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Abstract feasible regions and also tries to relieve routing congestion.
The dominating contribution of interconnect to system per- Tang and Wong [7] proposed an optimal algorithm assuming
formance has made it critical to plan for buffer and wiring only one buffer per net. Finally, the multi-commodity flow-

resources in the layout. Both buffers and wires must be corbased approach of [4][5] allocates buffers to pre-existing

sidered, since wire routes determine buffer requirements an@uffer blocks. There are two key problems with buffer block
buffer locations constrain wire routes. In contrast to recent planning:

buffer block planning approaches, our design methodology . . )

distributes buffer sites throughout the layout. A tile graph is1. Since buffers connect global wires, there will be conten-

used to abstract the buffer planning problem while also ~tion for routing resources in the regions between macro
addressing wire planning. We present a four-stage heuristic  blocks where buffer blocks are placed. The design may
called RABID for resource allocation and experimentally not be routable due to congestion between macro blocks.
verify its effectiveness. . . . .

2. Buffers sometimes must be placed in poor locations since
1. Introduction the better locations are forbidden. Some macro blocks

Interconnect’s domination of system performance has made Mmay be so large that routing over the block is infeasible,
buffering a critical component in modern VLS| design  even if buffers are inserted immediately before and after
methodologies. The number of buffers needed to achieve the block, e.g., the signal integrity could degrade beyond
timing closure continues to rise with decreasing feature size. recovery. Using wide wires on thick metal may help, but
Achieving timing closure becomes more difficult when this further exacerbates the wiring congestion problem.

buffering is deferred until near the end of the design processThese problems are not a result of buffer block planning per
buffers must be squeezed into any remaining space. Thee; rather, it is a reasonable approach for pre-planning
problem is particularly acute for custom designs with largebuffers for current design flows. However, buffer block
IP core macros and custom data flow structures that blocklanning is really an interconnect-centric idea being applied
out significant areas. ASIC designs can also run into similato a device/logic-centric flow. Ultimately this methodology
headaches if they are dense, or have locally dense hot spotsis not sustainable as design complexity continues to increase.
; ; different methodology is required! Ideally, buffers should
Buffers must be planned early in the design, so that the re e dispersed throughout the design. Clumping buffers

of the design flow may account for the required buffering . .
resources. In addition, routability is also a critical problem;.tog.ether’ e.g., in buffer blocks or between abutting macros
vites routing headaches. A more uniform distribution of

one must make sure that an achievable routing solutioft{:uffers naturally spreads out alobal wirdgere must be a
exists during the physical floorplanning stage. Global wiring y SP 9

must be planned to minimize routing congestion, hot spot way to allow buffers to be inserted inside macro blocks.

and crosstalk problems later in the flow. 1.2 Buffer Site Methodology

. We argue that block designers must permit global buffer and
%\llne%vu?)%:j? I?);:I(r(fslggrrcl:lhngorlt\;lﬁgp ?:)cl)cl)ggyplanninghas wiring resources to be interspersed wherever possible. This

: : ; resource allocation need not be uniform; a low performance
recently established itself [S][4][5][6][7] in response to thesel{“l)-llock may be able to allocate more resources for buffer sites

issue_s. '[hese works focus on “physical-level interco_nnec an a high performance block. Meanwhile, a cache may not
planning” [2]. The works of [3][6][7] all propose creating be able to allocate any of its resources. Ideally, as this “hole

“buffer blocks” (top-level macro blocks containing only . . .
buffers) that are inserted into the floorplan. Coetgal, [3] = 1 & macro” methodology becomes widespread, future IP
: ' blocks will have to contain buffer sites.

constructs buffer blocks usirfgasible regionsThe feasible

region for a net is the largest polygon in which a buffer canA designer can allocate a buffering resource within a block

be inserted on the net such that the timing constraints arpy inserting ebuffer sitg i.e., a physical area that can denote

satisfied. Sarkaet al. [6] adds the notion of independence to either a buffer, inverter, or decoupling capacitor. Until a
buffer site is assigned to a net, no logical gate from the
technology is inserted, nor is the buffer site connected to any
net.

Unused buffer sites can still be utilized in other ways. They
can be populated with spare circuits to facilitate late metal-
only engineering changes or with decoupling capacitors to
enhance local power supply and signal stability. One can
afford to allocate more buffer sites than will ever be used.



Buffer sites can also be used within data paths. A data pathwires which cross between and . The wire congestion
typically contains regular signal buses routed across for e,  is given byw(e, ,)/W(e, ) -

collections of data path elements. If the strands of the data
bus require buffers, one needs buffer locations within the
data path itself. Designing buffer sites into the original data

path layout makes it possible to add buffers late in the

design cycle while maintaining straight wiring of the buses.

The second characteristic suggests that timing constraints
are not dependable in the early floorplanning stage. Our
formulation relies on a global rule of thumb for the
maximum distance between consecutive buffers which was
also used by Dragaet al.[4]. They note that for a high-end
Buffer sites can also be used for flat designs, e.g., a “sea ofmicroprocessor design in 02, CMOS technology,
buffer sites” can be sprinkled throughout the placement. For repeaters are required at intervals of at most 4B0Qo
hierarchical designs, one can flatten the buffer sites to ensure a sufficiently sharp slew rate at the input to all gates.

derive a similar sprinkling. The flat view enables a resource — .
allocation algorithm to make assignments to global routes IR I olof|e6|a|1]2
based on buffer site distribution. e :F"I
e gufo o ot T |%n 22| 4|3|3]|6
2. Problem Formulation I TR
There are two fundamental characteristics of buffer and|]u, | gut| ° "v o 218|12]0]|5/0
wire planning which drive our formulation. uu 1, | u% . 1 >l 20l3l3l2]0
1. Finding the absolute optimal location for a buffer is not :I'
necessary. Congt al. [3] showed that one can move a ofi{j0 | o 1f(ojo0j1
buffer considerably from its ideal location and incur oo, olol1l21110
only a small delay penalty. .
2. At the floorplanning stage, net by net timing constraints @) (b)

are not available since macro block designs are incom-
plete and global routing and extraction have not been
performed. Timing analysis could be performed, but the
results can be grossly pessimistic because interconnecg ) - .
synthesis has not occurred. One needs to globally insert?€ driven by either the source af or a buffer inserted on
buffers while tracking wire congestion to enable floor- Ni - One might alternatively constraiy  as the tile distance
plan evaluation. For example, in a 200 Mhz design, say [TOM @ source to a sink, but this causes the problem shown
that floorplans A and B have worst slacks of -40 and -43 in Figure 2. The figure shows a six-sink net where the
ns, respectively. The designer cannot determine the pet-distance from the driver to each sink is three tiles, yet the
ter floorplan because the slacks are both absurdly farSOUrce gate drives nine tiles of wire. Our more restrictive
from their targets. Only after buffer and wire planning constraint will force byffers to be inserted on thlsf net, which
are performed can the design be timed to provide a &€ likely needed to fix weak slew rates at the sinks.
meaningful worst slack value.

The first characteristic suggests that precise buffer site % v %
locations are unnecessary. Designers can freely sprinkle
buffer sites into their blocks so that performance is not fe 'e)
compromised; there just needs to be enough buffer sites
altogether. We use tile graphto represent the buffer sites,
which can potentially run into the thousands. Figure 1(a) (o) (o)
shows a chip containing 68 buffer sites and Figure 1(b)
abstracts each individual buffer site as one of a set of buffer gjgyre 2 A six-sink net where each source-sink path has length
sites at the tile’'s center. After a buffer is assigned to a three, yet the source must drive nine tiles of wire.

particular tile, an actual buffer site within the tile can be Problem Formulation: Given a tilingG(V, E) of the chip
allocated. The tile graph reduces complexity and can be netsN = {n,, n n } | buffer sitesB’(v) and Ieng’th
used to manage wire congestion across tile boundaries. Th%onstraintsl_-l’ §SS|gn rl?uff,erS to nets such thl’;\t

] 1

granularity of the tiling depends on the desired accuracy/
runtime trade-off and the current stage in the design flow. < b(v) <B(v) forall vO V, whereb(v) isthe number of
buffers assigned to tile

Figure 1 (a) A set of 68 buffer sites can be tiled and (b) abstract-
ed to the total number of buffer sites lying within each tile.

or netn; , letL; be the maximum number of tiles that can

The tile graphG(V, E) for a set of tile¥  contains edge P
ey y if ugangv ére ne):ighboring tiles. For atile , 16 V) 9¢ . Each nehi ON sat_lsfles its tile Ien_gth constralrpt,1

be the number of buffer sites withim . The set of global * There exists a routing after buffering such that for all
nets is given byN = {ny, n,, ..., Ny} . LeW(g, ) bethe ey, v E.W(ey, v) sW(8y ).

maximum number of wires that may cross between and
without causing overflow. Ifo(v) denotes the number of 1 One typically uses the same valuelof  for each net; however,
buffers assigned to , the buffer congestion for is given nets on higher metal layers will have largef ~ values. Also, a
by b(v)/B(Vv) . Similarly, letw(g, ,) denote the number of larger value ofL; can be used with wider wire width assignment.




The formulation seeks a solution which satisfies constraints, Manhattan distance. The routing occurs across the tile graph
though secondary objectives can also be optimized (e.g.,using the following congestion-based cost function:
total wirelength, wire congestion, buffer congestion, and
timing). Our heuristic seeks a solution which satisfies the  ¢osye, ) = w(ey ) +1 i wiey) g 1)
formulation while also minimizing secondary objectives. wvi T Wi, W) -wig,y) T W(e, v

c - . ' and cos{(e, ,) = « otherwise. The cost is the number of
Note that the formulation’s purpose is not to find the final wires that would be crossing, ,  divided by the number of

buffering and routing of the design. Rather, it can be used to available tracks. The cost function increases the penalty as
estimate buffering and routing resources or as a precursor to X P Y

timing analysis for floorplan evaluation. Once deeper into thricgggree ng]oer%ggise:vzfrgjr?t gfp:r%ti%n ch])?n ;ﬁgg‘étlﬁge
physical design, suboptimal or timing-critical nets should be P P P

re-optimized using more accurate timing constraints and tile, updating to the_lowest tile cost W'th each expansion.
wiring parasitics. The procedure terminates after reaching each sink, and the

tree is recovered by tracing back to the source from each
3. Buffer and Wire Planning Heuristic sink.
We propose a heuristic called RABID (Resource Allocation 3 3 Stage 3: Buffer Assignment

for Buffer and Interconnect DiStribUtion) which proceeds in This Stage allocates buffers to each net. We perform this
four stages: (1) initial Steiner tree construction, (2) wire assignment one net at a time in order of net delay, starting
congestion reduction, (3) buffer assignment, and (4) final \yith the longest delay. Before assigning buffers, we first
post-processing. The algorithm’s innovations are containedestimate the probability of a net occupying a tile. For a net
in the last two stages which handle buffer site assignment. n; crossing tilev , the probability of a buffer site from
Stages 1 and 2 use traditional rip-up anql re-route to deliver being used fom; is givenbg/L; .Lgi(Vv) be the sum of
an initial congestion-aware global routing solution. One these probabilities for tily ~over all unprocessed nets. The

could alternatively start with the solution from any costq(v) for using a particular buffer site is defined as
congestion-aware global router.

iy , , - + +1
3.1 Stage 1: Initial Steiner Tree Construction q(v) = ‘%%TQ(E()‘rb S bt —HB v <1 (2)
The purpose of this stage is to construct an initial routing of 4 g(v) = » otherwise. Observe the similarity between

each net. The route should be timing-driven, yet iming g ations (2) and (1). Both significantly increase the cost
constraints are not necessarily available. We adopt the P”m'penalty as resources become more contentious

Dijkstra construction [1] which generates a hybrid between
a minimum spanning tree and shortest path tree. The resultFigure 3 shows an example buffer cost computation. Note
is a spanning tree which trades off between radius andthat thep(v) values do not include the currently processed
wirelength. The spanning tree is then converted to a Steinernet. The costg(v) is computed for each tile, ang/) is
tree via a greedy overlap removal algorithm. The algorithm included in the net's cost if a buffer is inserted at . If
iteratively searches for the two tree edges with the largestL; = 3, the minimum cost solution has buffers in the third
potential wirelength overlap. A Steiner point is introduced and fifth tiles, resulting in a total cost 6f5+ 1.0= 1.5

to remove the overlap. The algorithm terminates when no

further overlap removal is possible. o N N o
| |

3.2 Stage 2: Wire Congestion Reduction

The purpose of this stage is to rip-up-and-reroute the initial |B(v) 8 5 (12 3] 5 0

Steiner trees to reduce wire congestion. We first construct bv)3 4 [2 3|0 0

the tile graphG(V, E) from the existing Steiner routes and

compute w(e, ,) for each edge, \JE . Instead of p(v) i'S 36 2 08 4 |5 1

ripping up only nets in congested regions, we rip-up and re- q(v) 113 8.6/ 0.5 © 1.0 ®

route every net, as in [6]. Each net is processed in turn _ )

according to a fixed net ordering (sorted from shortest to Figure 3 Example of buffer cost computation. Forl; = 3 , the
longest delays). This allows nets which do not actually optimal solution is shown, having total cost 1.5.
violate congestion constraints to be further improved, An optimal solution can be revealed in linear time
thereby helping subsequent nets that do violate constraints@ssuming that; is constant). The approach uses a van
to be successfully re-routed. The algorithm terminates when Ginneken (VG) [8] style dynamic programming algorithm,
w(e, )/W(e, )<1 for all e, ,OE or after three but has lower time complexity because the number of
complete iterations. We observe only nominal potential candidates for each node is at miost

improvement exists after the third iteration. We begin with a nen; with source  and a single sink

A net is re-routed by first deleting the entire net, then re- Let par(v) be the parenttile of eachtilke in the route. and

routed using an approach similar to [2], as opposed to re-assume thagi(v) has been computed for all tiles on the path
routing one edge at a time. The new tree is constructed onfrom s to t. For eachv , the arraf,  stores the costs of
the tile graph using the same Prim-Dijkstra algorithm from the solutions fronv  ta . The index of the array determines
Stage 1, except the cost function for each edge is no longerthe distance downstream fromt  to the most recently



inserted buffer. Thus, the array is indexed frém Lie-1
sincev cannot be at distance more thign  from the last
available buffer. The full algorithm is shown in Figure 4.

. Step 2
given the

Step 1 initializes the cost array;  to zero for sink
iteratively computes the cost array farar(v)
cost for v ._The value oprar(V)_[j] _ foj>0 s simply_
C,[j—1] since no buffer is being inserted &  for this
case. If a buffer is to be inserted paar(v) , then the cost
Cpar(yl0] is the sum of the current cost for insertion,
q parev)) and the lowest cost seenwat . Step 3 returns the
lowest cost; the solution can be recovered by storing at
par(v) the index inC,, used to generate the solution.

1.SetC[j] = 0 forl<j<L; andsink .Set=t
2. whilev#s do
forj =1 tol;-1 do
Secpar(\/)[j] = C\/[J_l]
SetCpary[0] = a(par(V)) +min{ C[j]1110=j<L;}
Setv = par(V) .
3. Letv be such thgpar(v) = s
Returnmin{ C[j]ll0<j<L;} .

Figure 4 Single-sink buffer insertion algorithm.

Figure 5 shows how the cost array is computed for the 2-pin
example in Figure 3 (with,; = 3 ) and the dark lines show

the two children ofv . Ifv has only one child, let it Hév)

Figure 7 presents the complete algorithm. The algorithm is
equivalent to Figure 5, except Step 4 handles multiple
children. Step 4.1 computes costs when no buffer is inserted
at v. Since one tile of wire is driven for both the left and
right branches, no buffering at  implies that the cost array
only should be updated foy=2 . Step 4.2 considers the
case of Figure 6(a) where a buffer drives both children. Step
4.3 initializes the cost array for index 1, and finally, Step 4.4
updates the cost array with a potentially lower cost from
decoupling either the left or right branches. The multi-sink
variation hasO(nL‘-z) time complexity, due to Step 4.2.

o o o
IS o T s o el S
@ (0 ©

Figure 6 For a tile with two children, a buffer can either (a)
drive both branches or (b) decouple the left ((c) right) branch.

how to trace back the solution. Observe from the table that
costs are shifted down and to the left as one moves from
right to left, with the exception of entries with index zero.

sourceg sink
o o)
q(v) 1]3 8.6[0.5 o .0 o0
C,[0]128 9.6/1.5 o 1.0 w0
N 1 »
cde 15 LoD o [N
GRIUS 4 » 1.0 w [0 0|0

Figure 5 Execution of the single source algorithm on the exam-
ple in Figure 3. The optimal solution has cost 1.5 and the dark
lines show how this cost is obtained.

Optimality follows from the fact that once a buffer is
inserted (i.e., aCpay(y)[0] is computed), only the best
solution downstream from the buffer needs to be recorded.
Since the number of possible candidates at each tile is nd

more thanL; a space and time complexity@{nlL;) ,is

1. Pick unvisitedv  s. t. all descendentsvof  have been visited.
whilev# s do
2. ifv isasinkthen
SeC,[j] =0 fod<j<L; .
3. ifv has one child(v) then
forj =1 toL;—1 do
SeC,[j] = Cyli—-1]
SeC,[0] = q(v) +min{ G, [i1lI0=<j<L;}
4. ifv has two children(v) an[%v) then
41 forj =2 toL;-1 do
ST = min{ G L]+ C ] i +i,+2=1
42 Z,[0] = min{ G,[1}]+C\ [l i, +i, +2<L;}
SeC [0] = C,[0] +q(V)
43 CJ1] ==
44 forj =1 toL;-1 do
LeD, = min{ G,[i-11, Cp,y[i —11}
SeC,[j] = min{ C,[j],q(v) + D}
5. markv as visited
pick unvisitedv s. t. all descendentswf have been vidited.
6. Returnmin{ C[j1l10=j<L;} .

obtained, wheren is the number of tiles spanned by the net.
This is a significant advanta%e over similar approaches
[6][8][8] which have at leasD(n”) time complexity.

For multi-sink nets, one still keeps a cost array at each tile,
but updating the cost becomes a bit trickier when a tile has
two children. For this case, there are three possible
scenarios as shown in Figure 6. A buffer may be used to
either (a) drive both branches, (b) decouple the left branch,
or (c) decouple the right brancéh_et I(v) andr(v) denote

2 Atile could have up to three children yielding seven different sce-
narios. This case is a straightforward extension of Figure 7.

Figure 7 Multi-sink buffer insertion algorithm.

3.4 Stage 4: Final Post-Processing

The last stage attempts to reduce buffer and wire congestion
and the number of nets which fail to meet their length
constraint. Using the same flow as in Stage 2, each net is
ripped up and re-routed, and the buffers are also removed.
However, for multi-pin nets, the net is ripped up comeo-
pathat a time, where a two-path is a path in the tree which
begins and ends at either a Steiner node, source, or sink and
contains only vertices of degree two. The ends of the two-
path are then reconnected (using a maze routing algorithm)

via the path that minimizes the sum of wire and buffer



congestion costs (Egs. (1) and (2)).
4. Experimental Results

We implemented our heuristic in C++ on an RS6000/595 )

total wirelength in millimeters,
maximum and average delay (picoseconds) to each sink,
and CPU time in seconds.

machine with 1 Gb of memory. We tested our code on ten| test casey] MWE MBC OV bufs fail wir¢ delay |cpd
benchmarks which we obtained from the authors of [3] and length max [ avg| (S)
embedded the designs in the same Arih@chnology used - -
in [3]. The first six circuits are from the Collaborative | 2P 1 209 00p235 [0 f7 1410 5029 1y00) 0
Benchmarking Laboratory and the other four were 2| 0.62 0.0( D7 1706 5390 2156 |12
randomly generated. The circuits’ characteristics are 3l 0.62 1.0( 401 |7 1706 3266 959 | 1
sqmmanzed in Table 1. Thg nets e}nd sinks columns presen Al 062 100 0 36k B 1718 1862 &b3 34
slightly smaller values than in [3] since they reflect only the - - -
nets on which Congt al actually inserted buffers. xerox 1 200 00p466 |0 141 2587 3361 1p29] 1
m— = ST P Eevyro e 2] 0.80 0.0(q D 17 3449 5886 2010 |25
test Iblocks) nets pags sings grifitile | L | buffer)%chip 3 08d 1.00 (1032 |6 3449 32161926 | 1
= kel i Sfes | area 4] 0.60 1.0(¢ 80D 12 3028 15P4 @92 |72
aptg 9 77 7B 144 30x33 0.36 (6 1400 Q13 - a0 3' > 0.0) o6 s 14‘)5 == 513551 o
Xerox 19 171 2 39p 30x30 0.35 |5 3000 O38 P ) 1'0(; O-O( 3 ok 18ls 5753 241:40 11
hp| 11 64 4% 18y 30x30 042 |6 2350 025 3 1'00 1'0( 23b WL 47;4 a2 1 o
ami33 33 112 48 324 33x30 0.46 (5 27450 Q.24 4 0'75 1'0( 33: b 16d9 3253 a5 kes
ami49 49 368 2P 498 30x30 0.7 |5 11450 (.75 e 2'5( 0'03 o ?) R 2‘;71 stie sl 1
plyouf 62 1294 19p 1643 33xB0 075 | 6 27550 .47 |P™ N e e e A
ac3 271 20 75 40P 30x30 0.49 |6 3550 Q.32 3 1'00 1'0( =B s 30f8 s3ho o7 | 1
XcH 50 975 2 214P 30x30 0.54 |6 13550 111 4 0.83 lIO( 7ol 29:2 >eE3 1doa 143
hc7 77 430 5] 131B 30x30 1.p4 |5 7780 33 TR 2'15 0'03 T 363 58;81 7:01 =1 o
aoc] 147 1148 22 1546 30x0 1)08 | 5 12780 P52 |2 i i
2] 1.00 0.0(q D 368 8730 28784 3200 |54
Table 1: Test circuit characteristics and parameters. 3l 100 0.9 b 1887 117 8720 21150 11621 1
4.1 General Performance 4] 1.00 0.71 1277 10 7075 3884 §75 03
First, we study_ thg performance of each of RABID’s four Diyout 1] 119 0.00 230 |0 1294 22565 8633 1089] 1
stages. The grid size and number of buffer sites are showr] s |
in Table 1. We chose the grid size to have 30 tiles on the 2| 034 0.00 & 01294 29520 19160 2489 P75
shorter side of the chip, then derived the number of tiles for 3] 0.34 1.0( 454p 125 295P0 12446 1253 6
the Ionge;t s_ide, so that each_ tjle was roughly square. Thd 4l 0.44 1.00 3716 44 25881 3405 937 ko2
tile area is given in square mlll!meters, except for t.h_e last =314 o057 100 0 si5 32 acho 2382 Besls7
two random test cases, no tile is more than one millimeter . i
long on a side. The number of buffer sites for each test casq x5 1-4 0.90 1.0 D 2941 28 170p2 2415 |77 20
was chosen so that the total chip area occupied by buffe] hc7 1-4 1.00 1.0p [p 2015 61 13512 4944 1{128 277
Si_teS was IeS_S than 2%. For eaCh test Case., a randqm nine *agcs 1-4 1.00 1.00 [0 4193 39 28945 3895 11831714
nine set of tiles were prohibited from having any inserted

buffer sites to correspond to a large cache-like block. The
buffer sites were randomly distributed among the other tiles.

Table 2: Stage by stage experimental results for ten test
circuits. Only summaries are shown for the random test cases.

Since no timing constraints are used, average and maximum

The floorplans were supplied by the authors of [3] and were gqyrce-to-sink delays are reported to give an indication for
generated from the output from their buffer block planning, the timing quality. We make several observations:

with the buffer blocks. removed. The results for each stage
and each CBL benchmark are summarized in Table 2. We
present only the cumulative results for the four random
circuits. The statistics presented are:

the maximum wire congestion (MWC) over &, 0 E ,
the maximum buffer congestion (MBC) over all tiles,
wiring overflows (OV), i.e., the sum over ad{,, J E

w(eyy) —W(&g,), for whenevemw(e,,) > W(e,,) .
the number of buffers inserted (bufs),

the number of nets for which the tile length constraint
was not satisfied (fail),

of

The wire congestion constraint is always satisfied. In
Stage 1, which ignores wire congestion, the maximum
wire congestion is typically a factor of two to three
above capacity and there are several hundred overflows.
The algorithm never violates buffer site constraints, but
typically utilizes at least one tile to full buffer capacity.
The number of buffers, fails, and delays all improve
from Stage 3 to Stage 4, illustrating the effectiveness of
post-processing. The number of nets which fail to meet
the length constraint is typically small, but not zero.
These fails typically cannot be removed due to the large



9 by 9 region with no buffer sites.

4.2 Comparisons with Buffer Block Planning

over all tiles, of the tile area occupied by inserted buffers
(e.g., for ami49, buffers inserted by BBP/FR occupy 4.15%
of the area of one of the tiles). We observe the following:

Our next experiments attempt to compare RABID with the
BBP/FR buffer block planning algorithm [3], though
RABID does not use buffer blocks. Hence, one cannot
simply compare to previously published results. Instead, we
obtained code from the authors of [3] and implemented
routines to gather statistics from the data. Our results were
generated using the same number of buffer sites as ine
Table 1, but without the 9 by 9 region of blocked tiles.

RABID always satisfies the wire congestion constraints
while BBP/FR does not. The BBP/FR results even
include a post-processing step which tries to minimize
congestion for the current buffering solution without

increasing wirelength.

RABID inserts more buffers than BBP/FR due to wire

congestion avoidance.

Because our methodology invites spreading, MTP is sig-

Table 3: Comparisons of RABID to BBP/FR [3].

As in [3], but unlike the experiments in Table 2, we
decomposed each multi-pin net into several 2-pin nets.
Cong et al [3] report timing results by measuring the
number of nets which fail to meet their delay constraint and [3]
chose the timing constraint to be between 1.05 and 1.20 of
the optimum achievable delay. This constraint generation is
unrealistic since they imply that all constraints are tight, yet
potentially satisfiable. In practice, some of the 1.05x-1.20x
timing constraints will be so tight that buffer insertion is
insufficient to satisfy timing. For these cases, feasible
regions are not well defined. In addition, some nets may
have such loose constraints that detours can be taken whild®]
still meeting delay constraints. Since RABID and BBP/FR
have different criteria for buffer insertion, we use source-
sink delays to quantify timing performance.

(2]

[4]

[5]

[7]

Table 3 presents comparisons with BBP/FR. The statistic [8]
MTP (maximum tile percentage) is the maximum percent,

test A.I?]O_ MWC |MTP| OV |bufs | wweh delay | cpy nificantly less for RABID. In the worst case, BBP/FR
case| rithm engthimax| avg| (S) has one tile with 16.40% of its area devoted to buffers,
aptq BBP/FH 20p 2.7 23 2B3 1827 2026 |21} 14 while RABID never has an MTP higher than 0.81%.
RABID| 1.00l 033 o 417 20101935 787 bs * The CPU time for BBP/FR is significantly less. Stages 2
~orod BEPFR 116 5o 14 508 066 1286 t5129 and 4 of our algorithm cause much greater runtimes, but
i i | they are not prohibitive.
RABID| 0.93] 0.5 Q 957 45411531 63167 . The delays for RABID are quite comparable to those of
hp| BBP/FR 250 1.89 147 264 21P4 1948 45|16 BBP/FR despite using a length-based algorithm and sat-
RABID| 0.83] 0.24 0 450 2408 2029 707 b7 isfying wire congestion constraints. In some cases the
a3 BBP/FR 11D 331 34 054 4923 2320 Boz|4a  delays are even better.
RABID| 069 044 Q1150 52322256 9po B8 5. Conclusions
ami4 BBP/FR 4.6/ 4.15 1034 8p2 6187 2859 [768] 65 We proposed a methodology for buffer and wire resource
= allocation that uses pre-distributed buffer sites. This enables
RABID| 093 03§ ¢ 133’9 7592 26_35 8p9 Y67 one to model the problem via a tile graph and also plan both
plyou BBP/FR  0.99 10.3% [0 3422 25980 2727 880198 \yjres and buffers. Our four stage RABID heuristic includes
RABID| 0.45 0.64 Q384p 276Q1 3310 947 413 a novel algorithm for length-based buffer insertion.
acd BBP/ER 1.2B 286 37 718 5586 1928 763] 87 EXperimental results show that RABID generates effective
lutions in terms of several practical criteria.
RABID| 0.58| 0.33 0 103y 5954 2095 8D7 408 solutions In terms of several practical criteria
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