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Abstract— Fixed-die floorplanning is an important problem in
the modern physical design process. An effective floorplanning
algorithm is crucial to improving both the quality and the time-
to-market of the design. In this paper, we present an analytical
floorplanning algorithm that can be used to efficiently pack soft
modules into a fixed die. The locations and sizing of the modules
are simultaneously optimized so that a minimum total wire length
is achieved. Experiments on the MCNC and GSRC benchmarks
show that our algorithm can achieve above a 90% success rate with
a 10% white space constraint in the fixed die, and the efficiency is
much higher than that of the simulated annealing based algorithms
for benchmarks containing a large number of modules.

I. INTRODUCTION

Floorplanning is a crucial step in early stages of the physical design
process. A high quality floorplan with small wire lengths and low white
space will have a positive impact on both the performance and the yield
of the final manufactured ICs. The high complexity of modern VLSI
systems has made hierarchical design the preferred methodology even
for the floorplanning stage. Hence, as pointed out in [1], the problem
of fixed-die floorplanning, in which the outline of the floorplan is pre-
determined, has become more relevant than outline-free floorplanning,
because at a lower level of the design hierarchy, the floorplan of a
sub-system must be confined to the outline set by the higher level of
hierarchy that is immediately above it.

During the past few years, several works have been performed in
the direction of solving the fixed-die floorplanning problem. In [2], a
simulated annealing based algorithm was presented, and slack-based
moves were introduced to facilitate the reduction of the floorplan
span in a given direction, and in [3], an evolutionary search approach
was used to handle the fixed-die floorplanning problem, based on
normalized Polish expressions. In [4], Chen and Chang proposed a
novel cooling scheme for the simulated annealing process such that
the runtime of the algorithm was significantly reduced, while at the
same time, the quality of the resulting floorplan was improved. In [5],
partitioning was effectively combined with the simulated annealing
algorithm to make the later much more scalable with respect to problem
size.

Another direction in the research of floorplanning problems is
to study the representations of the geometric relationships among
modules so that the algorithms such as the simulated annealing can
be implemented more effectively. Examples of some of the recent
works concerning the floorplan representations include the sequence
pair method [6], BSG [7], O-tree [8], CBL [9], B*-tree [10], and
TCG [11].

The fixed-die floorplanning problem can be considered as one of
packing rectangular-shaped modules into a fixed outline. Two types of
modules can be involved in a floorplanning problem, i.e., hard modules,
whose shape cannot change during the floorplanning process, and soft
modules, whose area remains the same but whose aspect ratio can vary.
Over the years, the annealing-based algorithms have made remarkable
progress in the floorplanning of hard modules. Nowadays, a state-of-
the-art annealing-based floorplanning algorithm can achieve a good
floorplan containing hundreds of hard modules within minutes. For
soft modules, however, the results from the annealing-based algorithms
are not as satisfactory. This either shows up as a long runtime to
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execute the algorithm or a low success rate1. One of the reasons
for the low performance of annealing algorithms on the problem of
floorplanning with soft modules is that the sizing of the modules adds
more dimensions to the optimization problem, and hence increases the
difficulty of the annealing process.

The floorplanning of soft modules remains an important problem be-
cause at the floorplanning stage, the detailed layout of modules has not
usually been obtained yet. Hence, the rectangular-shaped modules still
have certain flexibility in changing their aspect ratios. Several previous
works have tackled the problem of effective floorplanning and sizing of
soft modules [12] [13] [14]. However, these works were not performed
in the fixed-die context. In [15], a highly efficient bipartitioning-based
algorithm was proposed that can effectively deal with the soft modules
in the fixed-die floorplanning problem. Nevertheless, the success rate of
this algorithm is sensitive to the input benchmark and the constraints
such as the maximum allowed aspect ratios of the modules. In this
paper, we present a fixed-die floorplanning algorithm based on an
analytical approach that can be used to efficiently pack soft modules
into the fixed die while minimizing the total wire length. The success
rate of the algorithm is benchmark and constraint-insensitive. The
floorplanning problem is formulated into a constrained optimization
problem, and the location and sizing for each of the modules are
obtained simultaneously. The optimization algorithm is divided into
two stages, i.e., rough floorplanning, followed by overlap reduction and
final legalization. In the first stage, we have adopted a method similar to
that used in [16] and [17] for the placement problem of standard cells to
spread the modules relatively uniformly across the die. The difference
between the floorplanning problem of soft modules and the placement
problem of standard cells is that the modules in the floorplanning stage
can have significant difference in both the widths and heights, and the
aspect ratios of the modules can vary during the optimization process.
Hence, besides the center coordinates of the modules, the widths of the
modules also enter the floorplanning problem as optimization variables
to take care of the module-sizing issue. In the second stage, we first
use an optimization-based approach to effectively reduce the overlaps
between modules in the rough floorplan. Then we send the improved
floorplan, which already has little or no overlap between modules, to
the pl2sp() routine in Parquet-4 [2], whose function is to shift some
of the modules so that a overlap-free floorplan is obtained. No further
sizing or switching the order between modules is performed in pl2sp().
The operations that take place in the second stage of the algorithm
are in contrast to the simple greedy algorithm used in [17] for the
legalization of the placement of standard cells immediately after the
rough placement, which usually fails to generate a legal floorplan in
our situation because of the significant difference in both the widths
and heights of the modules. Experimental results on the MCNC and
GSRC benchmarks show that our method can achieve above a 90%
success rate with a 10% white space constraint in the fixed die, while
the runtime is almost linear with respect to the number of modules in
the design.

The rest of the paper will be organized as follows. Section II
formulates the fixed-die floorplanning problem and presents the two-
stage optimization algorithm using an analytical approach. Section III
shows the experimental results in terms of the runtime, success rate,
and the total half perimeter wire length (HPWL) in the final floorplan,
and the conclusions are provided in section IV.

1The success rate of a set of annealing runs is defined as the ratio of the
number of runs that result in a floorplan that can fit into the fixed die, to the
total number of annealing runs.



II. PROBLEM FORMULATION AND THE ANALYTICAL

FLOORPLANNING ALGORITHM

A. Problem formulation

As stated previously, our goal is to develop an efficient algorithm
to pack rectangular-shaped soft modules into a fixed die while
minimizing the total wire length. The input to the algorithm includes
the width and height of the die, the area of each module, and the
maximum allowed aspect ratios of the modules. The output of the
algorithm is the final floorplan within the fixed die which includes
the location and sizing for each of the modules. Hence, our fixed-die
floorplanning problem for soft modules is formulated as

Given the dimensions of the fixed die, Lx and Ly , and assuming that
the area and the maximum allowed aspect ratio of the ith module
are Ai and Ri, respectively, find the location and sizing for each of
the modules such that the total wire length is minimized and the final
floorplan is within the fixed die.

Our algorithm achieves the objective in two stages, i.e., rough
floorplanning, followed by overlap reduction and final legalization. The
objective of the first stage is to find the approximate location and sizing
for each of the modules such that the total wire length is small, while
the modules are spread relatively uniformly across the fixed die. Some
overlap is allowed in this stage. The objective of the second stage is
to fine-tune the location and sizing for each of the modules such that
a floorplan without any overlap between modules is obtained.

B. Rough floorplanning

In the rough floorplanning stage, we try to minimize the total wire
length, WL, and spread the modules as uniformly as possible across the
fixed die. The spreading of modules is characterized by a penalty term
PD, which describes the non-uniformity of the module distribution.

Let xi, yi, and wi be the center coordinates and the width of module
i, respectively. Then the optimization problem that we solve in the
rough floorplanning stage is

minimize WL + α · PD (1)

such that 0 ≤ xi ≤ Lx

0 ≤ yi ≤ Lyr
Ai

Ri
≤ wi ≤

√
AiRi

i = 1, 2, . . . , n

where n is the total number of modules, and the weighting factor α
is used to determine the relative significance of the penalty term PD

with respect to the wire length WL. The first two constraints state
that the center of each module should not exceed the boundary of the
fixed-die while the last constraint ensures that the real aspect ratio of
each module is within its maximum allowed range. Note that these
constraints do not exclude the possibility that some of the modules
may lie partly outside the fixed-die. This issue is taken care of by the
PD term in our implementation and will be discussed further when
we present the calculation of PD .

The constrained optimization problem (1) can be conveniently trans-
formed into an unconstrained optimization problem and solved using
the Sequential Unconstrained Minimization Technique (SUMT) [18].
The unconstrained optimization problem has the form

minimize WL + α · PD + β · B (2)

where B is the barrier term created to take care of the removed
constraints in (1) and β is the weighting factor associated with B.

One form of the barrier term B is given by

B =

nX
i=1

1

xi
+

nX
i=1

1

Lx − xi
(3)

+

nX
i=1

1

yi
+

nX
i=1

1

Ly − yi

+

nX
i=1

1

wi −
q

Ai
Ri

+

nX
i=1

1√
AiRi − wi

The key property of the objective function in (2) and the barrier
function B in (3) is that if we start from a point within the feasible
region determined by the constraints in (1) and use any kind of iterative
searching algorithm, e.g., the conjugate gradient method, to solve the
unconstrained optimization problem, the points being searched will
always remain feasible. This is because B approaches ∞ as the
boundary of the feasible region is approached, and hence, the search
process will never go outside the feasible region. A convenient starting
point is obtained by choosing xi, yi, and wi randomly within their
corresponding bounds.

The total wire length WL is calculated using a quadratic formula.
Since the quadratic formula only works with two-pin nets, we first use
the clique model to decompose all of the multi-pin nets into two-pin
nets. Assume modules i1, i2, . . . , ij are connected by multi-pin net i
with weight ki. The clique model removes the multi-pin net and re-
connects every pair of modules in i1, i2, . . . , ij with a two-pin net with
a weight of 2ki

j(j−1)
. After all of the multi-pin nets have been replaced

by the corresponding two-pin nets, the total quadratic wire length WL
can be calculated using

WL =
X
i,j

kij [(xi − xj)
2 + (yi − yj)

2] (4)

where the indices i and j run through all of the modules connected
by two-pin nets, and the kij’s are the net weights obtained from the
clique model.

Lx

Ly

Fig. 1: Grid for calculating the penalty term PD. The shaded region
represents the fixed die. The points inside the die constitute the set
Cin, and the points outside the die constitute the set Cout.

As stated previously, the penalty term PD is used to characterize
the non-uniformity in the distribution of modules across the fixed die.
We have adopted a method similar to that presented in [16] and [17]
for the placement problem to calculate PD. Specifically, we first define
the concept of area density, DR, within a region R, which is given by

DR =
SA

SR
(5)

where SR is the area of region R, and SA is the sum of the overlap
areas of all of the modules with region R. Note that as SR → 0,
we obtain the area density of a point. Under this definition, if the
modules are uniformly distributed within the fixed die, and a legal
floorplan is obtained, the area density inside the die should be D̄ =
(
Pn

i=1 Ai)/(LxLy) while the area density outside the die should be
0.

During the optimization process, to keep track of the non-uniformity



of the area density, we superimpose an array of monitoring points over
the die area and its surrounding region as shown in Fig. 1. The penalty
term PD is then calculated as the sum of squares of the variations of
the densities from their ideal values, over all of the monitoring points.
Specifically, let Cin and Cout represent the sets of monitoring points
inside and outside the die area, respectively, and let Di be the actual
area density at monitoring point i, then the penalty term PD can be
calculated by

PD =
X

i∈Cin

(Di − D̄)2 +
X

i∈Cout

D2
i (6)

The second term in the expression of PD penalizes the modules that
go partly outside the fixed die during the optimization process.

wj

hj

(xj , yj)

(xm
i , ym

i )

x − xj

gP X
j (x)

wj

γx
−wj

γx
0

γx

Fig. 2: Calculation of the area density function (a) coordinates of
the module and the monitoring point (b) bell-shaped function used to
approximate the contribution to the area density from a module.

In equation (6), the actual area density Di at monitoring point i is
calculated by summing up the contributions from all of the modules
in the floorplan, i.e.,

Di =

nX
j=1

Pj(x
m
i , ym

i ) (7)

where Pj(x, y) is the contribution to the area density distribution from
module j and (xm

i , ym
i ) is the location of monitoring point i as shown

in Fig. 2(a). Ideally, Pj(x, y) is 1 if module j overlaps with point
(x, y), and 0 otherwise, i.e.,

Pj(x, y) =


1 if |x − xj | ≤ wj

2
and |y − yj | ≤ hj

2
0 otherwise

(8)

where hj =
Aj

wj
is the height of module j. However, the Di obtained

this way is not a smooth function of the optimization variables xj and
yj , which may cause practical difficulties in applying gradient-based
optimization algorithms. To resolve this difficulty, we can use a bell-
shaped smooth function fPj(x, y) to approximate the effect of module
j on the area density distribution [16] [17]. The function fPj(x, y) can
be decomposed into fPj(x, y) = gP X

j (x)×gP Y
j (y) (9)

where

gP X
j (x) =

8>><>>:
γx ×

„
1 − 2(x−xj)2

(
wj
γx

)2

«
if 0 ≤ |x − xj | ≤ wj

2γx

γx × 2(|x−xj |−
wj
γx

)2

(
wj
γx

)2
if

wj

2γx
< |x − xj | ≤ wj

γx

(10)
and

gP Y
j (y) =

8>>><>>>:
γy ×

 
1 − 2(y−yj)2

(
hj
γy

)2

!
if 0 ≤ |y − yj | ≤ hj

2γy

γy × 2(|y−yj|−
hj
γy

)2

(
hj
γy

)2
if

hj

2γy
< |y − yj | ≤ hj

γy

(11)
are the shape factors along the x and y directions, respectively, and γx

and γy are two parameters used to control the spreading of the bell-
shaped function fPj(x, y). Smaller values of γx and γy will cause the

bell shaped function to become wider, which can make the spreading
of highly clustered modules faster. However, if γx and γy are too
small, then the approximation to the real area density function Pj(x, y)
will be very inaccurate. Hence, tradeoff values are chosen for these
two parameters in our implementation of the algorithm. The functionsgP X

j (x) andgP Y
j (y), as shown in equation (10), (11), and Fig. 2(b), have

the attractive property of being normalized. Specifically, the integral ofgP X
j (x) with respect to x over the entire real axis � gives wj while the

integral of gP Y
j (y) with respect to y over � gives hj =

Aj

wj
. Hence, the

total contribution of module j to the overall area density distribution is
still Aj although the smooth bell-shaped function fPj(x, y) is used to
approximate the original rectangular-shaped density function Pj(x, y).

The optimization problem (2) is solved using the conjugate gradient
method [19]. There are numerous descriptions of this method in the
literature and interested readers are referred to [19] for details. We
emphasize here that in our implementation, the conjugate gradient
algorithm is executed multiple times. Each run is terminated if the
improvement between consecutive iterations becomes insignificant or
a pre-determined maximum number of iterations is reached. The final
solution of each run is used as the starting point of the new run. The
original value of the parameter α is chosen to be small such that a
higher weight is assigned to the wire length term WL to ensure the
quality of the solution. Then, in successive runs, the value of α is
increased, while the value of β is decreased. This makes the module
distribution more uniform, and at the same time, allows the exploration
of the optimum to go closer to the boundary of the feasible region.

C. Overlap reduction and final legalization
After the rough floorplanning stage, the modules are relatively

uniformly distributed across the fixed die. However, some overlaps
between modules are often present after this stage. Although increasing
the density of the monitoring-point grid in the rough floorplanning
stage is beneficial to reducing the overlap, it will invariably increase
the computational cost. In addition, the overlap can rarely be removed
completely in the rough floorplanning stage even if a rather dense grid
of monitoring points is used. Hence, instead of using a very dense grid
in rough floorplanning and sacrificing the runtime, we add an explicit
overlap reduction and final legalization stage to the algorithm such that
a legal floorplan within the given fixed die is obtained.

Due to the fact that the modules in the floorplanning stage can have
significant difference in both the widths and heights and the allowed
white space with respect to the die area is relatively small, the simple
greedy algorithm used in [17] for legalizing the placement of standard
cells will usually not be able to result in a legal floorplan within the
fixed die. In our work, we choose to first reduce the overlap between
modules through solving the following optimization problem

minimize WL + η · PO + β · B (12)

where the definitions of WL and B are the same as those shown in
section II B. The term PO in (12) is used to represent the penalty due
to the overlaps between modules and the overlap between a module
and the outside of the fixed die. Hence, PO can be written as

PO =

n−1X
i=1

nX
j=i+1

SM
ij +

nX
i=1

(Ai − SD
i ) (13)

where SM
ij is the overlap area between modules i and j, SD

i is the
overlap area between module i and the fixed die, and Ai − SD

i is the
overlap area between module i and the outside of the fixed die. Note
that both SM

ij and SD
i can be considered as the overlap area between

two rectangles. Hence, we discuss below in detail how to quickly find
this overlap area given the center coordinates and dimensions of the
two rectangles, and how to use smooth functions to approximate the
overlap area.

In Fig. 3, we show two overlapping rectangles, located at (xi, yi)
and (xj , yj), and with dimensions wi×hi and wj×hj , respectively.
The overlap area can be calculated as

S = ∆x · ∆y (14)



∆x

∆y(xi, yi)

(xj , yj)

wi

hi

wj

hj

Fig. 3: Overlap between two rectangles.

where

∆x = (min{xi +
1

2
wi, xj +

1

2
wj} − max{xi − 1

2
wi, xj − 1

2
wj})

×U(min{xi +
1

2
wi, xj +

1

2
wj} − max{xi − 1

2
wi, xj − 1

2
wj})

(15)

and

∆y = (min{yi +
1

2
hi, yj +

1

2
hj} − max{yi − 1

2
hi, yj − 1

2
hj})

×U(min{yi +
1

2
hi, yj +

1

2
hj} − max{yi − 1

2
hi, yj − 1

2
hj})

(16)

Here, U(x) is the unit step function, i.e.,

U(x) =


1 if x ≥ 0
0 if x < 0

(17)

Equation (14)-(17) can be used to calculate the overlap area between
two rectangles exactly. However, none of the functions min{}, max{},
or U(x) is smooth, and this will again create problems for the
gradient-based optimization algorithm. These non-smooth functions
are replaced by the following smooth approximating functions in our
implementation of the floorplanner.

min{x, y} ≈ x·ek(y−x) + y·ek(x−y)

ek(x−y) + ek(y−x)
(18)

max{x, y} ≈ x·ek(x−y) + y·ek(y−x)

ek(x−y) + ek(y−x)
(19)

U(x) ≈ 1

2
(1 + tanh(k′x)) (20)

where k and k′ are parameters used to control the accuracy of the
approximating functions. Larger values of k and k′ will increase
the accuracy of the approximation, but at the same time reduce the
smoothness of the approximating functions, which may increase the
difficulty of the optimization process. These two parameters are tuned
in our implementation to achieve the best balance between the runtime
of the algorithm and the quality of the resulting floorplans. The
optimization problem (12) is again solved using the conjugate gradient
method.

After solving the optimization problem (12), the resultant floorplan
will contain little, if any, overlap between modules. We then send
this improved floorplan to the pl2sp() function in Parquet-4 such
that a sequence pair corresponding to a floorplan without any overlap
between modules is obtained. The core functionality of the pl2sp()
routine is to legalize a floorplan without performing module sizing or
switching the order between modules. The reason why we cannot call
pl2sp() directly after the rough floorplanning stage is that the overlap
between modules is not small enough at that time, and the simple
legalization procedure used in pl2sp() will generally not be able to fit
the floorplan into the fixed-die.

D. Time complexity analysis
The runtimes for solving the unconstrained optimization problems

(2) and (12) are determined primarily by the time required to calculate

the objective functions and their gradients. Let n, N , N2, and M be the
total number of modules, the total number of nets in the original netlist,
the total number of decomposed two-pin nets, and the total number
of monitoring points in the grid superimposed on the die area and its
surrounding region, respectively. The time complexity of calculating
the barrier term B and its gradient is O(n), and the time complexity
of calculating the wire length term WL and its gradient is O(N2).
However, under the reasonable assumption that the fanout of each
net in the original netlist is upper-bounded by a constant, we obtain
O(N2) = O(N).

From (6) and (7), it may seem that the time complexity of calcu-
lating PD is O(nM). However, a better analysis will show that the
actual complexity is only O(M). This is because to calculate PD,
we use a two dimensional array to store the Di’s corresponding to
the monitoring points. Initially, all of the Di’s are set to 0. Then we
go through the n modules, and for each module, we only update the
Di’s corresponding to the monitoring points covered by this module.
Since the monitoring points form a regular grid, it takes constant time
to find the range of the array indices corresponding to the points
covered by each module, and each updating of a Di also takes constant
time. Hence, if M ′ represents the total count of the monitoring points
covered by all of the modules (note that if a point is covered by
multiple modules, it should be counted multiple times.), then the total
cost of calculating all of the Di’s is O(M ′). Finally, we sum up all of
the Di’s to obtain PD, which takes O(M) time. Since M ′ = O(M),
the total cost of calculating PD becomes O(M ′) + O(M) = O(M).
Similarly, we can show that the time complexity of calculating the
gradient of PD is also O(M).

To calculate the PO term in (12) using expression (13), the apparent
time complexity is O(n2), because of the double summation involved.
However, this cost can be reduced significantly by observing that two
modules i and j that are separated far apart from each other after
the rough floorplanning stage will have no interaction in the overlap
removal stage that follows. Hence, the SM

ij term corresponding to these
two modules can be dropped from the double summation in (13). Our
strategy of calculating the PO term efficiently is to associate with each
module an interaction range box as shown in Fig. 4, and the SM

ij term
enters the double summation in (13) only if the interaction range boxes
associated with modules i and j overlap with each other after the rough
floorplanning stage. There is no unique way of determining the size
and shape of each of the n interaction range boxes. A good heuristic is
to associate with each module i a square-shaped interaction range box
with the same center coordinate as the module itself and a side length
of 2

√
AiRi. An interaction list is established for each module after

the rough floorplanning stage to store the indices of the modules that
have interactions with it. The time it takes to build all of the lists is
O(n× log(n) + K) using the interval tree and range tree [20], where
K is the total number of the pairs of modules that have interactions
with each other. However, since the lists only need to be built once,
and then they can be used many times in solving the optimization
problem (12), the amortized cost of this step of the algorithm can be
practically ignored, considering the problem sizes encountered in the
floorplanning stage of the design, i.e., a few hundred to a few thousand
modules. After the lists are established, each calculation of PO and its
gradient is reduced from O(n2) to approximately O(n) time.

From the above analysis, we see that the calculation of the objective
function and its gradient in the optimization problem (2) has a time
complexity of O(N + n + M), and the corresponding cost for
the optimization problem (12) is O(N + n) after the interaction
lists are established. The building up of the interaction lists takes
O(n × log(n) + K) time but has an extremely small amortized cost
that can be ignored in practice. We emphasize here that because the
operations involved in the calculations of WL, B, and their gradients
are all very simple, the actual costs of solving the problems (2) and
(12) are dominated by the calculations of PD, PO, and their gradients.

Finally, the pl2sp() function from Parquet-4 that we use to obtain
the final overlap-free floorplan has a time complexity of O(n3), where
n is the total number of modules. However, in practice, we find that the
runtime associated with this function call is negligibly small compared
with that of solving the optimization problems (2) and (12). This is
because all of the operations involved in the pl2sp() function are very



Die Aspect Ratio
1:1 2:1 3:1 4:1

Analytical Parquet-4 Analytical Parquet-4 Analytical Parquet-4 Analytical Parquet-4
ami33 10/10 4/10 9/10 2/10 10/10 1/10 10/10 0/10
ami49 10/10 5/10 10/10 2/10 10/10 1/10 9/10 0/10
n100 10/10 2/10 10/10 1/10 10/10 0/10 10/10 0/10
n200 9/10 0/10 10/10 0/10 9/10 0/10 9/10 0/10
n300 10/10 0/10 10/10 0/10 10/10 0/10 9/10 0/10

(a)

Die Aspect Ratio
1:1 2:1 3:1 4:1

Analytical Parquet-4 Analytical Parquet-4 Analytical Parquet-4 Analytical Parquet-4
ami33 10/10 5/10 10/10 6/10 10/10 2/10 10/10 2/10
ami49 10/10 8/10 10/10 6/10 10/10 4/10 9/10 1/10
n100 10/10 4/10 10/10 2/10 10/10 2/10 10/10 1/10
n200 10/10 7/10 10/10 3/10 10/10 1/10 9/10 2/10
n300 10/10 1/10 10/10 2/10 10/10 1/10 10/10 1/10

(b)

TABLE I: Success rate of the floorplanning algorithms under (a) a 10% white space constraint and (b) a 15% white space constraint.

Interaction range boxes

Module i

Module j

Module k

Fig. 4: Interaction range boxes of modules. The shaded areas represent
modules. SM

ij is included in the double summation in (13) because the
corresponding interaction range boxes overlap with each other. SM

ik

and SM
jk are excluded from the double summation in (13) because the

corresponding interaction range boxes do not overlap.

simple, and n is generally much smaller than N and M , which are
the total numbers of nets and monitoring points, respectively.

III. EXPERIMENTAL RESULTS

Our algorithm is implemented in C++, and the experiments are
performed on a desktop with a 3.2GHz Intel(R) Pentium(R)-4 CPU
running the Red Hat Linux 8.0 operating system.

As stated previously, this work has focused on the problem of
floorplanning with soft modules. The maximum allowed aspect ratio
of each module is assumed to be 3 in our experiments. We have
tested our algorithm on the two largest MCNC benchmarks ami33
and ami49 and the three largest GSRC benchmarks n100, n200 and
n300, and the aspect ratio of the fixed die ranged from 1:1 to 4:1. The
experimental results have been compared with those obtained from
Parquet-4, which we see as a representative of the current state-of-the-
art fixed-die floorplanners. Note that Parquet-4 is specifically tuned for
the efficient floorplanning of hard modules, although it can also deal
with soft modules [21]. The reason why we choose Parquet-4 is that,
to the best of our knowledge, Parquet is the only free floorplanning
package online that can handle both fixed die and soft modules, and
Parquet-4 is the newest release in the Parquet series.

Tables I (a) and (b) show the comparison results of the success rate
between our algorithm and Parquet-4 for the 10% and 15% white space
constraints, respectively. To obtain each data value in the two tables,
the corresponding floorplanning program was executed 10 times, the
number of the resulting floorplans that could fit into the fixed die was
counted, and the success rate was calculated. We see clearly from the
tables that our analytical floorplanning algorithm can achieve above a
90% success rate for both the 10% and 15% white space constraints,
and the success rate improves as more white space is allowed in the

floorplan2. As a comparison, Parquet-4 achieves a maximum of 80%
success rate and it fails most of the tests for the GSRC benchmarks
when the white space constraint is set to 10%. In Fig. 5, we show
some examples of the final floorplans of the n100 benchmark obtained
by our algorithm under a 10% white space constraint. The outer
rectangles represent the outlines of the fixed dies. Each floorplan is
shifted towards the lower-left corner of its corresponding fixed die for
the purpose of easy comparison. Due to the space limit, the floorplan
examples of other benchmarks are omitted here.

In Fig. 6, we show the average runtimes of both our algorithm
and Parquet-4 with respect to the number of modules in the floorplan.
Parquet-4 performs better for the small MCNC benchmarks but its
runtime increases rapidly as the number of modules increases. On the
contrary, the runtime of our algorithm increases at a much slower rate
and it beats Parquet-4 by about 2X for n200 and 4X for n300. Note
that Fig. 6 only compares the runtime of a single execution of the
algorithms. The evaluation of the real efficiency of each algorithm
should also be based on the success rate because any time spent on
the unsuccessful runs is wasted. Considering the much higher success
rate of the analytical-based approach, we can see that our algorithm
can achieve an order of magnitude effective improvement in runtime,
as compared with Parquet-4, for the large GSRC benchmarks.

In Table II, we compare the average total wire length obtained from
our analytical approach and that from Parquet-4 for the successful runs.
Because Parquet-4 fails to find a legal floorplan for n200 and n300
when the white space constraint is set to 10%, we only compare the
two algorithms for the case of 15% white space constraint. We can
see from the table that our algorithm achieves better wire length than
Parquet-4 and the average improvement is about 12%.

IV. CONCLUSIONS

In this paper, we presented a soft-module floorplanning algorithm
based on an analytical approach. The algorithm is divided into two
stages, i.e., rough floorplanning , followed by overlap reduction and
final legalization. In the rough floorplanning stage, an optimization
problem is solved where the objective function is a linear combination
of the total wire length and the area distribution density of modules.
In the overlap reduction and final legalization stage, we first solve an
optimization problem to minimize the linear combination of the total
wire length and the overlap area, then we call the pl2sp() function
in Parquet-4 to obtain a sequence pair corresponding to a floorplan
without any overlap between modules. Experimental results on the
MCNC and GSRC benchmarks show that our algorithm can achieve

2For our algorithm, the initial values of the optimization variables, i.e., xi,
yi, and wi are chosen randomly. Hence, due to the inherent non-convexity
of the problem, the obtained final floorplans also differ from run to run of
the algorithm. To take this effect into consideration, we use the success rate,
the average runtime, and the average total wire length to characterize the
performance of our algorithm.



Die Aspect
Ratio

1:1 2:1 3:1 4:1
Analytical Parquet-4 Improve Analytical Parquet-4 Improve Analytical Parquet-4 Improve Analytical Parquet-4 Improve

ami33 74072 82149 9.8% 75168 79131 5.0% 75180 91721 18.0% 79529 101274 21.5%
ami49 799239 928597 13.9% 829888 942117 11.9% 880387 1092771 19.4% 939049 1003220 6.4%
n100 291628 342103 14.8% 290158 351542 17.5% 298894 351338 14.9% 313060 392118 20.2%
n200 572145 630014 9.2% 565927 645219 12.3% 583282 639803 8.8% 608074 685057 11.2%
n300 702822 770354 8.8% 722527 780406 7.4% 793771 838600 5.3% 858346 872501 1.6%

TABLE II: Average total wire length (HPWL) of the floorplans obtained using the analytical approach and Parquet-4 under a 15% white space
constraint.
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Fig. 5: The floorplans of the n100 benchmark under a 10% white
space constraint with the aspect ratio of the fixed die set to (a) 1:1,
(b) 2:1, (c) 3:1, and (d) 4:1. Each floorplan is shifted towards the
lower-left corner of its corresponding fixed die for the purpose of easy
comparison.
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Fig. 6: Comparison of the runtimes of our algorithm and Parquet-4.

above a 90% success rate for a white space constraint of as low as
10%, while the average improvement in wire length is about 12%
compared with Parquet-4. In addition, our algorithm can achieve an

order of magnitude effective speedup compared with Parquet-4 for the
large GSRC benchmarks.
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