1], [3], [2], and others [5], [6].

The manufacturing process of SOI is very similar to that
of bulk CMOS. The preliminary step in SOI fabrication is to
implant a layer of silicon dioxide beneath the surface of the
silicon wafer. This is the “Insulator” in Silicon-on-Insulator.
Transistors are created by masking and doping exposed re-
gions on the layer of silicon above the silicon dioxide. Once
transistors are fabricated in this manner, they are isolated
from other devices by another layer of silicon dioxide, called
Shallow Trench Isolation (STI). Due to this structure, the
bodies of individual transistors are electrically isolated from

the rest of the circuit, unlike bulk CMOS circuits where the
body is identical to the substrate or well, which is connected
to a supply node. Hence, the body potential in SOI is free
to seek its own level, and is determined to a large extent by
the voltage levels at the source and drain of the transistor,
due to leakage currents. Changes in the gate voltage also
affect the body potential due to capacitive coupling. Thus,
if the gate is held low and drain and source are at a logic
high for an extended period of time, charge accumulates in
the body due to leakage current and impact ionization [9].
This causes the body potential to increase. This variance
in body voltage is the main source of problems associated
with SOI. The change in body voltage of a device results in
different switching speeds at different time instants. Also,
switching speeds across a circuit can vary due to different
devices having different body voltages. Another problem
that a high body voltage can cause is called the Parasitic
Bipolar Effect (PBE), described in more detail in section 3.

2.2 Domino Logic

Domino logic is a favoured approach for implementing
timing critical circuits due to their high performance. The

basic structure of a domino gate is as shown in figure 1(without

the p-discharge transistor. During precharge, the dynamic
node is charged to a high logic value, and the output of
the gate is set to logic zero. During the evaluate phase
the n-clock transistor switches on, and depending on the
inputs to the pull down network, the dynamic node is ei-
ther discharged or retains its charge. If the dynamic node
switches, the output of the gate goes to a logic high value.
OR logic functionality is obtained in domino by connecting
n-transistors in parallel in the pull down network. Sim-
ilarly, AND functionality can be obtained by connecting
the n-transistors in series. More complicated logic oper-
ations are obtained by combining these basic operations.
The circuit shown in figure 1 implements the logic function
(A+B+C)xD.

3. PARASITIC BIPOLAR EFFECT IN SOI

3.1 Issues with SOI Implementations

The advantages of SOI listed in the previous section come
at a cost. Prominent among these are the hysteretic V;
variation [8], in which the behaviour of a transistor varies
according to its previous switching history. Another serious
problem associated with SOI devices is the Parasitic Bipolar
Effect (PBE) [12], [7], which is described in more detail in
the following sections.

3.2 Parasitic Bipolar Effect

PBE occurs in certain circuit topologies and switching
patterns, such as stack OR-AND structures. The topol-
ogy typically involves an “off” transistor situated high in
the stack, with the source and drain voltages in the “High”
state. Over a period, this causes the body voltage to be
charge high. When the source is subsequently pulled down,
either by the clocked evaluation transistor in dynamic cir-
cuits or by an input signal, a large overdrive is developed
across the body-source junction, causing bipolar current to
flow through the lateral parasitic bipolar transistor (the em-
mitter and collector of the parasitic transistor correspond
to the drain and source of the FET, while the base corre-
sponds to the body). The parasitic bipolar current and the

FET current (caused by noise and aggravated by the low
Vt) result in a loss of charge on the dynamic node.

This can be illustrated by an example from [12]. For the
circuit shown in figure 1(without the p-discharge transistor),
consider a steady state condition with inputs A =1, B =
0, C = 0 and D = 0. Transistor A is on, and the other n-
transistors in the pulldown logic network are off. Hence, as
the dynamic node charges to a high value during precharge,
node 1 is charged to a high voltage level. Recall that tran-
sistors B and C are off at this point. Under this set of
conditions, the bodies of transistors A, B and C charge to
a high value. Now if A switches low, the potential at node
1 remains at its high logic value since transistor D is off.
Moreover, the switching event on A sets the body voltage
for device A to be low (due to strong capacitive coupling be-
tween the body and gate of A), but leaves the body voltages
of B and C high. In the evaluate phase, if D is switched on
(with A, B and C off), node 1 is suddenly pulled down. This
causes the parasitic bipolar transistor in devices B and C to
switch on - the base and collector of the parasitic transistor
are high while the emitter has been pulled low - and a large
current can flow through transistors B and C. If this current
is large enough, it can pull voltage at the dynamic node to
a level small enough to switch the output of the gate to a
high value. Thus, even though the output node should have
evaluated low, it ends up as a high. In this manner, the PBE
can result in a wrong evaluation if not properly accounted
for in an SOI implementation. This value will eventually be
brought to its correct value by the keeper, but this is liable
to take time and may cause erroneous circuit behaviour in
the interim.

3.3 Solutions to the PBE

There are a several solutions for handling the PBE, such
as sizing up the keeper pmos device, adding body contacts to
some devices in the circuit, breaking parallel stacks by tran-
sistor replication, reodering parallel stacks to reduce suscep-
tibility to PBE, and predischarging intermediate nodes.

Stacks of transistors in a gate may be reordered to reduce
its susceptibility to PBE. For the gate in Figure 1, if the par-
allel stack of transistors A, B and C is moved to the bottom
of the gate, so that the sources of all three transistors are
connected to ground, it will not be possible to excite PBE.
This approach exploits the reduced charge sharing effect and
reduced delay dependency on stack ordering in SOI technol-
ogy. However, this works only if there is one parallel stack
per gate. If this condition is not met, it may be possible to
remap Boolean logic to ensure that each gate contains no
more than one parallel stack, which can then be reordered
within the gate to connect it to ground.

Intermediate nodes in a stack may be predischarged in
every clock cycle. In figure 1, a clock-driven p-discharge
transistor has been added to the circuit. Such a transistor
can be used to connect intermediate points in the circuit
(such as node 1) to ground. Thus, during every precharge
cycle these intermediate nodes are discharged, and the bod-
ies of transistors in the pulldown network are not permitted
to charge to a high voltage level. The drawback of using
p-discharge transistors is the additional load on the clock
network.

One approach to performing optimizations such as those
mentioned above is to start with the original design in bulk
silicon, analyze it to identify potential sources of PBE, and

p—clock T

Clk transistor
QOutput
\d
E Output
A '_E B _E c _E Inverter
Dynamic Node
\J
" Nodel

99

p—discharge n—clock
transistor transistor

Figure 1: Predischarge Trans for Resolving PBE

apply the above transformations to eliminate them. The
main criticism of such an approach is that the solutions ob-
tained are local in nature. For example, while a particular
mapping may be optimal for bulk CMOS, it becomes non-
optimal if it requires a large number of p-discharge transis-
tors. A better approach would be to perform the mapping
from logic gates to the transistor level, keeping the require-
ment of p-discharge transistors in mind. In section 5, we
propose an algorithm that performs such a mapping.

In this work, we avoid the transformations of sizing the
keeper, adding body contacts and splitting parallel stacks
using duplication, since they can cause significant cost in-
creases [13], and instead, focus on the rest. We perform
our procedure at the time of synthesis, prior to circuit siz-
ing, and note that the transformation that sizes the keeper
is more appropriately applied after or during the transistor
sizing step. In applying the remaining transformations, we
will penalise the addition of clock-connected transistors and
additional transistors required due to gate reorganization,
since they represent a cost-increasing transformation.

4. TECHNOLOGY MAPPING FORDOMINO

LOGIC

Synthesis of domino circuits is more complicated than that
of static circuits. The added complexity is due to the mono-
tonic nature of domino logic which forces it to implement
only non-inverting functions. Therefore, domino logic can
only be mapped to a network of non-inverting functions,
where needed logic inversions must be performed at either
primary inputs and/or primary outputs. Any random logic
network can be transformed into a network of non-inverting
functions by finding a unate network representation.

We use a simple bubble pushing algorithm to generate
the unate network. We simply attempt to push inverters
as far back as possible (i.e., towards the primary inputs),
by applying DeMorgan’s laws where necessary. If inverters
cannot be pushed through a gate, e.g., when both positive
and negative phases of the signal are required, logic duplica-
tion is necessary. After a unate network representation has
been created, the network can then be technology mapped to
domino gates. Note that starting from an initial decomposed
network consisting of 2-input AND-OR gates and inverters,

the unate network thus obtained will only consist of 2-input
AND-OR gates, since all inverters have been removed in the
unating process.

We now briefly present a library free technology mapping
algorithm for domino logic initially presented in [10]. A
set of tuples of {W, H,C} (width, height and cost) are as-
sociated with each logic gate of the input network. The
cost here may be the number of transistors, the number of
logic levels, or delay. The values of maximum gate width
and height determine the number of tuples associated with
each gate. The input network of 2-input AND-OR gates
is traversed from primary inputs to primary outputs, and
sub-solutions for each gates for all possible configurations
of {W,H} are calculated based on the sub-solutions of its
inputs. Note that, depending on the inputs, a gate may
not have all combinations of {W, H} and in practice, only
a fraction of W x H tuples are associated with each gate.
Once all valid tuples for a gate have been calculated, the {1,
1} tuple is constructed by selecting the best (lowest cost)
sub-solution for that logic gate, and converting this partial
structure into a domino gate by adding the clock transistors,
the output inverter and a keeper transistor. Thus, the cost
of a {1, 1} configuration is the lowest cost among all other
configurations plus 5. The basic operations for combining
input tuples to form the tuples of the curren gate are AND
and OR. These operations are as follows. An AND operation
requires a series connection of inputs. Hence, the {W;, H;}
and {W,, H,} solutions of the inputs are combined to form
the {max(W;, W,), H, + H,} solution. Similarly, {W;, H;}
and {W,, H,} solutions of the inputs can be combined as
{W: + W,, max(H;, H,)}.

This algorithm guarantees optimal-cost solutions. The
best sub-solution of an input node may not necessarily end
up as part of the final solution. Thus, local optimal solutions
are avoided if they are not globally optimal. Finally, at
the primary outputs, the best solution in terms of the cost
function is selected. This specifies a domino circuit that
implements the input network with minimum cost.

= {2,1,2
o {L17
-

S

~-...

Figure 2: Technology Mapping for Domino Logic

This algorithm is easily illustrated with the help of an ex-
ample. Consider the circuit in figure 2, and assume that the
maximum number of transistors allowed in series and in par-
allel are 4. This simple circuit consists of 2 AND gates and 1
OR gate. The AND gates are driven by the primary inputs,
which have only one possible tuple associated with them :

{1, 1, 1}. These can be combined in an AND operation to
form the tuple {2, 1, 2}. The transistor structure associated
with this tuple is as shown. Since there is only one tuple
for this gate, it is used to construct the tuple correspond-
ing to W =1,H =1, {1,1,7}. The two solutions for each
of the AND gates can be combined in 4 possible ways, but
due to symmetry we have only three unique combinations -
{1, 2, 16}, {2, 1, 10} (repeated twice) and {2, 2, 4}. Note
that when a gate from a input node is used (corresponding
to the {1, 1} solution), an extra transistor is needed in the
next gate. For the OR gate, the {2, 2} solution is clearly
the best, and it is used to form the corresponding {1, 1}
solution, with a cost of 9.

5. AN ALGORITHM FOR SOI MAPPING

We follow the basic algorithmic framework of [10], pre-
sented in brief in the previous section with modifications to
the cost function calculation in order to properly account
for PBE. As before, each gate in the input network is as-
sociated with a set of tuples corresponding to one {W, H}
solution of the subtree rooted at the current node. In ad-
dition to the cost associated with each tuple, we also store
Pdis, the number of potential discharge transistors required
by the configuration, and pary, which tracks whether or not
a given tuple has a parallel branch at the bottom of its struc-
ture. As mentioned in the previous section, the solutions of
the input gates are combined to form the solutions for the
current gate. In case of multiple solutions being available,
the lowest cost solution is selected. Ties for the lowest cost
solutions are resolved by the pg;s values.

A

L

Potentia Discharge Pt c
B

Potential Discharge Pt F {

E

Figure 3: Potential Discharge Points

We now explain the concepts of pgis and pary, which are
central to our algorithm. The parameter pg;s is used to
account for the discharge transistors that will have to be
added to eliminate PBE. From the explanation of section
3.2, we see that PBE can be excited only in the presence
of one or more parallel stacks. This provides a path for
the bottom of the stack to get charged to a high value (the
top of the stack is charged via a path from the precharge
transistor). Additionally, at least one transistor is required
at the bottom of a parallel stack to excite the PBE; when this
transistor switches on, the common node for the stack will be
pulled low, possibly resulting in the PBE. Hence, the bottom
of a parallel stack is one potential discharge point. The
parameter pary keeps track of whether a given intermediate
structure has a parallel branch at the bottom or not. In
the final solution, if this point is connected to ground, no
discharge transistors are required. On the other hand if
it is not connected to ground, all intermediate points as

specified by pais will have to be discharged. Hence, in an
OR operation, we set pary to true to account for the presence
of a parallel stack. For an AND operation, it is set to the
value of the tuple being placed at the bottom of the stack. In
addition, we conditionally increment pg;s by one for an AND
operation, since the intermediate point in a series stack may
have to be discharged. In figure 3(a), the series connection of
Ax B has introduced an intermediate discharge point. If A*
B were converted to a domino gate, or combined with other
logic gates in series, there would be no need to discharge this
point. However, if it is connected in parallel with another
configuration (as shown in the figure), this point becomes
a potential discharge point for the OR tuple too - which
will have to be discharged if the OR configuration is not
connected directly to ground.

Now consider a more complex case. Let us assume that
two structures of the form shown in figure 3(a) have to be
ANDed together - A* B+ C and D x E + F. Each of them
has 1 potential discharge point, at the junction of A and B,
and D and E. The AND operation will introduce one more
potential discharge point. However, when these two parallel
stacks are connected in series, the structure on the top will
never be connected to ground. Hence, its potential discharge
points will always need to be discharged by the addition of
p—discharge transistors. In addition, the intermediate point
introduced by the AND operation also has to be discharged.
This is shown in figure 3(b). Hence, for an AND operation
we perform the following computation:

DPdis = Pg;gbottom ;
total discharge transistors = py; top + 1;
cost = coStyottom + COStiop+ total discharge transistors ;
PaTy = Patybottom ;

This leads to another interesting optimization that is used
in our algorithm. Since our aim is to minimize the cost of
the implementation as well as the total number of discharge
transistors used, we can use the information implicit in pgis
and parp to determine which input is on the top in a series
connection and which is on the bottom. If only one input
has a parallel branch, we place this at the bottom, in the as-
sumption that it could potentially be connected to ground.
However, if both inputs have par, == true, i.e., both inputs
have parallel branches, the tuple order is determined by pgis.
We select the tuple with the larger p4;s to be at the bottom
of the stack since this introduces fewer discharge transistors
(all of these calculations are made under the optimistic as-
sumption that the bottom of this stack could potentially be
connected directly to ground. If this does not happen, the
ordering of parallel stacks in series is irrelevant).

For an OR operation, we only need to add the pg;s values
of the input tuples, and set the par, parameter to true:

Pdis = DPgjsleft + Pgisright;
cost = costieft + coStright;
pary = true;

Note that though the p4;s seems to function in an identical
manner, for OR and AND structures, their interpretation is
quite different. In both cases, p4;s refers to the number of
points that must potentially discharged. However, in case of
an AND, these points will have to be discharged only in case
of an OR operation, for OR they will have to be discharged
only if the stack is not directly connected to ground.

Algorithm SOI_Domino_Map

for each node n whose inputs have been processed
If n is OR, combine_or(inputs) ;
If n is AND, combine_and(inputs) ;
If multiple tuples obtained for the same W, H
Select tuple with lowest cost
If costs are equal
Select tuple with lowest pg;s

combine_or
W = Wiept + Wright;
H = max(Hjeft, Hright);
cost = costicfi + costright;
Pdis = Pgisteft + Pgisright;
pary = true;

combine_and
If paryies: && paryrighs
top = min(pg;gtest, Paisrignt);
bottom = max(py;sert, Pgssriaht);
else top = input with(par, == false);
W = max(Wtopy Wbottom);
H= Htop + Hbottam;
total dis. trans. = pg;stor + 1;
cost = costiop + COStpottom + total dis. trans.;
Pdis = Paisbottom
pary = parybottom

Figure 4: Algorithm for Mapping SOI Circuits

The algorithm is listed in figure 4. We process each node
in topological order, from primary inputs to primary out-
puts. This ensures that the inputs of the node being pro-
cessed have been processed previously, and the correspond-
ing sub-solutions for the inputs are available. We then com-
bine the inputs of the node being processed in functions
combine_or or combine_and, depending on the functionality
of the node.

A final comment on the algorithm is that we need to main-
tain two costs for each tuple. The first specifies the optimal
cost if the partial structure is connected to ground, and the
second if it is not. At the time of gate formation, the ap-
propriate value is used in determining the optimal cost.

6. RESULTS

The algorithm presented in section 5 has been imple-
mented in C++ and results on ISCAS benchmark circuits
are shown in table 1. In all cases, we chose the maximum
width and height of a domino gate to be 5 and 8 respec-
tively. Such a large value for a domino gate is valid for SOI
due to reduced source and drain capacitances.

We first obtained a regular domino solution for bulk CMOS,
and added p-discharge transistors in a post-processing step.
The first three columns next to each circuit name in table
1 show the cost associated with this solution, specifically
listing the total number of domino transistors (#tran), the
number of pmos predischarge transistors added (#p-dis) and
the sum of these two, which is the total number of transis-
tors. The results of applying algorithm SOI_Domino_Map
of figure 4 to the circuits are presented in the next three
columns. Comparing these two sets of results, it is clear that
though the number of domino logic transistors required in

SOI may be more, this increase is more than compensated
by the fewer number of p-discharge transistors required, thus
saving on the total number of transistors used. As can be
seen in the columns labeled #p-dis Reduction, there is a
large decrease in the number of p-discharge transistors used,
44.23% on average. The last two columns list the reduc-
tion in the total number of transistors required for the im-
plementation. We obtain an average reduction of 11.66%,
even though the number of domino transistors (without p-
discharge) has increased.

We also ran the algorithm without regard to potential
discharge points as before, but added a post-processing step
that rearranges series stacks (generated by AND operations)
so as to move parallel sections with a large number of po-
tential discharge points closer to ground, and then add the
necessary p-discharge transistors. The reasons for doing this
have been discussed in the previous section. We found an av-
erage reduction of 22.5% in the number p-discharge transis-
tors. Thus, a simple reordering of series stacks only delivers
half the potential reduction as compared to our algorithm.

We then applied algorithm SOI_Domino_Map to the same
circuits assigning a cost for the clock-driven transistors that
is k times the cost of a regular transistor (this includes
the clock transistors along with the p-discharge transistors).
The motivation for doing this is to reduce the load on the
clock network. Though we may end up with a solution that
requires a larger number of total transistors, this could be an
acceptable tradeoff since we reduce the number of transis-
tors connected to the clock network. The effect of including
the cost of the p-clock and n-clock transistors of the gate is
to make gate formation operation more expensive (the cost
of the {1, 1} solution for each tuple makes it less likely to
be selected), and the algorithm prefers to include as many
transistors in each domino gate as possible. Incrementing
the cost of the p-discharge transistors, on the other hand,
pushes the algorithm towards forming gates early, so as to
avoid the overhead of the p-discharge transistors. As the re-
sults show, our algorithm chooses a path balanced between
these extremes, and as the cost of clock driven transistors
is increased, the solutions reduce the number of gates and
p-discharge transistors, along with an increase in the to-
tal number of transistors required for the implementation.
The columns labelled #tranciocr is the number of transis-
tors connected to the clock network. This figure is obtained
by adding the number of p-discharge transistors to the n-
and p-clock transistors in the domino gates. The last col-
umn shows the percentage reduction in the number of clock-
driven transistors, on average we reduce this figure by only
5.11%. An interesting observation is that the number of
clock connected transistors does not change significantly as
k is varied.

7. CONCLUSION AND FUTURE WORK

We have presented an algorithm that maps gates in a logic
network to a domino implementation suitable for use in SOI
circuits. As the results in section 6 show, the lowest cost
solution for domino mapping in bulk silicon technology is
not necessarily good when the circuit is to be implemented
in SOI. We also show how we can apply the algorithm by
skewing the cost of clock transistors in order to reduce the
load on the clock network. A similar approach can be used to
derive a solution with as few gates as possible, by increasing
the relative cost of gate formation.

Table 1: Comparison of Domino Mapping and SOI Domino Mapping

Circuit Domino_Map SOI_Domino_Map #p-dis Reduction || #total Reduction
#tran | #p-dis | total || #tran | #p-dis | total | Ap-dis| % Atotal [%
mux 91 19 110 72 12 84 7 36.84 26 23.63
cordic 205 11 216 196 10 206 1 9.09 10 4.62
f51m 798 103 901 706 35 741 68 66.02 160 17.75
b9 432 61 493 378 28 406 33 54.09 87 17.63
frgl 278 39 317 233 20 253 19 48.71 64 20.19
c8 321 26 347 295 21 316 5 19.23 31 8.93
9symm]l 481 68 549 415 39 454 29 42.64 95 17.30
c432 1475 232 1707 1290 145 1435 87 37.50 272 15.93
apex7 776 57 833 708 22 730 35 61.40 103 12.36
x1 803 76 879 721 53 774 23 30.26 105 11.94
t481 1562 67 1629 1507 31 1538 36 53.73 91 5.58
rot 2360 273 2633 2093 155 2248 118 43.22 385 14.62
apex6 2753 237 2990 2518 98 2616 139 58.64 374 12.5
c2670 3252 331 3583 3276 196 3472 135 40.78 111 3.09
k2 3452 81 3533 3355 24 3379 57 70.37 154 4.35
dalu 2146 168 2314 1980 74 2054 94 55.95 260 11.23
c3540 7841 715 8556 7218 474 7692 241 32.13 864 10.09
cb315 5917 503 6420 5804 242 6046 261 51.88 374 5.82
c7552 16548 1333 17881 || 15766 703 16469 630 47.26 1412 7.89
des 10110 710 10820 9446 533 9979 177 24.93 841 7.72
Average 44.23 11.66

Table 2: Comparison of the Number of Transistors Under Different Weights of pgi

Circuit k=1 k=5 %Improv
F#tran | #p —dis | total | #G | F#tranciocr || #tran | #p —dis | total | #G | #tranciock
z4ml 195 11 206 9 29 259 4 263 11 26 10.34
b9 378 28 406 30 88 422 8 430 35 78 11.36
c8 295 21 316 27 75 307 19 326 26 71 5.33
c432 1290 145 1485 | 53 251 1720 104 1824 58 220 12.35
x1 721 53 774 56 165 798 31 829 66 163 1.21
c880 1117 62 1179 | 90 242 1136 61 1197 87 235 2.89
i6 835 0 835 74 148 835 0 835 73 146 1.35
t481 1507 31 1538 | 128 287 1653 22 1675 | 125 272 5.23
rot 2093 155 2248 | 177 509 2398 120 2518 | 186 492 3.34
apex6 2518 98 2616 | 179 456 3112 75 3187 | 186 447 1.97
c2670 3276 196 3472 | 191 578 3910 160 4070 | 186 532 7.96
cb315 5804 242 6046 | 442 1126 6353 220 6573 | 439 1098 2.48
des 9446 533 9979 | 711 1955 10543 418 10961 | 763 1944 0.56
8. REFERENCES [8] R. Puri and C. T. Chuang, ”Histeresis Effect in

[1] D. H. Allen et al, ”A 0.2um 1.8V SOI 550MHz 64b

PowerPC Microprocessor with Copper Interconnects”, in

IEEE Int. Solid-State Circuits Conf., Feb. 1999.]
[2] T. C. Buchholtz et al, ”A 660MHz 64b SOI Processor with
Cu Interconnects”, in IEEE Int. Solid-State Circuits Conf., [10]
2000.
[3] D. Allen, D. Behrends and B. Stanisic, ”Converting a 64b [11]
PowerPC Processor from CMOS Bulk to SOI Technology”,
in Proc. DAC, 1999.
[4] C. T. Chuang and R. Puri, ”SOI Digital CMOS VLSI - A [12]
Design Perspective”, in Proc. DAC, 1999.
[5] Y. W. Kim et al, ”A 0.25um 600MHz 1.5V SOI 64b
ALPHA Microprocessor”, in IEEE Int. Solid-State Circuits [13]
Conf., 1999.
[6] M. Canada et al, ”A 580MHz RISC Microprocessor in [14]

SOI”, in IEEE Int. Solid-State Circuits Conf., 1999.
C. T. Chuang, ”Design Considerations of SOI Digital
CMOS VLSI”, in Proc. IEEE International SOI Conf.,
1998.

Pass-Transistor Based Partially-Depleted SOI CMOS
Circuits”, in Proc. IEEE Int. SOI Conf., 1998.

D. A. Antoniadis, ”SOI CMOS as a Mainstream
Low-Power Technology: A Critical Assessment”, in Proc.
ISLPED, 1997.

M. Zhao and S. S. Sapatnekar, ” Technology Mapping for
Domino Logic”, in Proc. ICCAD, 1998.

?PA-RISC 8x00 Family of Microprocessors With Focus on
PA-8700”, Hewlett-Packard White Paper, in
http://www.cpus.hp.com/techreports/PA-8700wp.pdf
P.-F. Lu et al, "Floating-Body Effects in Partially Depleted
SOI CMOS Circuits”, in IEEE J. Solid-State Circuits, vol.
32, Aug. 1997.

K. Bernstein and N. J. Rohrer, SOI Circuit Design
Concepts, Kluwer Academic Publishers, 2000.

J. B. Kuo and K.-W. Su, CMOS VLSI Engineering
Silicon-on-Insulator (SOI), Kluwer Academic Publishers,
1998.

