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ABSTRACT run-time behavior proportional to the size of the circuit. Its chief

This paper presents MINFLOTRANSIT, a new transistor sizing tool for tasdrawback is that it does not have guaranteed convergence proper-

sizing of combinational circuits with minimal cost. MINFLOTRANSIT is ties and hence is not an exact optimization technique. Among the
an iterative relaxation based tool that has two alternating phases. For a cit@st approaches, only [2] and [8] are exact optimization techniques
cuit with |V| transistors andE| wires, the first phaséD-phase)is based ~ and the other techniques do not have proven convergence properties.
on minimum cost network flow, which in our application, has a worst-casd/Vhile [2] was the first ever polynomial time technique reported for
complexity of O(|V||E|log(log(|V]))). The second phad®V-phasehas  addressing the problem exactly, it does not have very good run-time
a worst case complexity @(|V[|E]). In practice, during our simulations hehavior. The technique presented in [8] has shown impressive run-
bhOth ltheD];phhaS.ea”dW‘phaSSh?W a near linear run.time delpe”ﬁence ONtime behavior for sizing large adders. The run-time behavior of this

the size of the circuit, comparable to TILOS. Simulation results show excelfechnique on more complex circuits such as multipliers and con-

lent run-time behavior for MINFLOTRANSIT on all the ISCAS85 bench-
mark circuits. For reasonable delay targets MINFLOTRANSIT shows up t4"Cllers was not demonstrated. Moreover, the approach appears to

16.5% area savings over a circuit sized using a TILOS-like algorithm. ~ 0€ @amenable only to tackling sizing problems where the gate delay
1 INTRODUCTION is expressed using Elmore delays. This paper presents a novel way

of solving the transistor sizing problem exactly and in an extremely
As evidenced by the successive announcement of ever faster cofast manner. The proposed approach has some similarity in form
puter systems, increasing the speed of VLSI systems is one of the [6, 7] which will be subsequently explained, but the similarity
major requirements for VLSI system designers today. Faster irin content is minimal and the details of implementation are vastly
tegrated circuits are making possible newer applications that weifferent. In essence, the proposed technique and the techniques
traditionally considered difficult to implement in hardware. In thisin [6, 7] are iterative relaxation approaches that involve a two-step
scenario of increasing circuit complexity, reduction of circuit delayoptimization strategy. The first-step involves a delay budgeting step
in integrated circuits is an important design objective. Transistowhere optimal delays are computed for transistors/gates. The sec-
sizing is one such task that has been employed for speeding up cird step involves sizing transistors optimally to achieve these delay
cuits for quite some time now [1]. Given the circuit topology, thebudgets. The two steps are iteratively alternated until the solution
delay of a combinational circuit can be controlled by varying theconverges, i.e., until the delay budgets calculated in the first step
sizes of transistors in the circuit. Here, the size of a transistor igre exactly satisfied by the transistor sizes determined by the sec-
measured in terms of its channel width, since the channel lengtlend step. The primary features of the proposed approach are:

of MOS transistors in a digital circuit are generally uniform. In any
case, what really matters is the ratio of channel width to channel
length, and if channel lengths are not uniform, this ratio can be con- ="
sidered as the size. In coarse terms, the circuit delay can usually be
reduced by increasing the sizes of certain transistors in the circuit ) .
from the minimum size. Hence, making the circuit faster usually 2- !t can be used for true transistor sizing as well as the relaxed
entails the penalty of increased circuit area relative to a minimum  Problem of gate-sizing. Additionally, the approach can easily
sized circuit and the area-delay trade-off involved here is the prob- ~ incorporate wire sizing, as outlined in section 2.1.

lem of transistor size optimization. A related problem to transistor

sizing is called gate sizing, where alogic gate in a circuit is modeled 3. It can be adapted for more general delay models than the El-
as an equivalent inverter and the sizing optimization is carried out  more delay model.

on this modified circuit with equivalent inverters in place of more

complex gates. There is, therefore, a reduction in the number . )
size parameters corresponding to every gate in the circuit. Needle, % elaborate further on the last point, the proposed model only re

It is computationally fast and is comparable to TILOS in its
run-time behavior.

o ; ; ires the transistor delay to be expressible as a susingble
o say, this is an easier problem to solve than the general transis onotonic functionalgefined in section 2.1, of transistor sizes and

sizing problem. - .
There has been a large amount of work done on transistor sizirﬂ;]eg]dcsI admits more general delay models than just the Elmore delay

1-8] that underlines the importance of this optimization technique. ; : ;

[Start]ing from a minimum s?zed circuit TILOpS [1] uses a gregdy The starting point for the proposed approach is a fast guess so-
. e ; 7 s A : ution. This could be obtained, for example, from a circuit that

strategy for transistor sizing by iteratively sizing transistors in th as been optimized using TILOS to meet the given delay require-

critical path. A sensitivity factor is calculated for every transistor in ents. The proposed approach, as outlined earlier, is an iterative

the critical path to quantify the gain in circuit speed achieved by laxation procedure that involves an alternating two-phase relaxed

unit upsizing of the transistor. The most sensitive transistor is thep” =7 <" = ; : ; L
bumpgd up?n size by a small constant factor to speed up the circu ptlnal_zatl(én _?_ﬁquencert]hat |s_re[;]eated |tera3|vely untllhconv.ergence
This process is repeated iteratively until the timing requirements 2¢hi€ved. The two-phases in the proposed approach are:

are met. The technique is extremely simple to implement and has
¢ TheD-phasewhere transistor sizes are assumed fixed and tran-
*This research has been supported in part by the ARO under grant num-  sistor delays are regarded as variable parameters. Irrespective

ber DA/DAAG55-98-1-0315 and by SRC under grant number 99-TJ-692. of the de]ay model emp|0yed' this phase can be formulated as
the dual of a min-cost network flow problem. Usifig| to
denote the number of transistors g the number of wires
in the circuit, this step in our application has worst-case com-
plexity of O(|V||E|log(log|V])) [9].

e The W-phasewhere transistor/gate delays are assumed fixed
and their sizes are regarded as variable parameters. As long as



N;(P;) in the pulldown(pullup) network of the 3-input NAND gate

g shown in figure 1, it can be shown [1] that the pulldown Elmore
P, G O delay can be expressed as,
i A
del pulldown __ (% B Cz-
—Cy, © elay (2)(Bas + Cwz) +
A A
—n 9 (— 4+ —)(Bx2 + Cz3 + D) +
O 8 O O xr1 o
—O N N N N A ALA
Del ay(N3)=%(Bpx4+ B, + B +G +D (1.1 + T + T3 )(Bmg +
’ BPzy + BPxs + BPxg + Cp, + E), @)
Figure 1. The DAG corresponding to a 3-input static CMOS  where A, B andC are constant coefficients, the resistance, drain
nand gate. and source capacitance, respectively, of a unit NMOS transistor.

D andE are related to the wire capacitances. SimilaBy, is the
the gate delay can be expressed as a separable function of th&in capacitance of a unit sized PMOS transistor@nds the load
transistor sizes, this step can be solved as a Simple Monotongapacitance. Under this model if wire sizes were considered to be
Program (SMP) [10]. The complexity of SMP is similar to an variables also then the form of (2) would remain similar. Rewriting
all-pairs shortest path algorithm in a directed graph, [10, 11]the expression in (2) we get,
i.e.,O(|V||E|). s
pulldown —

A
The objective function for the problem is minimization of circuit %¢lay = o (BrztBry+ Coz+ Cog+ D+ Bt
area. In the W-phase, this objective is addressed directly, and in the
D-phase the objective is chosen to facilitate a move in the solution BPwa + BPws + Bz + Cp) +

> - OBJE a = M LU0 A
space in a direction that is known to lead to a reduction in the circuit f(Bxg L Crs+ DA+ E+

area. T2
2. PROPOSED APPROACH BPgy4 + BPgs + BPxg + Cp) +
. . Lo A
The transistor size optimization problem can be stated as, A (BPay + BPws + BPag + C1 + E) +
minimize Z Zi, 3
, . 3AB. 3)
all transistors, i
: . P SinceA, B, C, D, E, B?, C, are non-negative quantities, the
bject to : Delay(C t T VT o T - by
subject oz =e ay(Circuit) < b Elmore delay model admitssample monotonic decompositiofihe
minsize < x; < mazxsize, (1)

above fact is illustrated in figure 1 where the delay corresponding to
wherez; refers to the size of transister7 is timing requirement NMOS transistorVs is explicitly shown. The constant terms used
specified as an input to the optimization amdnsize, maxsize  inthis expression have the same connotation as in (3). We claim that
are, respectively, minimum and maximum bounds on the sizes &juch a DAG model can always be developed for any complex static
transistors in the circuit. CMOS gate consisting of a series/parallel network of transistors as
. . long as the underlying delay model admitsianple monotonic de-

2.1. Equivalent DAG for Transistors/Gates _composition This is a reasonable requirement since the reduction
The proposed approach requires transistor delay to be expressiliethe gate delay with an increase in its size can be modeled by the
as a sum oimple monotonic functionalsf transistor sizes, which  function g in Definition 1, and the increase in the gate delay with

are defined as follows: increasing fanout gate sizes can be modeled by the fungtion
Definition 1 A functionD; (z1, ..., z.,) is a simple monotonic func- In addition, if wire sizing were also to be performed together with
tional if it ' ce{n o be rewritten as transistor sizing, then we could model the problem by augmenting

o ) ) : i _the DAG corresponding to a gate by adding vertices corresponding
tlghic d‘(égégsi%’ ﬂj’nﬁﬁgln’ gfjéha'(’]f; 1)’.Yyhmi[ef] (f;) Fﬂé ;nnc;nlch to each wire. The edges emanating from and incident on these wires
a monotonic increasing function of ea;zywj' c {1’ n’} j’ #1. will be similarly constructed as for transistors. The delay attribute

T of a vertex corresponding to any wire can also be similarly defined
Definition 2 A function D(z1,...,z,) is termed decomposable as for that of a vertex corresponding to a transistor. We conclude
into simple monotonic functionals ? = Eie{l n} D; where that modelin%hthe problfem of Wirke sizting alotng with tralnsistor s(ijzt-h
) ; — ; ; . ~ing may use the same framework as transistor sizing alone, and the
%atcer:lnzgdatsh'ens?;f;)'rg'%ré%)tbﬁigs;g?gé?igqng'fgao;_'c functional; approach developed in this paper can simultaneously handle both.
v For ease of exposition, from here onwards, wire sizing will not be
In order to mathematically model the transistor size optimizatioreonsidered for the remainder of the paper. _
problem, every static CMOS gate in the circuit is first converted in Note that the DAG corresponding to a static CMOS gate has
to an equivalent Directed Acyclic Graph (DAG) model, shown inat least two disjoint connected components, as shown in figure 1,
figure 1, as follows. There is a vertex in the DAG correspondingorresponding to the pulldown network of NMOS transistors (i.e.,
to every transistor. An edge is drawn between an NMOS (PMOSjerticesN1, N2, N3) and the pullup network of PMOS transistors
transistor and another NMOS (PMOS) transistor provided there id.€., verticesP:, P», P3) corresponding to the gate. The portion of
a discharging (charging) path consisting of the two transistors. Thée DAG representing the NMOS pulldown networks corresponds
edge is always directed from the transistor higher up in the discharde falling transitions and the portion of the DAG representing the
ing (charging) path to the transistor lower down in the discharging®MOS pullup network is related to rising transitions at the output
(charging) path. Every vertex of this DAG has a delay attributeof the gate. Note that there are several vertices in the DAG of a gate
associated with it. This delay attribute is given by simaple mono- that only have edges emanating from them and have no edges termi-
tonic projectionof the worst case discharging (charging) path delaynating on them; we refer to these vertices agtioe vertices of the
through the transistor corresponding to the vertex on to the size giate DAG. Also, note that there are several vertices in the DAG of
this transistor. Note that, as will be evident soon, the rise and faf given gate that have only edges terminating on them and no edges
delays are implicitly distinguished due to the fact that the DAG coremanating from them; these vertices constitutelélaé vertices of
responding to every gate has separate components for pullup atie gate DAG.
pulldown networks. _—

For ease of exposition we will henceforth consider the commonlg-2- A DAG for the Circuit
used Elmore delay model that can be decomposed isimple  The entire circuit consisting of static CMOS gates can be repre-
monotonic functionals Assumingz; to be the size of transistor sented with an equivalent DAG; = (V, E), by connecting the



process ha®)(|F|N) computational complexity, wher® is the
number of components in the vect§irand|F| is bounded (in gate
sizing) by the maximum fanout of any gate in the circuit. Note that
as long as all vertices of the circuit DAG have a non-zero delay,
which is always the case, the (block) upper triangular mateix—
A) for (transistor) gate sizing will always be invertible.

Now assume that we start with some initial sizing soluta
and some delay matrik, satisfying (6). We now resize the tran-
sistors slightly so that the new delay matrixis +J D and the new
size vector isXg + 6 X, so that we then have,

(D() + 0D — A)(Xo + (5X) =B,
Figure 2. The DAG corresponding to a circuit consisting of (Do — A)(Xo + 6X) + 6D(Xp + 0X) = B,
two 3-input static CMOS nand gates in series. B+ (Do — A)§X + 6DXg + 6D5X = B,

component DAG’s of individual gates. The construction of the cir- (Do — A)0X ~ —0DXo,
cuit DAG is as follows, the vertex s&t of the circuit DAG is simply 0X ~ —(Do — A)~16DXo, @)

the union of the vertex sets of DAG'’s corresponding to the gates i ; ;
the circuit. The edge sdt of the circuit DAG is constructed as R’Qt?éﬁstr;ﬁ 6%”23 ?s))% h?r? gfh%r: i,%g%gdwgsrs]%r(g%hzr?g:llor\;ﬁgur'
follows. For every wire connecting the output of one gate to th bservations: ) ! 9

input of another there will be a set of edges in the circuit DAG tha
go from the NMOS (PMOS) DAG components of the first gate to ¢ For an infinitesimal resizing of the transistors corresponding
the PMOS (NMOS) DAG components of the second gate. So cor- g the vertices in the circuit DAG, the infinitesimal changes in
responding to every wire connecting the output of the first gate to  transistor sizes can be represented as a linear function of the
a given NMOS (PMOS) transistor in the second gate, there will be  jnfinitesimal changes in transistor delays.

edges emanating from all the leaf vertices of the PMOS (NMOS)

DAG of the first gate. These edges terminate on all the root vertices

of the NMOS (PMOS) DAG component of the second gate that are ® AS @ result of (1), we see that the sum of all the components
connected to the given transistor in the second gate. Figure 2 illus-  Of 9X, which represents the sum of the change in sizes of the

trates the construction of the circuit DAG for a circuit consisting of ~ ransistors corresponding to all the vertices in the circuit, can
two 3-input nand gates in series. be expressed as a linear function of diagonal entries of the ma-

trix 6 D.

2.3. Two-Phase Optimization

Note that the delay corresponding to a verigi the circuit DAG,

whose corresponding transistor has a sizecan always be ex- It can be shown that since all componentsXy are positive, all

pressed as, components of-(Dy — A) !X, will be negative. Hence, the sum
of all the components ofX, can be expressed as a linear function
S Sovia @ijTi + bi of diagonal entries of the matrixD, where the coefficient corre-
delay(i) = =25 , ()  sponding to each diagonal elemen®d? is negative. _ _
xi This motivates a two-phase strategy for solving the transistor size

where S(V(G)) denotes some subset Bf(G) that is located in  Optimization problem. In the D-phase, as above, we assume fixed
the neighborhood of the vertéx In particular, this subset consists transistor sizes and redistribute the delay budgets in such a manner
of the vertices corresponding to all those transistors whose siz& to minimize the resultant change in transistor sizes. In the W-
directly affect the delay of the transistor corresponding to vertex Phase, on the other hand, we try to find the minimal-sized circuit
Also, note that all the coefficients;;, b; in (4) are non-negative. that satisfies the modified delay budget obtained after the D-phase.

Rearranging (4), we have, The two-phases are alternated till convergence is achieved and the
delay budgets output by the D-phase are exactly satisfied by the
delay(i) - x; — Z aijz; = bi. ) transistor sizes calculated by the W-phase.
JES(V(G)) 2.3.1. D-phase

. . . . Nth . . First assume that the circuit has been sized to meet delay require-
Denotlr_lg a dlagona!hmatrlx_whoie, i)™ entry isdelay(i) by ments using an algorithm such as TILOS. We now define three at-
D, amatrix whosei, j)"" entry isa;; by A, a column vector whose tributes for every vertex in the circuit DAG. For a vertex, these
it" component i$; by B and a column vector whos& component  are the arrival timedT'(¢), the required timeRT'(¢) and the slack,

is z; by X we can rewrite (5) as sl(2). Additionally, every edge;; € E has the attributedge-slack
esl(e;;). The entire circuit graphG has an additional attribute
(D—-A)X =B. (6) CP(G) that refers to the delay of the critical path of the corre-

This formulation can be written as long as the delay model admitgpondlng circuit. We will now define all of these attributes formally.

a simple monotonic decomposition. It can be shown that for strict{ AT (i) external time of arrival, u € PI,

MaTye fanin(i) (AT(J) + delay(j))v else

gate sizing the matrigkD — A) can be written as an upper triangular
matrix. Thisis due to the fact that the adjacency matrix of the circuit ) )
DAG can be always written as an upper triangular matrix [12]. On { €P(G) = mazyev (AT (i) + delay(i)),
the other hand it can be shown that for transistor sizing the matrix [ R7(i) CP(G) — delay(i), u € PO,

(D — A) can be written as a block upper triangular matrix (proof { RT (i) MiNy e fanout(i)RT(J) — delay(i), else

not included due to space restrictions). We will henceforth assume 1 -~ RT(i) — AT (i
that(D — A) can always be represented in an upper triangular form { s1(i) - RT(i) = AT(i),
or block upper triangular form. esleij) = RT(j) — AT(1) — delay(i).
With this assumption we can statelifis a constant matrix, then (8)

as long agD — A) is invertible, a system of equations of the form

(D — A)X = B can be solved for the variablé§ by a backward wherePI and PO denote respectively the primary inputs and pri-
substitution process beginning from the bottom row and proceedingiary outputs of the circuit.

upwards and progressively solving for all. From a circuit point We call a circuit safe when all verticés V havesi(:) > 0 and

of view, this process proceeds in a backward breadth-first mannefl edges havesi(e;;) > 0.

beginning with the primary outputs and proceeding backwards in The D-phase involves minimally altering the delay budgets of
order of decreasing levels of logic of the circuit. This eliminationtransistors in the circuit to move towards a feasible minimum area



solution. For this to be possible, we need to capture the slack (avaiGorollary 1 If we connect all the leaf vertices corresponding to
able delay budget) for every transistor and also present a strategygamary output nodes of a given circuit DAG to a common dummy
alter/redistribute these delay budgets. In the next section, we willertex O through dummy edges and if we restr{¢?) to be exactly
first prsent an approach to capture the slack in a circuit in terms @f and also restrict-(I) for every input vertex € Pl to be exactly,

fictitious buffer-like entities calledFictitious Specific Delay Units
(FSDU’s). Next, an approach calledSDU-displacemenill be
presented, which redistributes the delay budgets for every transis-
tor in such a manner that a lower area solution (from the preserﬁty
solution) is achieved that is also timing feasible.

Delay Balancing

A given circuit DAG G can be transformed to a functionally equiv-
alent circuit DAGG’ by introducing dummy units of appropriate
delay on to each edge in the circuit DAG in such a manner that f
everye;; € E, esl(e;;) = 0 andCP(G'") = CP(G) [13]. This

then the critical path of the transformed circuit DAG after FSDU-
displacement remains unaltered.

Before we develop a formal mathematical model, we first mod-
the circuit DAG by adding alummy vertex Dmy(i) of delay
0 units at the output of every vertéxn the circuit DAG. A dummy
edge connects vertéxo its corresponding dummy vertéxmy (7).
All fanout edges which initially originated from vertéxnow orig-
inate fromDmy (7). Figure 5 illustrates this circuit DAG transfor-

Ohation with an example. Now we can summarize the D-phase as
follows:

process is known as delay balancing. For our purposes, we do not
explicitly insert physical delays. We instead, usetbaceptof de-

lay balancing as a tool to capture all the slack in the circuit DAG.
This captured slack is then used for the D-phase optimization. The
delay units used for delay balancing are, therefficgtiousentities
whose only purpose is to model the slack present in the circuit DAG.
We refer to these fictitious delay units as FSDUs (Fictitious Specific
Delay Units). Figure 3 shows a circuit DAG and figure 4 shows its
delay balanced counterpart; the “square boxes” on the edges of the
circuit in figure 4 represent the FSDUs on that edge.

RT(j)/SLG)/AT()
w34

Critical Path Delay =8

7710
Pl

Primary Inputs PI

Figure 3. An example of a circuit DAG the integer numbers
within each vertex represent its delay and each vertex i has
the triplet (RT/SL/AT) above it.

Critical Path Delay = 8 RT()/SLGYAT()

w07

Figure 4. The circuit DAG in figure 3 after delay balancing.
The square boxed integers on edges represent the FSDUs
added to the edges for delay balancing.

Starting with a given circuit DAG there are several possible ways
to produce a delay balanced graph. Any such delay balanced graph
will from now on be referred to as a delay balanced configuration.
FSDU-Displacement
We defind=SDU-Displacement circuit DAG transformation tech-
nique, as a mappingV—Z, {Z: the set of integers such that
the delay of the FSDU on the edgg after FSDU-Displacement,
FSDU" (e;;), is related to the delay of the FSDU before FSDU-
DisplacementF'SDU (e;;), by,

FSDUT(EI']‘) ZFSDU(Bij)-f-T(j)—T(i). (9)
We state the following without proof, due to space limitations.

Theorem 1 All legal delay balanced configurations for a given
circuit-graph G areFSDU-Displacedersions of each other.

Theorem 2 The net change in the delay of any structural path from

a vertexi to another vertey after FSDU-Displacemens always

D-phase

(1) Produce any valid delay balanced configuration of
given circuit DAG. We use a depth first FSDU insertion heu
tic for this purpose, [13].

(2) Now starting from the delay balanced configuration in
above, letdéX = —(Dy — A)"'6DX = —CTdiag(6D)
whereCT = — (Do, — A)~'X, all other symbols are as d¢
fined earlier and diag{D) is a column vector consisting @
the diagonal elements @fD. Note that minimizing | 6X;
= minimizing Y X;. Now, for every vertex let 6D; =
r(Dmy(z)) — r(¢), which means that the delay of the FSO
at the output of a vertex is the change in its delay after the
phase.

(3) To maintain the requirement thaD will be small, intro-
duce the following constraints for every vertex.

FSDU(i — Dmy(3)) + r(Dmy(i)) — r(i) >
MINAD(),
FSDU(i — Dmy(i)) + r(Dmy(i)) — r(i) <
MAXAD(i),

where MINAD(3) and M AXAD(:) bound the change i

delay of vertex from both sides, i.e., decrease or increase
vertex delay.

(4) For every edge(Dmy(i) — j) introduce the causality

constraint that states that the slack for all edges in the origi

DAG will be non-negative after the D-phase.
FSDU"(Dmy(i) — j)

FSDU(Dmy(i) — j3) + r(j) — r(Dmy(i)) ; 0.

(5) Now solve the following optimization problem, whose d
is a min-cost network flow problem [14],

minimize Z X;
over vertices i
= maximize Z Ci - (r(Dmy(i)) — r(i))
over vertices i
subject to:
FSDU(i — Dmy(i)) +r(Dmy(i)) —r(i) >
MINAD(3),
FSDU(i — Dmy(i)) +r(Dmy(i)) —r(i) <
MAXAD(i),

For all edges Dmy(i}- j,
FSDU"(Dmy(i) — j) = FSDU(Dmy(i) — j)

+r(j) —r(Dmy(i)) 2 0. (10)
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Note that the D-phase optimization is in the form of the dual of a

minimum cost network flow problem, [9]. Also the constant terms

The above theorem gives rise to the following corollary.

in the RHS of the contraints in the D-phase can be integerized by ap-



propriate scaling, i.e., by multiplying every constant term by some B
power of 10 and then rounding off the product. By choosing ap- A 4’[>—’
propriate powers ol0 arbitrary accuracy canbe maintained with ™S

almost no penalty in computational requirements. In this way, fast L

methods devised for integerized minimum cost network flow ap- 4’[>—’
proaches [9] can be fruitfully employed in solving the D-phase op- c
timization problem.

Figure 6. An example illustrating the global perspective taken
by MINFLOTRANSIT which TILOS tends to overlook.

Table 1. The area savings in % of MINFLOTRANSIT over
TILOS is listed. The CPU time required by TILOS and the
extra time required by MINFLOTRANSIT over and above that
required by TILOS are listed. The critical path of a minimum
sized circuit is denoted by D, i, .

Figure 5. lllustration of circuit DAG transformation related with Circuit | # Gates sg‘\;ﬁ% < ngé%)é (_I_C”\F;E) (_I_C”\F;llé)
the addition of a dummy vertex at the output of every vertex. o T?,Ygrs (TILOS) | (OURS)
ales
2.3.2. W-phase adder32 | 480 <1% 05D, 2.5 5s
Once the D-phase has computed new delays (delay budgets) foadder256| 3840 <1% 0.5D nin, 262s 608s
all the vertices in the circuit DAG, we need to find feasible sizes ¢432 160 9.4% 0.4Dnin, 0.5s 4.8s
for the transistors corresponding to every vertex in the circuit DAG  c499 202 7.2% 0.5"Dmin 1.47s 11.26s
to satisfy the delay requirements while using up minimal area. In c880 383 4%% 0.4D i 2.7s 8.2s
effect we have to solve the following problem, c1355 546 9.5% 0.4Din 29s 76s
S c1908 880 4.6% 0.4D i 36s 84s
minimeze Z Zi, c2670 1193 9.1% 0.4Dpyin 27s 69s
over vertices i c3540 1669 7.7% | 0.4Dpinsize 226s 335s
Z w4 b c5315 2307 2% 0.4Dyinsize 90s 111s
. jesv(a)) Yiti i ) c6288 2416 16.5% | 0.4Dinsiz 1677s 2461s
subject to: /€5 ;) < delay(i), €7552 | 3512 | 3.3% | 0.4D.ireree | 320s 363s
= ij Lq bi < del ) - iy . . .
] Z . @i+ - elay(i) - @ and A — C are both critical. TILOS, due to its greedy nature, will
JES(V(G) bump up the sizes & andC in alternate passes, whereas it should
minsize < z; < mazsize. (11)  be intuitively clear that sizing upl, even though it has lower sen-

sitivity may be the better option as it speeds up both pdths B

It turns out that due to the non-negativityaf, delay(i) andthe and A — C simultaneously. In the D-phase, MINFLOTRANSIT ex-
coefficients ofz; in the objective function, this optimization prob- plicitly includes constraints to evaluate the benefits of altering the
lem can be modeled as a Simple Monotonic Program (SMP) [10kizes of gatest, B and C'. It is therefore able to identify whether
This kind of problem can be solved b)(/ a con)straint relaxation prosizing gateA, in spite of its lower sensitivity, will be advantageous.
cedure with worst case complexity 6f(|V'||E|) where|E]| is the . .
number of constraints and’ | is the nurr|1b¢|a|r o|f variablc'as.| The de- Theorem 3 MINFLOTRANSIT produces minimum transis-
tail of this relaxation procedure are being omitted for lack of spacelor sizing for any delay constraints.

but can be found in [10]. In the W-phase, due to the restrictiong 4t | et ys assume that we are in some intermediate iteration at

on the magnitude of the change in delay budgets computed in the ) o otimal point. We iteratively apply the D-phase, followed

?-phase, theﬂ?‘a\?\/ﬂ'tﬁde o;_thde Cha”%@#n':e"‘s”]fi V‘{'Ihl bte smallt. the W-phase, and it is sufficient to show that the application of

thOeScLilerulijtpt’hat?s a-r%ir?isn(weurlr? asrezlss%h?tiosr:zfgi sgiisfﬁnéat?msels dce)erZy ch of these steps causes the objective function to reduce, while
. maintaining feasibility. The D-phase uses a Taylor series approxi-

requirements calculated by the D-phase. mation to the constraint in Equation (6) to represent the objective

2.4. Putting it All Together function entirely in terms of the delay variables. This approxima-

ion is valid within a radius of convergence ofround the current

. " PR |
Having, defined the D-phase and W-phase of the optimiza- " . .
tion sgtrategy, we are npow in a positi%n to finally dgscribepomt,x,correspondlng to some radiusdc@iround the vector of de-

g ; . ~lays. Therefore, a solution to the D-phase is a valid solution to the
MINFLOTRANSIT, our Min-cost Flow based Transistor siz original problem as long as the allowable delay change is bounded

ing Tool. by a quantity that lies within @-ball of the current delays. This
MINFLOTRANSIT - | :;s.”ai(-:hleved forcingd AXAD(i) and M INAD(i) to be small for
1.Size the circuit to meet delay requirements using TILOE. If the current solution is not optimal, due to the convexity of the

2.Iteratively perfolrr_n altﬁrnatetl))ll the ]I?-phzalse 3”.d W—ph:asd problem [1, 2], there must be another feasible point in the neigh-
optimizations, solving the problems formulated in (10) and  horhood of the current point that has a smaller objective function

(11) respectively. : value, and this point will be found by the D-phase. In the W-phase
S.hStop_the |te|_ra_tt|)c|)ns when the area improvement after the W- 14t follows, the solution found in the D-phase is a feasible solu-
phase is negligiole. tion. Since the W-phase does not limit the change in the delay or

. _ . the transistor sizes as greatly as the D-phase, its solution must have
We now present an example that qualitatively illustrates the iman objective function value that is no larger than the solution of the
provements provided by MINFLOTRANSIT over TILOS. W-phase.

Example 1 Figure 6 shows a simple three gate circuit to be sized. , 1 herefore, since the objective function value decreases in each
TILOS is a sensitivity based greedy heuristic that proceeds b hase, the procedure is guaranteed to find an optimal solution to the

bumping up in each pass the size of that transistor/gate that lead¥©Plem.

to maximal benefit in speed for a unit increase in area. Such a tran-
sistor/gate is called the transistor/gate with the highest sensitivity. 3. SIMULATION RESULTS
Assume that in figure 6, bof andC' are gates with identical sen- Simulation results were obtained on all the combinational cir-

sitivity and A has a lower sensitivity. Therefore the paths— B cuits in the ISCAS85 benchmark suite and also on ripple carry



!
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!
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(Area of Ckt)/(Area of minimum size Ckt)
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Figure 7. Comparative area-delay curves for gate sizing of
two ISCAS85 benchmark circuits. The total device area of
the circuits after transistor sizing with TILOS and MINFLO-
TRANSIT is plotted against delay, normalized with respect to
the delay of a minimum sized circuit. Even though the curves
look close the area benefits are actually significant. For ex-
ample in the case of c6288, for a circuit with 0.5 times the
delay of the minimum sized circuit, the area savings of MIN-
FLOTRANSIT over TILOS is 14.2%.

adders 0f32-256 bits. The results shown in this section are for

tion,

MINFLOTRANSIT is valid for a larger class of delay models

characterized by thmonotonic decompositioproperty in Defini-
tion 2.
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