
BTI-Aware Design Using Variable Latency Units
Saket Gupta and Sachin S. Sapatnekar

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455, USA.

Abstract—Circuit degradation due to bias temperature instability (BTI)
can lead to timing failures in digital circuits. We develop variable
latency unit (VLU) based BTI-aware designs, with a novel scheme for
multioutput hold logic implementation for VLUs. A key observation is
the identification and exploitation of specific supersetting patterns in
the two-dimensional space of frequency and aging of the circuit. The
multioutput hold logic scheme is used in conjunction with anadaptive
body bias framework to achieve high performance, allowing the design
to be easily incorporated in traditional synthesis flows. Ascompared to
conventional combinational BTI-resilience scheme, our design achieves
an area reduction of 9.2%, with a significant throughput enhancement
of 30.0%.

§1. INTRODUCTION

Bias Temperature Instability (BTI) [1], in the form of negative BTI
(NBTI) in PMOS and positive BTI (PBTI) in NMOS transistors, is
a significant concern in nanoscale circuits. BTI causes the transistor
threshold voltage to shift over time, and the resulting increases in
delay could cause a circuit to fail timing specifications as it ages.

Published approaches for enhancing BTI-resiliency include tran-
sistor sizing, logic resynthesis, or postsilicon tuning. These methods
are built for conventional synchronous designs, where the worst-
case delay determines the clock period. This work addresses the
case where the clock period is based on the notion of average-case
computations rather than the worst-case computations in a circuit, an
approach that leads to improved data throughput.

Within the synchronous paradigm, two classes of techniques have
been proposed for exploiting the average-case computations: variable-
latency units [2]–[4], and error detection-correction units [5]. Our
work focuses on the design of BTI-resilient circuits using variable
latency units (VLUs). Unlike conventional combinational circuits
that complete operations within one clock cycle, VLUs allow the
computation of the combinational circuit to be completed in a vari-
able, integer, number of clock cycles. By allowing high-probability
operations to complete in a single cycle, but allowing rarer events to
use multiple (typically two) cycles, the average cycle time may be
shorter than that of the conventional implementation, implying that
the circuit throughput for a VLU may be significantly larger.

As an illustration of a VLU, consider the 6-bit ripple carry adder
(RCA) shown in Figure 1, with six full adders. Assuming unit
gate delays, the conventional single-cycle fixed-latency combinational
circuit has a cycle time,Tclk = 13 units, equal to the delay of
its longest path, corresponding to a throughput,η1 = 1/13. The
VLU implementation of this adder operates at a reduced cycle time,
Tclk < 13. For Tclk = 9, assuming that all primary input signals are
mutually independent and have signal probabilities of 50%, 18.75%
of the input patterns violateTclk, and the VLU allows these to
complete execution in two cycles. Under the 50% assumption above,
each pattern is equiprobable, so that the average VLU delay is
0.8125 × 9 + 0.1875 × 18 = 10.69 units, and the corresponding
throughputη2 = 1/10.69 is 21.6% better.

Fig. 1: A VLU implementation of a 6-bit ripple carry adder.

VLUs require dedicated combinational circuitry for identifying the
input patterns that require two cycles for completion, to prompt each
output flip-flop to hold its current value at the next clock transition
(rather than clocking in a new value). This is referred to as “hold
logic” and its output is called the “hold signal.” Techniques for
constructing the hold logic have been proposed in [2], [4]. The hold
logic for the RCA here is small and is shown in Figure 1.

Therefore, exploiting the average-case computation can result in
higher performance (i.e., throughput) than the worst-case. However,
the performance of a VLU can degrade or even become incorrect in
the presence of BTI, potentially leading to circuit failure as the circuit
degrades temporally. Few efforts have been in the direction of con-
structing BTI-resilient circuits using the variable latency paradigm.
One such technique has been explored in [6] for specific adders, but
this work does not extend to general circuits.

Our contribution is to develop novel methods for building VLU-
based BTI-resilient designs for a general circuit, such that the
performance over its lifetime is maximized, and relies on two ideas:
(a) using a novel scheme that usesmultioutput hold logic(MOHL)
to alter the appropriate hold logic over time, in conjunction with (b)
using adaptive body biases [7] to maximize circuit performance.

The contents of the paper are organized as follows:§2 describes
methods for building VLUs and overviews our BTI model. The
concept of MOHL is then described in§3, followed by the details of
our approach in§4. Next, §5 shows how our schemes can be used
even with general BTI models, and§6 discusses circuit performance
optimization using MOHL as well as body biasing. Finally, we
experimentally validate our method in§7.

§2. PRELIMINARIES

A. Hold Logic Generation

Our VLU scheme assumes that an operation completes in either
one or two clock cycles. Given a timing constraintTclk, each path
whose (delay + setup time) is larger than or equal toTclk is termed
as a critical path. If a set of input assignmentsIP sensitizes a set of
critical pathsCP , it must also evaluate the hold signal to 1. Paths
excited by these input patterns are allowed two cycles for completion.

(a) (b)
Fig. 2: An example of a circuit at various timing specifications so
that it has (a) one critical path and (b) four critical paths.

We now briefly review an algorithm built on a corner based
methodology for generating the hold logic; details are provided in [2],
[4]. Consider the circuit in Figure 2(a). Assuming unit gate delays, the
longest path has a delay of 4 units. With a required time of 3 units on
x, y, the circuit has one critical pathP , and the sensitization condition
for this path constitutes the hold logic expression. Here, the critical
path can be sensitized if every gateg on the path has noncontrolling
values on its noncritical inputs. LetS(g) represent this condition for
gateg. The condition for sensitization forP , which activates the hold
logic, is then given byfh =

∏
∀g∈P S(g) = b · c · e · f .

For a more stringent required time specification of 2 units on
x, y, the circuit has four critical paths, as shown in Figure 2(b). The
sensitization conditions for multiple critical paths can be recursively
computed using a method described in [2] to obtain the hold logic
expression,fh = a+ b · c · f . Note that the algorithmdoes notwork
with paths, but involves a single topological traversal and processing
of all the gates in the circuit, incurringan O(n) complexity, wheren
= number of gates in the circuit. Heuristic techniques to control the
size of the hold logic have been presented in [2], [4].

Given the signal probabilities at the primary inputs (PIs) of the
circuit, the average throughputη of the VLU is evaluated as the
inverse of the average cycle time [4]:

η =
1

Phold · 2Tclk + (1− Phold) · Tclk
=

1

(1 + Phold) · Tclk
(1)

wherePhold is the hold logic activation probability.

B. VLUs at the Architectural-Level

Variable latency operation can be easily incorporated in a processor
architecture. Figure 3 shows a typical five stage instruction pipeline
in a microprocessor: variable latency designs may be employed at
the EX stage. When the EX stage requires a two-cycle operation,
it generates a stall for one cycle, preventing data from the IF and
ID stage from moving forward to the EX stage. Such a stall can be
implemented through a simple extension of a conventionalhazard
detection unit(HDU), which is a standard feature that stalls such
pipelines in the presence of data hazard. A modified design shown
in Figure 3, which now allows both the hold signal and the HDU
output to activate and control the stalling mechanism in the pipeline,
shows a low-overhead implementation that facilitates the use of the
VLU.

Fig. 3: Variable latency operation at the architectural level: the output
of the HDU is appended to the hold signal to stall the pipeline for a
two-cycle operation.

C. BTI Degradation Model and Delay Monotonicity

Given a BTI model, we use HSPICE to precharacterize the impact
of changes inVth on the delayDg of a gate withn transistors as [8]:

Dg(t) = Dg,0 +

n∑

i=1

∂Dg

dVthi

∆Vthi
(t) (2)

whereDg,0 is the nominal delay, and the partial derivative represents
the sensitivity of the delay to the threshold voltage,Vthi

, of device
i. Such characterizations are reasonably inexpensive and have been
widely deployed, e.g., in statistical static timing analysis (SSTA)
methodologies.

This computation requires the determination of∆Vth for each
device in the gate. For both NBTI and PBTI, the effect of aging
on the threshold voltage degradation for a stressed device increases
as:

∆Vth(t) ∝ t1/6 (3)

Clearly, this is a monotonically increasing curve, and captures the
effect of applying constant stress to a gate. Although BTI is known
to show some recovery when the stress is removed, modeling this
recovery requires precise knowledge of the input pattern distributions
for each specific gate.

One way to achieve this is through signal probability information:
however, there are two drawbacks to this. First, such information
may not be available. Second, the available information can be quite
inaccurate; it may predict the average behavior over all users and

programs for a system, but the actual aging depends on the behavior
of a specific user, which may not be predictable. Another potential
approach is through the use of on-chip sensors, but these are of
limited utility since they do not experience the same signal patterns
as the circuits whose aging is to be measured. In our implementation,
we employ the worst-case pattern for aging for BTI analysis, at the
worst-case temperature corner, as a guaranteed pessimistic estimate
of usage; this approach is consistent with widely-used methods for
handling BTI.

For well-characterized circuits, specific information that is avail-
able about the signal probabilities at each node can easily be incor-
porated into our framework. Such circuits undergo stress/recovery
cycles, and the delay model may work with the stress/recovery
envelope [9], [10] of theVth vs. t curve. By definition, such an
envelope is always monotonically increasing.

One case that deserves special mention is when a functional unit is
turned off for a long period of time, which is detectable by a sensor
(e.g., software timers, sensors, or separate antifuses may keep track
of the on- and off-times). In this case, due to recovery effects, the
circuit undergoes “rejuvenation” as the threshold voltage recovers and
the delay degradation is eased, and the use of an envelope waveform
may be far too pessimistic. This case is addressed in§5.

§3. MULTIOUTPUT HOLD LOGIC: CONCEPT

We now introduce the concept ofmultioutput hold logic(MOHL).
We begin with the idea that the task of building BTI-resilient VLUs is,
in essence, one of partitioning the set of circuit paths into one-cycle
and two-cycle paths1. Intuitively, for high throughput, it is important
to keep the most frequently-excited paths in the one-cycle set (or more
quantitatively, to keep the value ofPhold high). However, under BTI,
path delays may change with time: under the monotone delay model,
as path delays increase, more paths may move from the one-cycle set
to the two-cycle set. We develop a systematic framework for choosing
an appropriate partition of one-cycle/two-cycle paths with the option
of changing this partition over time as delays degrade due to BTI.

Fig. 4: The concept of MOHL VLU design. A time sensor selects
the hold logic to be triggered at timet.

Our solution is based on the concept of an MOHL, introduced in
Figure 4. Under this scheme, the VLU is controlled by temporally-
varying hold logic circuitry. As the circuit ages, by the monotonicity
argument presented in§2-C, an increasing number of single-cycle
paths may require two cycles for completion, and the set of two-cycle
input patterns changes. To account for this, the MOHL circuit has
multiple hold signal outputs: depending on the age of the circuit, one
is chosen. A hardware or software time sensor can capture the system
operational time, and this information can be fed to a multiplexer that
selects the proper hold signal to be triggered at timet.

§4. MULTIOUTPUT HOLD LOGIC: THEORY

We will now outline some useful properties of the MOHL design
problem. In particular, we will describe some specific supersetting
patterns in the two-dimensional space of frequency and circuit aging
that can be used to build compact implementations of the hold
logic. These patterns are based on the assumption of monotonic
aging, described in§2-C; this assumption is removed in§5. We use
standard synthesis tools for synthesizing MOHL; our contribution is

1As stated earlier, references to enumerated paths are only anaid to
explanation; our actual implementationsdo notperform path enumeration.

in identifying these subsetting patterns that reduce the implementation
overhead in terms of the number of outputs, area, etc.

A. Tabulating the Effects of Aging on VLUs

As a circuit ages, the distribution of its path delays changes, and
therefore, the hold logic that is required to operate the circuit at a
specific value ofTclk changes. Conversely, at any timet, the hold
logic required to ensure timing correctness is a function ofTclk.
We capture these relationships in afrequency/aging (F/A) grid, a
table whose columns are the possible values ofTclk and whose rows
correspond tot, the age of the circuit. In the discussion to follow,

• H(Tclk, t) denotes the ON-set (or theH-set) of the hold logic
required to achieve a clock period ofTclk at a given timet.

• η(Tclk, t) represents the corresponding value ofη.
We use the terms “hold logic” and “H-set” interchangeably.

(a) (b)
Fig. 5: The F/A grid for circuit apex7 showing (a) the hold logics
and (b) the correspondingη values (shown on a10−3 scale). The
patterns in the grid correspond to supersetting structures and result as
a consequence of the application of Theorems 1 and 2, and Corollaries
1 and 2.

The entry at each(Tclk, t) point in the grid represents the hold
logic function (withTclk as the one-cycle time), which is associated
with a specific value ofPhold and η, the probability of hold logic
activation and the throughput, respectively. In principle, the F/A grid
is a discretization on the continuous space of(Tclk, t) values. A
representative example of an F/A grid for benchmark apex7 is shown
in Figure 5(a), and the correspondingη values are displayed in
Figure 5(b).

The throughput for each hold logic function is computed using
equation (1). We may perform a linear search on the values ofTclk in
a row of the F/A grid to determine the point at whichη is maximized.
In each row in Figure 5(b), we highlight the maximum-throughput
entry and denote the corresponding value ofTclk by Tclk,opt(t). It
is easily seen thatTclk,opt(t) is not, in general, monotone witht.

B. Supersetting Trends

We now present some supersetting trends that help in minimizing
the circuitry required to implement MOHL as a multioutput circuit.
Theorem 1 At a given timet, for two clock period constraints
applied to a VLU,H(Tclk,2, t) ⊇ H(Tclk,1, t) andPhold(Tclk,2, t) ≥
Phold(Tclk,1, t) value if Tclk,1 > Tclk,2.
Proof: At any time t during the life of the chip, as we decrease
the value ofTclk, the timing constraints on the circuit are tightened
and more paths require two cycles for completion. Since gate delays
increase monotonically with time, for anyTclk,2 < Tclk,1, all input
patterns that excite a path with a delay larger thanTclk,1 will clearly
excite a path with delay larger thanTclk,2 (in addition to these, other
patterns may also excite two-cycle paths). Since such input patterns
constitute the ON-set of the hold logic of the circuit, the ON-set of
hold logic atTclk,1 is wholly contained within the ON-set of hold
logic at Tclk,2, i.e., H(Tclk,2, t) ⊇ H(Tclk,1, t). The corresponding
result aboutPhold follows trivially from this. �.
Example: In Figure 5,f0 ⊂ f1 ⊂ f2 ⊂ f3 in the row t = 0.
Theorem 2 Under a monotonic delay model, at a given clock period
Tclk applied to a VLU, for two time pointst1 > t2, H(Tclk, t1) ⊇
H(Tclk, t2) andPhold(Tclk, t1) ≥ Phold(Tclk, t2).

Proof: By the monotonicity of the BTI degradation model described
in §2-C, the path delays in a circuit slow down with time. Therefore,
the same clock periodTclk constitutes a tighter requirement at timet1
than att2. Therefore, more input patterns are included in the ON-set
of the hold logic att1, i.e.,H(Tclk, t1) ⊇ H(Tclk, t2). �

Example: In Figure 5, by Theorem 2,f1 ⊂ f3 ⊂ f4 in the column
Tclk = 152.

These two theorems can be combined to define a corollary that
describes a broader supersetting relationship between the hold logics.

Corollary 1 : If t2 > t1 andTclk,2 < Tclk,1, thenH(Tclk,1, t1) ⊆
H(Tclk,2, t2) andPhold(Tclk,1, t1) ≤ Phold(Tclk,2, t2).

As a result of these supersetting trends, it is possible to detect
patterns in the F/A grid. In Figure 5(a), the F/A grid for apex7 is
divided into regions such that a single hold logic represents each
region. Note that by Corollary 1, a region that is to the north or east
of another region bears a subset relationship for the corresponding
hold logic. The subsetting relationships for theTclk,opt entries in the
table are:

H(164, 4) = f1 ⊆ H(152, 6) = f3 ⊆ H(152, 8) = f4

H(136, 0) = H(152, 6) = f3

H(144, 2) = H(152, 8) = H(152, 10) = f4

In other words, all of the hold logic in this example follows a
supersetting trend; however, this is not necessarily true in general.
Even so, there can be substantial overlap in the minterms of the
optimal hold logic at various times, a result that is formalized below.

Corollary 2 : If t2 > t1 andTclk,2 > Tclk,1, then,∃ H(Tclk,2, t1)
that is a subset of bothH(Tclk,1, t1) andH(Tclk,2, t2).

The “common ancestor,”H(Tclk,2, t1), allows sharing between
the circuitry needed to implementH(Tclk,1, t1) and H(Tclk,2, t2),
and implies that the two share a set of minterms. This indicates the
likelihood that the area required to implement the hold logic as a
multioutput circuit is less that the sum of separate implementations.

§5. REJUVENATION: NONMONOTONE BTI MODELS

Due to recovery effects, BTI aging may be nonmonotone. In practi-
cal workload scenarios, a gate may suffer both stresses and relaxations
(removal of stress, causing delay recovery) and the monotonic delay
degradation assumption breaks down. As discussed in Section§2-C,
we focus on the more predictable case when a circuit is power-gated.
During this period, the threshold voltage of all transistors recovers
from BTI stress in a predictable way. This case is also practical
because online sensing/detection techniques can easily be leveraged
to determine the period of time when the circuit is in recovery mode.

We show that recovery has the effect ofrejuvenation, effectively
making a circuit “younger,” and we may utilize the F/A table, except
that an “effective age” of the circuit is used along thet axis.

Theorem 3 Delay recovery in a circuit, when BTI stress is removed,
can be captured by moving backward in timet along the F/A grid.
Proof sketch: (Details omitted due to space limitations) The change
in the delay is the product of the delay sensitivity toVth, multiplied by
∆Vth. Since∆Vth is reduced during recovery, the delay degradation
is reduced, and aging is effectively (partially) reversed, corresponding
to moving backward in time along the F/A grid.

It is easy to extend this analysis to multiple stress/recovery cycles.

§6. BTI-RESILIENT VLUS

At a fixed value ofTclk, as the VLU ages and more paths require
two-cycle operation, the concept of MOHL, as outlined in§3, may
be used to implement BTI-resilience. We classify the techniques for
MOHL as being eitherstatic, when Tclk is constant through the
lifetime of the circuit, ordynamic, when its value is tuned for maximal
throughput during the circuit lifetime. Since the optimally-tunedTclk

may vary from one functional unit to another, dynamic MOHLs are

not realistic in mainstream systems, whereTclk is set through the
use of system-level considerations, but the corresponding ideas will
be used to obtain a better implementation of a static MOHL circuit.

A. Static MOHL VLU Implementation

This approach chooses a fixedTclk through the life of the circuit.
At t = 0, the hold logic corresponds to an initial set of two-cycle
paths. As the circuit ages, under monotonicity, more paths require
two cycles, and the MOHL is updated appropriately.

This scheme corresponds to moving along a single column of the
F/A grid, corresponding to the{(Tclk, t), ∀t}, where Tclk is the
specified period. By Theorem 2, the hold logic at each successive
point in time is a superset of that before it. Therefore, there are
substantial containment relationships between theH-sets, which can
be leveraged to build minimal multioutput functions.

The static MOHL VLU has two limitations: 1) the value of
Phold also increases monotonically with time; from equation (1), its
throughput reduces monotonically as a function of time; 2) it cannot
benefit from optimizations (§4-A) that adjust the clock period.

B. Adaptive MOHL VLU Implementation using Body Biases

To overcome these limitations of static MOHL VLUs, we consider
a scenario where we build a dynamic VLU, for which it is permissible
to change the clock period of the VLU as a function of time. Under
this scheme, at each value oft, the MOHL VLU is operated at the
optimal clock period,Tclk,opt(t), that maximizes the throughput at
time t. To enable this, the optimal hold logic is selected from different
columns of the F/A grid (unlike the case for static VLUs); from
Figure 5,Tclk,opt(t) is not a constant or monotone witht.

A critical limitation of such a design is that varyingTclk over
time can create synchronization problems in pipelines. SinceTclk

is typically set by global considerations, and its optimal value may
vary from one unit to another in a system, dynamic changes inTclk

may only be possible under restricted scenarios such as asynchronous
systems and not under mainstream applications.

Therefore, we modify this scheme to build a new approach, based
on the observation that the variations inTclk,opt(t) in the dynamic
method above are typically very small over all values oft in the
lifetime of the circuit. Examining equation (1), the primary gains
in the throughput come about due to large discrete changes in
Phold (e.g., betweenH(152, 8) andH(164, 4) in Figure 5) and the
contribution ofTclk variations is small. This allows the possibility of
operating under a more practical paradigm, with a constantTclk over
all time. Figure 6(a) shows the working of this scheme for the F/A
grid for the apex7 benchmark. UsingH(Tclk,opt(t), t), ABB allows
the circuit to be clocked atTclk,opt(0) at all t. Since Tclk,opt(t)
changes witht, the applied body biasVbb(t) also changes witht.

We consider two cases and use the concept of adaptive body bias
ABB) [7] to preserveTclk:
Case I: If Tclk,opt(t) ≤ Tclk, we may simply operate the circuit at
Tclk with hold logic corresponding to thisTclk (i.e.,H(Tclk, t)). This
is functionally correct and represents an identicalPhold and a small
shift in Tclk from Tclk,opt; therefore, the change in the throughput
from the t = 0, as predicted by equation (1), is very small.
Case II: If Tclk,opt(t) > Tclk, then the optimal circuit clearly violates
Tclk. In this case, we use the hold circuitry (and hencePhold) from the
Tclk,opt(t) point and employ forward body bias (FBB) by applying
a positive body bias voltage,Vbb(t) to speed up the path delays and
reduce the clock period toTclk. Since the optimal hold logic does not
change andTclk,opt(t) is close toTclk, as predicted by equation (1),
the throughput remains almost the same as that atTclk,opt.

In Case II, we denote the set of one-cycle (two-cycle) paths at
Tclk,opt by P1,opt (P2,opt), and the corresponding hold logic asHopt.
The application of FBB speeds up all paths and the value ofVbb is
chosen to guarantee that all paths inP1,opt meet the constraint,Tclk.

It is theoretically possible that some paths inP2,opt may be sped up
faster than those inP1,opt if they have vastly different sensitivities to
Vbb, to the point that they become one-cycle paths. We refer to this
set of paths asP2→1,opt: in practice it is unlikely that this set will
have any members. Even if it were to, using the hold logicHopt is
functionally correct, but pessimistic (since it may allocate two cycles
to the paths inP2→1,opt instead of one).

The ABB scheme for an adaptive MOHL VLU operating at a fixed
Tclk is illustrated through Figure 6(b). To the original MOHL scheme
described in Figure 4, we add a time-basedt-ABB lookup table,
which saves the value ofVbb(t) that must be applied to the circuit
at time t to achieve the best throughput. On a practical level, our
implementation applies the same body biases to all transistors in the
functional block under consideration.

(a) (b)
Fig. 6: (a) Block description of the MOHL VLU design incorporating
ABB, and (b) the ABB scheme corresponding to the F/A grid for
apex7. Here,Vbb is the applied body bias to the circuit.

Over all benchmark circuits, we have found that|Vbb(t)| ≤ 0.25V.
In this range, we have verified that leakage power (including junction
leakage) is negligible using SPICE simulations. This was also con-
firmed through a detailed leakage analysis presented in [8]. Therefore,
we explore the range, in steps of0.05V.

§7. EXPERIMENTAL RESULTS

In this section we present results on various ISCAS85, ISCAS89,
MCNC, LGSYNTH93 and ITC99 benchmark circuits, synthesized
using ABC [11] on the 45nm PTM [12] based library. Our .genlib
library for ABC used for mapping circuits consists of INVs; BUFs;
2-4 input NANDs and NORs; 2 input XORs and XNORs; all with
different sizes. We choosetlife = 10 years, and our experiments are
based on the monotone BTI degradation model.

A. Evaluation Methodology

In order to evaluate the effectiveness of our MOHL VLU schemes
as presented in§4 and§6, we compare the results of these designs, in
terms of area overhead and throughput enhancements achieved, with
other VLU-extensions of existing BTI-resilient designs for combi-
national circuits, such as thedelay paddingschemes as described
below. A design may be made BTI-resilient by padding the timing
specification using a margin to ensure that the circuit meets its timing
requirements through its lifetime,tlife.

1) VLU Sizing-Based Padding: A VLU can be synthesized using
library delay models that predict the circuit delay attlife. A padding
strategy ensures that the circuit meets specifications throughout its
lifetime by adding a safety margin to the timing specification. The
circuits are sized to the knee of the area vs. delay curve.

2) Hybrid Padding: As a circuit ages, an increasing number of
paths violate the clock period. A conservative approach is to identify
the paths that violateTclk at the end-of-life: such paths are allowed
two cycles throughout the entire lifetime of the circuit. This however
results in significant throughput penalties, and some of these paths
may well work within one cycle for part of the circuit lifetime.

We therefore combine the sizing and conservative approaches
by introducing sizing-based partial padding into the combinational
circuit. This approach ensures that it meetsTclk up to timet = tp,
wheretp < tlife. For t ≥ tp, we simply move the paths to a second
cycle. The benefit achieved is that we incur lower sizing overhead as

compared to the sizing method, and also lower throughput degrada-
tion as compared to the conservative method.

The area overhead for this method arises from the extra hold logic
required, and from sizing costs. The choice oftp is important in
ensuring low sizing overhead. Our implementation uses the point
where the circuit suffers nearly 50% of the total degradation that it
suffers over its entire lifetime. We can deduce, both through analytical
algebraic techniques and through simulations, that fortlife =10 years,
tp = 2 years meets this criterion.

B. Area Overhead and Throughput Enhancements

1) Tabulation Details: The results of the area overhead and
throughput enhancements as achieved by various schemes are sum-
marized in Table I. Here,∆A denotes the percentage area overhead
(padding overhead and/or the hold logic area), and∆η denotes the
average change in throughput fromt = 0 to tlife, incurred in each
of the respective designs. Note that the circuit apex7 has a different
mapping from that used in Figure 5, and therefore shows different
numbers in our results table below.
TABLE I: Area Overhead and Throughput Comparisons of Various
Designs for Overcoming BTI Degradation

Circuit

Sizing/ VLU/ Static Adaptive
Padding Hybrid MOHL VLU MOHL VLU
∆A ∆η ∆A ∆η

|H|
∆A ∆η

|H|
∆A ∆η Max CPU

(%) (%) (%) (%) (%) (%) (%) (%) Vbb (min.)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Set1 Benchmarks
c1908 0.4 36.6 -5.3 -3.8 4 -7.1 9.2 2 -13.1 37.5 0.25 8.83
c2670 7.8 18.1 2.2 -4.3 4 7.8 -34.1 1 -6.8 19.9 0.25 10.28
c5315 1.7 22.0 -5.9 -3.4 3 -2.1 16.5 3 -3.7 25.7 0.20 8.16
c7552 6.7 15.3 1.8 -9.3 4 -3.7 -6.0 2 -5.1 10.2 0.25 24.62
s344 -3.5 38.0 -9.0 -0.4 2 -10.3 10.8 2 -12.2 39.5 0.25 0.02
s635 0.8 61.6 -4.9 0.0 4 -1.2 30.0 1 -14.2 61.2 0.25 0.18
s1269 -0.6 14.3 -7.0 -7.1 2 -16.1 9.3 1 -16.1 13.7 0.05 0.21
s1512 -4.2 22.2 -9.9 -6.8 2 -17.2 1.2 1 -18.2 22.3 0.25 0.12
s3271 -2.6 13.5 -9.0 -1.5 2 -15.5 -0.6 3 -16.3 13.5 0.25 0.21
s3384 -1.3 61.0 -7.3 -1.6 4 -10.3 21.4 1 -15.8 59.5 0.25 0.87
cmb 4.6 34.7 -0.3 -0.2 4 7.9 -16.3 1 -6.1 31.8 0.20 0.03
lal 7.4 43.0 3.9 -0.1 4 15.2 -3.8 1 -0.4 37.4 0.25 0.05
ttt2 7.6 10.9 2.8 0.0 4 1.6 -9.1 1 -9.6 11.1 0.25 0.04
apex7 2.6 42.4 -4.6 -3.3 3 -10.2 35.3 3 -7.5 39.9 0.25 0.04
alu2 -1.1 40.2 -7.0 -0.3 3 -12.6 19.8 2 -14.6 36.5 0.15 0.08
i5 7.7 7.8 1.6 -5.8 3 -5.8 -13.9 2 -6.1 9.8 0.20 0.13
b11 9.3 26.1 2.3 -0.6 4 1.1 -22.7 3 -4.6 30.6 0.25 0.11
apex6 3.6 81.5 -1.9 0.0 2 -2.2 20.0 3 -0.8 75.0 0.20 0.11
alu4 -2.7 48.1 -8.5 -1.7 2 -15.7 12.4 2 -15.4 48.1 0.25 0.20
x3 0.5 85.1 -4.8 0.0 2 -7.8 12.7 3 -5.5 78.7 0.20 0.12
dalu 3.6 42.9 -0.6 0.0 3 5.8 7.2 3 -0.6 44.8 0.25 2.99
Avg. 2.3 36.4 -3.4 -2.4 -4.7 4.7 -9.1 35.6 2.73

Set2 Benchmarks
s6669 -4.5 1.8 -10.4 -40.6 4.0 6.5 -43.6 3.0 -1.6 1.8 0.25 1.88
vda -2.6 8.2 -6.7 -40.3 4.0 -2.9 -45.4 2.0 -11.9 0.6 0.25 0.04
des -3.8 0.0 -8.7 -37.6 2.0 -15.6 -43.5 1.0 -15.6 0.0 0.25 0.06
t481 0.7 0.0 -3.7 -23.4 3.0 -2.6 -39.6 1.0 -14.2 0.0 0.25 0.10
Avg. -2.6 2.5 -7.4 -35.4 -3.7 -43.1 -10.0 0.6 0.52
Overall 1.5 31.0 -4.0 -7.7 -4.5 -2.9 -9.2 30.0 2.38

Baseline case:The baseline corresponds to a conventional one-
cycle combinational implementation, where worst-case sizing is used,
where all paths are required to meetTclk specification throughout
the circuit lifetime, using library delay models that predict the circuit
delay attlife. VLUs with positive (negative) overhead values incur
larger (smaller) overhead as compared to this design and imply that
the corresponding VLU circuit is better (worse) than its single-cycle
counterpart2.

In presenting the data in the table, we refer to column number
m as Cm, as marked in the table. For various benchmark circuits

2It is possible to use a baseline corresponding to a nominal unaged
circuit without padding: in such a case, the overhead would always be
positive. However, such an uncompensated circuit does not meet performance
specifications, and we prefer a comparison with a functionally correct circuit.
Such a comparison also shows the advantages of BTI-resilientVLUs over
single-cycle implementations.

listed in C1, the delay degradation
∆D(tlife)

D(t=0)
over the entire lifetime

lies between 5.6% and 15.6%, with an average of 11.4%. To be
more realistic, our results choose the starting pointt = 0 to be
three months after the circuit is manufactured to model burn-in test
procedures. (Note that starting at the realt = 0 would improve
slightly the numbers shown in our results, but should leave the relative
comparisons between various methods unchanged.)

In C2–C5, we present the results for the two methods described in
§7-A: VLU sizing-based padding and hybrid padding. We then show
the results for two MOHL VLU schemes (§6): the static (C6–C8)
and the ABB-based (C9–C13) designs. Columns C6 and C9 show
the number of outputs,|H| (number of differentH-sets), present in
the MOHL circuit, and C12 shows the maximum magnitude ofVbb(t)
required at any time point in the life of the adaptive MOHL VLU.

Run times for the adaptive MOHL VLU method for various circuits
are shown in C13, and are seen to be reasonable. The CPU times are
presented only for the adaptive MOHL VLU scheme, since it involves
relatively more runs of the hold logic computation algorithm (§2-A)
for the generation of all points for the F/A grid. In other designs, we
either simply perform a remapping (for sizing), or run the hold logic
generation algorithm for one value ofTclk (for static MOHL VLU).

These runtimes depend on multiple factors: the size of the circuit,
the logic functionality (which changes the size of BDD’s used)
and the distribution of paths in the circuit and thus do not show
a monotone trend with any one of these factors: e.g., two circuits
with comparable size (s3384 and c2670) have very different runtimes.
Similar observations have also been made in [2], [4].

We categorize the circuits in Table I into two sets, named Set1
and Set2, based on the throughput improvements (∆η) obtained. Our
method is generally successful on circuits in Set1 and not so on
those in Set2. We will analyze this further, discuss the root causes,
and present a technique in§7-C for predetermining whether a circuit
can benefit from the use of our methods (and in general, from VLUs).

2) Area and Throughput Analysis: All comparisons shown here
are with respect to the padded baseline one-cycle circuit.
VLU Sizing-Based Padding: An area overhead is induced due to (a)
sizing and (b) additional hold logic. Although this method yields
the highest throughput over all designs, the area overhead induced is
also the highest, similar to or even greater than the baseline. Since
the baseline is a combinational design,Tclk for the baseline is always
greater than that of VLUs, as demonstrated for the RCA in§1.
Hybrid Padding: The sizing overhead of this method is due to the
insertion of hold logic (§7-A): in some circuits, this is large enough
that the net area overhead is positive.
Static MOHL VLU: The static MOHL incurs an average savings
in area as compared to the worst-case design. In considering the
throughput overhead, it is important to note that∆η for this method
provably decreases monotonically with time, as more paths move to
two-cycle operation with time. This is illustrated in Figure 7.

Let us examine the∆η values for the hybrid padding method
and the static MOHL VLU design. For the Set1 benchmarks, the
hybrid method shows only a small throughput degradation while
the static method shows a positive or negative change. For the Set2
benchmarks, both methods show large overhead.

On analyzing this further, we determined that this is caused because
the circuits in Set2 have either a zero or small margin between the
delays of the near-critical paths and other paths in the circuit. This
observation was also made for such circuits in [13] for MCNC circuits
that proved to be hard to optimize for average-case operation. Thus,
as we move along a particular column of the F/A grid of Figure 5, the
value ofPhold) changes rapidly from a small value (such as 0.05) to a
large value (such as 0.99), implying that upon degradation, almost all
paths are moved to second cycle, resulting in large negative values of
∆η. This is also confirmed by the∆η results of the adaptive MOHL
VLU design (discussed next), where such circuits yield only a very

small enhancement in throughput.

0 2 4 6 8 10
−50

−30

−10
0

10

30

50

t (years)

∆
η

(P
er

ce
nt

ag
e)

C5315 dalu s3271 b11 des

Fig. 7: Variation of∆η as a function of timet for static MOHL VLU
design for a subset of the benchmark circuits.

Adaptive MOHL VLU: Empirically, we see that allowing the choice
of H-sets from different columns of the F/A grid, not only allows
for throughput enhancementthroughoutthe lifetime, but also requires
fewer hold logics for correct functionality, and hence the largest area
savings. We also see that only a small amount ofVbb (maximum
0.25V) is necessary for all the circuits. We also note that amongst
all designs, adaptive MOHL achieves lowest area overhead (-9.1%),
with throughput enhancements quite close to the highest throughput
enhancements of the sizing-based padded VLU. These negative
overhead numbers are significant, for a lower area also requires lower
power requirements.

For some cases in Set1 (C2670, cmb, i5, b11), although the hybrid
scheme results in only a small throughput degradation, and the
adaptive scheme results in good throughput enhancement, the static
MOHL VLU gives a relatively higher throughput degradation. We
observe that such circuits have a large number of paths with delays
close to the maximum one-cycle path delay in the nominal VLU, and
only a few paths with delays close to that of the critical-path delay
of the circuit. With delay-degradation, static MOHL moves all such
paths to second cycle, experiencing a higher throughput degradation.
Since such circuits also have only a few paths with delays close to the
critical-path delay of the circuit, they do not suffer much throughput
degradation with hybrid design, and show significant throughput gain
with adaptive MOHL design.

We can conclude from the above analysis, that for benchmarks in
Set1, the static MOHL VLU scheme with ABB proves to be most
suitable in ensuring BTI resilience with large savings in area, and
significant gains in throughputs throughout lifetime. For benchmarks
in Set2, combinational or VLU sizing schemes may perform as well
as adaptive MOHL but much better than the static MOHL scheme.

C. Benchmark Categorization

Although our results have categorized benchmarks into Set1 and
Set2 after analysis, it would be useful for a designer to be able
to do soa priori, without having the need of constructing the F/A
grid and of the subsequent analysis. We present a method for such
categorization. For this method, we only need to work with the
nominal combinational design of the circuit.

As highlighted in§7-B, at a givenTclk, for circuits that belong
to Set2, numerous paths delays are close to the longest path delay,
and these are moved to the second cycle as the circuit degrades with
aging. We identifyǫ-critical paths in the nominal design: paths whose
delay values lie within a fractionǫ of becoming critical, i.e., delays
in the interval [ǫDc, Dc], whereDc = D(t = 0) is the critical path
delay. We chooseǫ = (1−

∆D(tlife)

Dc
), since paths that are withinǫ

of Dc are likely to age so that their delays increase and violateTclk.
If the number of suchǫ-critical paths is large, we will likely incur
low gains, or losses, in throughput in the VLU-based designs.

A measure of this change in throughput can be computed as
follows. Letη1 be the throughput of the nominal circuit (Tclk = Dc),
and letη2 be the throughput if we setTclk = ǫDc. Using equation (1):

η1 =
1

Dc
andη2 =

1

(1 + Phold) · ǫDc
(4)

where thePhold value is obtained by the hold logic generation
algorithm in§2-A. The throughput change is then computed as:

∆η =
η2 − η1

η1
=

1

ǫ · (1 + Phold)
− 1 (5)

We choose∆ηtol = -25% as the tolerance on the estimated percentage
change in the throughput incurred (compared to nominal design)
when theǫ-critical paths are moved to the second cycle. If∆η (from
equation (5))≥ ∆ηtol, the design is categorized in Set2. For such
designs, thePhold value, as expected, is seen to be quite large. We
have found this choice to work well for all the benchmarks tested.

Note that percentage ofǫ-critical paths, with respect to the total
number of paths in the circuit, is equal to(1− Phold)× 100 (Phold

generated withTclk = ǫDc), for Phold essentially is the fraction of
total number of paths that have delays less thanǫDc. This can be
computedin linear timesince the computational cost for determining
such paths is the same as the hold logic generation algorithm: O(n).

§8. CONCLUSION

We have presented a novel BTI-resilience scheme that exploits the
average-case performance of the circuit, through an efficient MOHL
scheme. We have augmented the MOHL VLU with an adaptive
body bias framework to achieve maximal throughputs throughout the
lifetime, and demonstrated the efficacy of the method.

ACKNOWLEDGMENT

This work was supported in part by the NSF under award CCF-
1017778.

REFERENCES

[1] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI
degradation,”Microelectronics Reliability, vol. 45, pp. 71–81, January
2005.

[2] L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, andM. Poncino,
“Automatic synthesis of large telescopic units based on near-minimum
timed supersetting,”IEEE Transactions on Computers, vol. 48, pp. 769–
779, August 1999.

[3] S. Ghosh, S. Bhunia, and K. Roy, “CRISTA: A new paradigm for low-
power, variation-tolerant, and adaptive circuit synthesis using critical
path isolation,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 26, pp. 1947–1956, November 2007.

[4] Y. S. Su, D. C. Wang, S. C. Chang, and M. S. Malgorzata, “Performance
optimization using variable-latency design style,”IEEE Transactions on
Very Large Scale Integration Systems, vol. PP, no. 99, pp. 1 –10, 2010.

[5] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and
challenges for better than worst-case design,” inProceedings of the Asia
and South Pacific Design Automation Conference, pp. 2–7, 2005.

[6] Y. Chen, H. Li, J. Li, and C. K. Koh, “Variable-latency adder (VL-
adder): new arithmetic circuit design practice to overcome NBTI,” in
Proceedings of the International Symposium on Low Power Electronics
and Design, pp. 195–200, 2007.

[7] J. W. Tschanz, J. Kao, S. G. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and V. De, “Adaptive body bias for reducing impactsof die-to-
die and within-die parameter variations on microprocessor frequency and
leakage,”IEEE Journal of Solid-State Circuits, vol. 37, pp. 1396–1402,
November 2002.

[8] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Adaptive techniques for
overcoming performance degradation due to aging in CMOS circuits,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 19,
pp. 603–614, April 2011.

[9] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “An analytical model for
negative bias temperature instability,” inProceedings of the International
Conference on Computer-Aided Design, pp. 493–496, 2006.

[10] W. Wang, V. Reddy, A. Krishnan, R. Vattikonda, S. Krishnan, and
Y. Cao, “Compact modeling and simulation of circuit reliability for 65-
nm CMOS technology,”IEEE Transactions on Device and Materials
Reliability, vol. 7, pp. 509–517, December 2007.

[11] Berkeley Logic Synthesis and Verification Group, ABC: ASystem for
Sequential Synthesis and Verification, Release 70930.

[12] Predictive Technology Model. http://www.eas.asu.edu/∼ptm.
[13] J. Cong and K. Minkovich, “Mapping for better than worst-case delays

in LUT-based FPGA designs,” inProceedings of the International
Symposium on Field Programmable Gate Arrays, pp. 56–64, 2008.

