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ABSTRACT
Approximate computing has applications in areas such as image
processing, neural computation, distributed systems, and real-time
systems, where the results may be acceptable in the presence of
controlled levels of error. The promise of approximate computing
is in its ability to render just enough performance to meet quality
constraints. However, going from this theoretical promise to a prac-
tical implementation requires a clear comprehension of the system
requirements and matching them to the design of approximations
as the system is implemented. This involves the tasks of (a) identify-
ing the design space of potential approximations, (b) modeling the
injected error as a function of the level of approximation, and (c)
optimizing the system over the design space to maximize a metric,
typically the power savings, under constraints on the maximum
allowable degradation. Often, the error may be introduced at a low
level of design (e.g., at the level of a full adder) but its impact must
be percolated up to system-level error metrics (e.g., PSNR in a com-
pressed image), and a practical approach must devise a coherent
and quantifiable way of translating between error/power tradeoffs
at all levels of design.
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Approximate computing provides an effective approach to trad-
ing off energy/power for computational accuracy. This model is
particularly relevant for a number of emerging applications where
accuracy requirements are flexible, e.g., tasks related to image and
video applications, recognition, and classification. While truncation
can perform an operation at reduced precision through bit-width
reduction, approximation introduces intentional dithering that can
statistically provide better precision than truncation.

Approximations can be made at various levels of abstraction:
(1) Approximate algorithms could, for example, correspond to reduc-
ing the number of iterations in an iterative-improvement algorithm,
such as an iterative linear equation solver, or a Newton-Raphson
root finder. Note that while this may superficially seem similar to
truncation, such operations use full bit-widths, so that the lower
order bits include some statistical pseudo-randomness. For a neuro-
morphic application, errors may correspond to relaxing recognition
accuracy for enhanced energy. The level of acceptable approxima-
tion depends greatly on the application.
(2) Approximate data could be used to simplify the storage burden
for data-intensive applications. For instance, image data may use ap-
proximate storage, and can leverage the properties of a wide range
of memories, e.g., solid-state memories [11] or spintronic memo-
ries [10]. Differential techniques for storing approximate data may
employ schemes that protect the higher order bits more strongly
than the lower-order bits [2].
(3) Approximate hardware could introduce intentional errors to im-
prove key performance characteristics (area, delay, and power) of
the underlying hardware. Examples include simplified designs for
full adders [3], multi-bit adders [5, 8, 15], specialized functional
units [14], and data flow graphs [6, 9, 13].

A great deal of prior work has focused on approximations that
have been made at the atomic hardware level (e.g., at the levels of
gates or adder topologies) and have been evaluated at the appli-
cation level to determine the level of acceptable error/hardware
tradeoffs. A typical design flow works in the opposite direction: an
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application is mapped on to a high-level description of a circuit,
which is then translated into a gate-level implementation laid out
in silicon. At the atomic level, the sources of error and their distri-
bution is most clearly understood, but this level of abstraction is
far removed from the application level. For approximate computing
to be effectively utilized in such a design flow, it is essential to
build a quantitative approach to modeling errors at each level of
abstraction and translating them to errors at other levels.

A primary complexity is in the fact that quality metrics at dif-
ferent levels of design may differ. Although metrics such as de-
lay/throughput, area, and power dissipation are typically relevant
and can be quantified at all levels, the error or quality metric may
be measured differently at various stages of design. For a multime-
dia application, the user-experience metric is typically captured
by the peak signal-to-noise ratio (PSNR) or structural similarity
index metric (SSIM) for a set of benchmark applications, while for
a neuromorphic application, it could be the percentage of true posi-
tives. At the level of electronic design, the application is translated
to a high-level computational structure such as a directed acyclic
graph (DAG), where the designer deals with data bits, and it is
infeasible to work directly with benchmark data. At this stage, the
error metric may be computed in terms of a bit error rate (BER), or
a probability distribution of error, or its mean and variance. Moving
further down in abstraction to the logic level, the error metrics
are even further removed from application-level metrics and must
necessarily operate in the domain of bit-level errors.

The computation of area, delay, and power metrics can mirror
abstraction paradigms in conventional design flows, but the quan-
tification of error and quality metrics is a new requirement. For
hardware structures, bit-level error metrics [1, 4] such as the error
rate, error significance, average error, and mean square error can
be computed efficiently. These metrics provide limited information
about the error, and the entire error distribution can be more helpful
in evaluating the quality of an approximation. This has led to the
development of methods that compute the entire probability mass
function (PMF) [7, 12], providing detailed information about the
entire distribution of error. The fundamental idea of the approach
in [12] is to compute the error PMF for individual module in the
circuit (e.g., a full adder), corresponding to a node in the circuit
DAG, and then propagating the PMF from the primary inputs to
the primary outputs using a topological traversal. The notion of de-
termining output error distributions in a DAG based on node errors
can be captured by the output sensitivity to a node error. Such ap-
proaches have been used for fast error computation in DAGs [6, 14]
in the inner loop of optimizers for approximate computing.

So far, the greatest focus in terms of achieving performance ben-
efits under quantifiable levels of error has been at the hardware
level. Several open issues remain to be addressed in future:
(1) At the hardware level, methods that create the link between
bit-level error prediction metrics and application-level metrics (e.g.,
PSNR/SSIM for images, or the true positive ratio for neuromorphic
applications) are essential to enable true cross-layer optimization.
(2) It is well recognized that truncation and approximation are both
important methods for optimizing performance metrics such as
energy, power, and delay. An optimal combination of truncation
and approximation is necessary to obtain the best performance.
(3) The relationship between approximation and redudancy is a

matter of considerable interest. For example, in a sensor network
with redundant data, the level of approximation depends not only
on the desired quality of result, but also on the amount of sensor
redundancy, which defines the level of error tolerance.
(4) Approximation decisions at the hardware level can be made
dynamically on the basis of input data. Cross-level optimization
requires methods that can rapidly determine the level of approxi-
mation required for satisfactory accuracy for a given application
and a set of input data, and communicate between the hardware
and software levels to achieve optimal results.
(5) The techniques used for error computation in structures such
as DAGs provide a strong base for analyzing the impact of approx-
imations at other levels of design. For instance, the sequence of
computations can be represented using a directed graph, and the
notions of quantifying error in DAGs can be extended to address
approximations at the algorithmic and software levels.

Overcoming these issues can expand the applicability of ap-
proximate computing to embedded systems, and enable higher
throughput at lower power and lower energy than is achievable
today.
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