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Consensus-ADMM for General Quadratically
Constrained Quadratic Programming
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Abstract—Nonconvex quadratically constrained quadratic pro-
gramming (QCQP) problems have numerous applications in sig-
nal processing, machine learning, and wireless communications,
albeit the general QCQP is NP-hard, and several interesting spe-
cial cases are NP-hard as well. This paper proposes a new al-
gorithm for general QCQP. The problem is first reformulated in
consensus optimization form, to which the alternating direction
method of multipliers can be applied. The reformulation is done
in such a way that each of the subproblems is a QCQP with only
one constraint (QCQP-1), which is efficiently solvable irrespec-
tive of (non)convexity. The core components are carefully designed
to make the overall algorithm more scalable, including efficient
methods for solving QCQP-1, memory efficient implementation,
parallel/distributed implementation, and smart initialization. The
proposed algorithm is then tested in two applications: multicast
beamforming and phase retrieval. The results indicate superior
performance over prior state-of-the-art methods.

Index Terms—Alternating direction method of multipliers
(ADMM), feasible point pursuit, multicast beamforming, phase re-
trieval, non-convex quadratically constrained quadratic program-
ming (QCQP), semi-definite relaxation (SDR).

I. INTRODUCTION

QUADRATICALLY constrained quadratic programming
(QCQP) is an optimization problem that minimizes a

quadratic function subject to quadractic inequality and equality
constraints [1]. We write it in the most general form as follows:

minimize
x∈Cn

xH A0x − 2�
{
bH

0 x
}

,

subject to xH Aix − 2�
{
bH

i x
}
≤ ci,

∀i = 1, ...,m. (1)

Notice that for simplicity we only write the constraints as in-
equalities, but they can be equalities as well (each can be ex-
pressed as two inequalities).

A QCQP is in general NP-hard, except for some special cases,
for example when all the {Ai}m

i=1 in “≤” inequality constraints
are positive semi-definite [2, § 4.4], m is “small” [3]–[6], or if
the quadratic terms are all homogeneous and {Ai}m

i=0 are all
Toeplitz [7].
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For general non-convex QCQPs, the prevailing method to
tackle the problem is through semi-definite relaxation (SDR),
where the following semi-definite programming (SDP) problem
is solved instead

minimize
X∈Hn ,x∈Cn

Trace {A0X} − 2�
{
bH

0 x
}

,

subject to

[
X x
xH 1

]
� 0,

Trace {AiX} − 2�
{
bH

i x
}
≤ ci,

∀i = 1, ...,m, (2)

where Hn denotes the set of n × n complex Hermitian matri-
ces. Problem (2) is obtained by relaxing the otherwise equivalent
constraint X = xxH to a convex one X � xxH . After solving
the convex relaxation problem (2), we not only get a non-trivial
lower bound on the optimal cost of (1), but also possibly a
solution of (1) if the solution X� of (2) turns out to be rank
one. If this is not the case, in certain cases there is an efficient
way to generate approximate solutions to the original prob-
lem in (1) from the higher-rank solution of (2). Let (x� ,X�)
be an optimal solution of (2), then by drawing random points
x ∼ CN (x� ,X�), possibly followed by a simple projection or
scaling if applicable, one can obtain approximate solutions not
far away from the SDR lower bound, for certain kinds of QCQP
problems. That is, in certain cases it has been shown that this
randomization step (with sufficient draws) is guaranteed to yield
some quantified sub-optimality, see for example [8], [9].

If the problem dimension in (1) is large, then squaring the
number of variables as in (2) makes the latter very difficult to
solve. If a general purpose SDP solver is used to solve (2) using
the interior point method, the worst case complexity can be as
high as O(n6.5). Another downside of SDR is that, if it is not
obvious how to obtain a feasible point for the constraint set
of (1), in a lot of cases SDR randomization will not give us a
feasible point either.

Another way to tackle problem (1) is through convex restric-
tion, also known as successive convex approximation (SCA)
or convex-concave procedure (CCP) for the more general dif-
ference of convex programming (DCP) problem [10]. Noticing
that any Hermitian matrix can be written as the difference of
two positive semi-definite matrices, we can denote

Ai = A
(+)
i + A

(−)
i ,∀i = 0, 1, ...,m,

where A
(+)
i � 0 and A

(−)
i � 0. Then for each quadratic term,

we have that

xH Aix ≤ xH A
(+)
i x + 2�

{
x(0)H A

(−)
i x

}
− x(0)H A

(−)
i x(0) ,
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for any point x(0) ∈ Cn . Therefore, starting with an initial point
x(0) , we can iteratively solve the following convex QCQP until
we obtain an approximate solution of (1)

x(t+1) ←
arg min

x
xH A

(+)
0 x + 2�

{
x(t)H A

(−)
0 x

}
− 2�

{
bH

0 x
}

subject to xH A
(+)
i x + 2�

{
x(t)H A

(−)
i x

}
− 2�

{
bH

i x
}

≤ ci + x(t)H A
(−)
i x(t) ,∀i = 1, ...,m.

This is a convex restriction because each quadratic function
is replaced with its convex upper bound function. If we start
with a feasible x(0) , then it is easy to show that the sequence
{x(t)} will remain feasible afterwards. However, if we start
with an infeasible x(0) , it is possible (and often the case) that
the restricted constraint set becomes empty, thus the iterates
cannot proceed. Recently [11] proposed feasible point pursuit
- successive convex approximation (FPP-SCA) to address this
issue, by adding a slack variable to each constraint and an �1
penalty on the slacks to the cost. FPP-SCA produces good results
in both finding a feasible point and approaching closer to the
SDR lower bound. The potential disadvantage of FPP-SCA is
that in each iteration we still need to solve a non-trivial convex
optimization problem, which may take a lot of time even for
a moderate number of iterations, if a general-purpose convex
optimization solver is used for large-scale problems.

In this paper, we propose a rather different approach to han-
dle QCQPs. The proposed algorithm is based on two building
blocks:

1) Any QCQP with only one constraint (QCQP-1) can be
solved to optimality, and in various cases this can be done
efficiently;

2) Adopting the alternating direction method of multipliers
(ADMM) for consensus optimization as the general al-
gorithmic framework, problem (1) can decomposed into
m QCQP-1’s in each iteration, thus leading to efficient
optimal updates.

In the rest of this section, we briefly review the basics of the
two aforementioned building blocks. Then the general algorith-
mic framework is introduced in Section II. In Section III, we
look into one specific step of the algorithm, and explain how this
seemingly non-trivial QCQP-1 sub-problem can be solved very
efficiently. Some detailed implementation issues are described
in Section IV, including a memory-efficient implementation for
certain types of constraints, an empirical way of initialization
that works very well in practice, and discussions on parallel and
distributed implementations with small communication over-
head. Simulation results are presented in Section V, where the
proposed algorithm is used for feasible point pursuit, multicast
beamforming, and phase retrieval, showing great performance
and versatility in various kinds of non-convex QCQP problems.
Conclusions are drawn in Section VI.

A. QCQP With Only One Constraint (QCQP-1)

One of the most fundamental results in QCQP is that, any
QCQP with only one constraint (QCQP-1) can be solved

optimally, despite the fact that the quadratic terms may be
indefinite. The fundamental idea behind this result is the
following lemma [2, Appendix B].

Lemma 1: For all X,A,B ∈ Hn , and X � 0, there exists
an x ∈ Cn such that

xH Ax = Trace {AX} ,xH Bx = Trace {BX} .

This means that after we find a solution for the SDR of a
QCQP-1, regardless of its rank, we can always find an equivalent
rank one solution. Our experience from simulations is that SDR
seems to always return a rank one solution for a QCQP-1. Even
if not, one can resort to rank reduction as in [5], which handles a
more general rank reduction problem. This result is also closely
related to the generalized eigenvalue problem [12, §8.7] in linear
algebra and the S-procedure [13, §2.6] in control.

B. Consensus Optimization Using ADMM

Now we briefly introduce the algorithmic tool to be used in
this paper, which is based on the ADMM [14]. Consider the
following optimization problem

minimize
x

m∑

i=1

fi(x) + r(x),

in which the main objective is to minimize a sum of cost func-
tions f1 , ..., fm , subject to some additional regularization r on
x. To solve it using ADMM, we first reformulate it into a con-
sensus form by introducing m auxiliary variables z1 , ..., zm ,
as

minimize
x,{zi }m

i = 1

m∑

i=1

fi(zi) + r(x),

subject to zi = x,∀i = 1, ...,m.

Then we can easily write down the (scaled-form) ADMM iter-
ates for this problem as

x ← arg min
x

r(x) + ρ
m∑

i=1

‖zi − x + ui‖2 ,

zi ← arg min
zi

fi(zi) + ρ‖zi − x + ui‖2 ,∀i = 1, ...,m,

ui ← ui + zi − x,∀i = 1, ...,m,

where x is treated as the first block, the set of auxiliary variables
{zi} are treated as the second block, and ui is the scaled dual
variable corresponding to the equality constraint zi = x.

There are several advantages of this consensus-ADMM algo-
rithm. First and foremost, it is designed for distributed optimiza-
tion, since each zi can be updated in parallel; through careful
splitting of the sum of the cost functions, we can also make each
update very efficient (possibly in closed-form), which may not
be the case for the batch problem. Finally, since it falls into the
general algorithmic framework of ADMM, it converges as long
as the problem is convex, for all ρ > 0.
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II. GENERAL ALGORITHMIC FRAMEWORK

We now describe how to apply consensus-ADMM for general
QCQPs. Let us first transform (1) into a consensus form

minimize
x,{zi }m

i = 1

xH A0x − 2�
{
bH

0 x
}

,

subject to zH
i Aizi − 2�

{
bH

i zi

}
≤ ci,

zi = x,∀i = 1, ...,m, (3)

then the corresponding consensus-ADMM algorithm takes the
form of the following iterations:

x ← (A0 + mρI)−1
(

b0 + ρ

m∑

i=1

(zi + ui)
)

,

zi ← arg min
zi

‖zi − x + ui‖2 ,

subject to zH
i Aizi − 2�

{
bH

i zi

}
≤ ci

ui ← ui + zi − x, (4)

assuming the updates of zi exist (see the next section for more
discussions on the existence of the zi-updates).

The reason we put our algorithm into this form is based on
the fact that each update of zi is a QCQP-1, thus we know it can
be updated optimally, despite the fact that the quadratics may
be indefinite. The update for x is an unconstrained quadratic
minimization, and for an indefinite A0 we need to choose a large
enough ρ to ensure that the minimum is not unbounded; if A0 +
ρmI � 0 is satisfied then the solution is simply given by solving
a linear equation, and we can cache the Cholesky factorization
of A0 + mρI to save computations in the subsequent iterations.

A. Convergence

ADMM was first designed for convex problems, for which
it is known to converge under mild conditions [15]. Despite
the lack of theoretical guarantees, ADMM has also been used
for non-convex problems, see for example [14, §9]. In [16],
ADMM was applied to non-negative matrix factorization (a
non-convex problem) with missing values, and it was shown
that, if ADMM converges for this non-convex problem, then it
converges to a KKT point. Some follow-up works on other non-
convex problems have made similar claims [17], [18]. A stronger
result was recently shown in [19], where it was proven that
(there exists a convergent subsequence and) every limit point is a
stationary point for a class of non-convex consensus and sharing
problems. The proof in [19] assumes Lipschitz continuity of the
non-convex cost functions (not constraints) to establish that the
augmented Lagrangian function is non-increasing, provided the
parameter ρ is large enough.

Unfortunately, the convergence result in [19] cannot be ap-
plied to our algorithm here, even though both are dealing with
non-convex consensus problems. The very first step in the proof
of [19] shows that the augmented Lagrangian is monotonically
non-increasing under certain conditions. These conditions in-
clude Lipschitz continuity of the non-convex cost functions (but
not the constraints) and that the parameter ρ is large enough. If
we want to borrow the arguments made in [19], we would need

to first establish the monotonicity of the augmented Lagrangian.
However, our numerical experience is that the augmented La-
grangian is not monotonic, even if we set ρ to be very large.
Therefore, we limit ourselves to the following weaker conver-
gence result.

Theorem 1: Denote xt and zt
i the updates obtained at the t-th

iteration of Algorithm (4). Assume that the zt
i ’s are well-defined

for all t and i, and that

lim
t→+∞

(zt
i − xt) = 0,∀i = 1, ...,m,

and

lim
t→+∞

(xt+1 − xt) = 0,

then any limit point of {xt} is a KKT point of (1)
Proof: See Appendix A. �

III. EFFICIENT zi-UPDATES

Now let us focus on the update of zi . From our previous
discussion on QCQP-1 we know that the update of zi can
always be solved to optimality, by strong duality; in other
words, if we solve the SDR of a QCQP-1, we are guaranteed
to obtain a rank one solution. However, with a number of zi to
be updated iteratively, it is not desirable to rely on general SDP
algorithms to update zi . Therefore, we now take a detailed look
into QCQP-1, and show how to solve it efficiently. For ease
of notation, let us drop the subscript, define ζ = x − u, and
denote the sub-problem as

minimize
z

‖z − ζ‖2

subject to zH Az − 2�
{
bH z

}
= c (5)

We changed the constraint to equality here to simplify subse-
quent derivations. For an inequality constraint, we first check
whether ζ is feasible: if yes, then ζ is the solution; if not, then
the constraint must be satisfied as equality, according to comple-
mentary slackness, thus the following method can be applied.

We start from simpler cases, and gradually build up to the
most general case.

A. rank (A) = 1, b = 0

For this simple case, the constraint can be equivalently written
as

|aH z|2 = c,

or simply as a linear constraint with an unknown phase

aH z =
√

cejθ .

Assuming we know θ, problem (5) becomes a simple projection
onto an affine subspace, for which we know the solution is given
by

z = ζ +
(√

cejθ − aH ζ

‖a‖2

)
a.

Plugging this back to the objective, it is easy to see that the
minimum is attained if we choose θ to be the angle of aH ζ.
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Therefore, the update of z in this case is given by

z = ζ +
√

c − |aH ζ|
‖a‖2 |aH ζ| aaH ζ. (6)

In the real case, the unknown phase becomes an unknown
sign, and similar steps can be made to result in the same closed-
form solution (6).

B. rank (A) > 1, b = 0

For A with a higher rank, there is in general no closed-form
solution for (5). However, it is still possible to efficiently update
z. Let the eigen-decomposition of A be QΛQH , where Λ is
diagonal real and Q is unitary, because A is Hermitian. Define
z̃ = QH z, ζ̃ = QH ζ, then the problem is equivalent to

minimize
z̃

‖z̃ − ζ̃‖2 ,

subject to z̃HΛz̃ = c.

The corresponding Lagrangian is

L = ‖z̃ − ζ̃‖2 + μ
(
z̃HΛz̃ − c

)
,

with a single Lagrange multiplier μ. A necessary condition for
optimality is that ∇L = 0, i.e.,

∇L = 2(z̃ − ζ̃) + 2μΛz̃ = 0,

therefore, z̃ = (I + μΛ)−1 ζ̃. Plugging this solution back into
the equality constraint, we have

ζ̃
H

(I + μΛ)−1 Λ (I + μΛ)−1 ζ̃ = c,

or equivalently
n∑

k=1

λk
(1 + μλk )2 |ζ̃k |2 = c,

which means the correct Lagrange multiplier μ can be numeri-
cally found by solving this nonlinear equation, via for example
bisection or Newton’s method. In fact, we can also show that
the desired solution is unique, leaving no ambiguity to the value
of μ. From the dual of a QCQP-1, we have that I + μΛ � 0 [2,
Appendix B], i.e.,

1 + μλk ≥ 0,∀k = 1, ..., n.

This can give us a first possible region where the correct μ can
be: μ ≤ −1/λmin if λmin < 0, and μ ≥ −1/λmax if λmax > 0.

Moreover, if we define

φ(μ) =
n∑

k=1

λk
(1 + μλk )2 |ζ̃k |2 − c,

then

φ′(μ) = −2
n∑

k=1

λ2k
(1 + μλk )3 |ζ̃k |2 ,

and for all μ such that I + μΛ � 0, φ′(μ) < 0, which means
φ(μ) is monotonically decreasing (strictly) in that region, there-
fore the solution for φ(μ) = 0 is unique. In fact, we can show
that there exists a root within that interval, as long as the

constraint set is not empty: if −1/λmax ≤ μ ≤ −1/λmin , then
φ(−1/λmax) = +∞, and φ(−1/λmin) = −∞, which together
with the monotonicity imply that a root always exists in be-
tween. If Λ � 0, the interval becomes −1/λmax ≤ μ ≤ +∞,
consequently −c ≤ φ(μ) ≤ +∞, so a root exists if and only
if c ≥ 0, but if c < 0 then z̃T Λz̃ = c is infeasible. A similar
argument applies to the case when Λ � 0. Once the value of μ
is found, we can plug it back to obtain z̃, and the desired update
of z is simply given by z = Qz̃.

To save computation, we can cache the eigen-decomposition
of A. Then in the subsequent ADMM iterations the computa-
tion is dominated by the matrix-vector multiplication Qz̃, since
evaluating either φ(μ) or φ′(μ) (if Newton’s method is used)
only takes O(n) complexity.

C. rank (A) > 1, b �= 0

Now we have reached the most general case when A can have
higher rank and b can be non-zero. The idea is very similar to the
previous case, although the expressions are a little more com-
plicated. Again let A = QΛQH be the eigen-decomposition,
problem (5) is equivalent to

minimize
z̃

‖z̃ − ζ̃‖2 ,

subject to z̃HΛz̃ − 2�
{
b̃

H
z̃
}

= c,

Where z̃ = QH z, ζ̃ = QH ζ, and b̃ = QH b. Setting the gradi-
ent of the Lagrangian equal to zero, we have

z̃ = (I + μΛ)−1 (ζ̃ + μb̃).

Plugging it back to the equality constraint, it becomes a nonlin-
ear equation with respect to μ,

φ(μ) =
n∑

k=1

λk

∣
∣
∣
∣
∣
ζ̃k + μb̃k

1 + μλk

∣
∣
∣
∣
∣

2

− 2�
{

n∑

k=1

b̃∗k
ζ̃k + μb̃k

1 + μλk

}

− c,

and its derivative

φ′(μ) = −2
n∑

k=1

|b̃k − λk ζ̃k |2
(1 + μλk )3 < 0,

for all μ such that I + μΛ � 0, which is necessary for optimal-
ity of (5). Therefore, φ(μ) is monotonic in the possible region
of solution, and any local solution (for example found by bi-
section or Newton’s method) is guaranteed to be the unique
(thus correct) solution, which always exists for a non-empty
constraint set, similar to the previous case. Notice that if b = 0,
φ(μ) and φ′(μ) reduce to the simpler expression that we de-
rived in the previous subsection. Detailed implementation of
bisection and Newton’s method to solve φ(μ) = 0 is given in
Algorithms 1 and 2. In practice, bisection converges linearly
(∼20 iterations) while Newton’s method converges quadrati-
cally (∼5 iterations), but bisection is numerically more stable,
so the best choice is application-specific.

An interesting observation from this most general case is
that, solving a QCQP-1 always boils down to solving a scalar
nonlinear equation φ(μ) = 0. It is easy to see that if A has p
distinct eigenvalues, solving φ(μ) = 0 is equivalent to solving



HUANG AND SIDIROPOULOS: CONSENSUS-ADMM FOR GENERAL QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING 5301

a polynomial of degree 2p + 1 (2p if b = 0). Polynomials of
order ≥ 5 do not admit closed-form expressions for their roots,
necessitating the use of numerical methods like bisection or
Newton’s method.

Remark: So far we have assumed that I + μΛ is invertible,
which may not always be the case. However, recall that the
duality of QCQP-1 implies I + μΛ � 0, therefore there are
at most two possible values of μ that can make the matrix
I + μΛ singular: μ = −1/λmin if λmin < 0, and μ = −1/λmax
if λmax > 0, so for completeness one may first check these
two values of μ, although this situation never occurred in our
experiments.

D. Bound Constraint

The basic idea of making the z-updates equivalent to solving
a QCQP-1 is that the latter is always efficiently solvable. In some
cases this efficiency can be maintained even if we incorporate
some more constraints. One such case is that of a quadratic term
that is bounded from both sides, i.e.,

minimize
z

‖z − ζ‖2 ,

subject to c − ε ≤ zH Az − 2�
{
bH z

}
≤ c + ε.

Using the same idea as before, we can write down the La-
grangian and the solution again takes the form

z = Q (I + μΛ)−1 QH (ζ + μb),

where A = QΛQH is the eigen-decomposition of A, and μ is
such that

⎧
⎪⎨

⎪⎩

μ = 0, if − ε ≤ φ(0) ≤ ε,

μ < 0, then φ(μ) = −ε,

μ > 0, then φ(μ) = ε.

In fact, since we know φ(μ) is monotonically decreasing within
the feasible region, if φ(0) > ε, both the solution of φ(μ) = ±ε

are positive, therefore we must take the solution of φ(μ) = ε,
and vice versa. In other words, if

c − ε ≤ ζH Aζ − 2�
{
bH ζ

}
≤ c + ε,

then z = ζ; if it is greater than c + ε, the upper-bound constraint
must be active, and like-wise if it is less than c − ε. This is
very intuitive, since we are just “rounding” the constraint to the
closest bound.

IV. IMPLEMENTATION ISSUES

So far we have derived an ADMM algorithm for general
QCQP problems, which features straightforward iterations and
efficient per-iteration updates. In this section we revisit the entire
algorithm and discuss detailed implementations to make it more
actionable.

A. Memory-Efficient Implementation

An apparent disadvantage of our algorithm is that we need to
introduce an auxiliary variable zi and the corresponding dual
variable ui for every single quadratic constraint. For x ∈ Cn

and m such constraints, we need O(mn) memory just to store
the intermediate variables. Depending on the application, this
memory requirement may be too demanding. For example, if
Ai = aia

H
i ,∀i = 1, ...,m, it only takes O(mn) memory to de-

scribe the problem, or even as small as O(m) if the ai’s are
highly structured, e.g., obtained from the rows of the discrete
Fourier transform (DFT) matrix. In such cases O(mn) interme-
diate memory seems very unappealing for large m and n. This
is less of an issue when the Ai’s are all full rank, since then we
need O(mn2) memory to just specify the problem, and if that
is affordable, then O(mn) memory for intermediate variables
seems relatively reasonable.

Consider the following special QCQP, which occurs fre-
quently in practice:

minimize
x

xH A0x − 2�
{
bH

0 x
}

subject to |aH
i x|2 = ci,∀i = 1, ...,m. (7)

Again, the algorithm that follows can be easily modified to tackle
inequality constraints or bound constraints, but we start with
equality constraints here for clarity. According to our previous
discussion, we can write down explicitly the consensus-ADMM
iterations as

x ← (A0 + mρI)−1

(

b0 + ρ

m∑

i=1

(zi + ui)

)

,

zi ← x − ui +
√

ci − |aH
i (x − ui)|

‖ai‖2 |aH
i (x − ui)|

aia
H
i (x − ui),

ui ← ui + zi − x. (8)
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Define zs =
∑

i zi and us =
∑

i ui , then we can simplify the
algorithm as

x ← (A0 + mρI)−1 (b0 + zs + us) ,

zs ← mx − us + Asν,

us ← us + zs − mx,

where As = [a1a2 ...am ] is a n × m matrix formed by parallel
stacking all the ai vectors as its columns, and ν is a vector of
length m with its elements defined as

νi =
√

ci − |aH
i (x − ui)|

‖ai‖2 |aH
i (x − ui)|

aH
i (x − ui).

If we are given the vector ν at every iteration, then we can
simply work with the summation of the local variables zs and us

without the possible memory explosion. To compute the vector
ν, we notice that it is sufficient to know the value of aH

i (x − ui)
for each νi , and since we keep track of x explicitly, the only
difficulty is to keep track of aH

i ui without the actual value of
ui . At the end of each iteration, by combining the updates of zi

and ui , we have that

ui ←
√

ci − |aH
i (x − ui)|

‖ai‖2 |aH
i (x − ui)|

aia
H
i (x − ui),

therefore

aH
i ui ←

aH
i (x − ui)

|aH
i (x − ui)|

(√
ci − |aH

i (x − ui)|
)
.

Now if we define αi = aH
i ui , it is apparent that we can update

αi iteratively as

αi ←
aH

i x − αi

|aH
i x − αi |

(√
ci − |aH

i x − αi |
)
.

To sum up, a memory-efficient way to implement consensus-
ADMM for problem (7) takes the form

x ← (A0 + mρI)−1 (b0 + ρ(zs + us)) ,

ξ ← AH
s x,

νi ←
ξi − αi

|ξi − αi |

√
ci − |ξi − αi |

‖ai‖2 ,

zs ← mx − us + Asν,

us ← us + zs − mx,

αi ←
ξi − αi

|ξi − αi |
(√

ci − |ξi − αi |
)
. (9)

The explicit variables are x,zs ,us ∈ Cn and ξ,ν,α ∈ Cm , so
the total memory consumption now is O(m + n), compared to
O(mn) in the original form.

Finally, we show that the modified iterates in (9) can handle
some variations in the constraints. Suppose the i-th constraint is
an inequality |aH

i x|2 ≤ ci , then the update of zi in (8) should
be

zi ←

⎧
⎪⎨

⎪⎩

x − ui , if |aH
i (x − ui)|2 ≤ ci

x−ui+
√

ci − |aH
i (x − ui)|

‖ai‖2 |aH
i (x − ui)|

aia
H
i (x − ui), otherwise,

or simply

zi ← x − ui +

[√
ci − |aH

i (x − ui)|
]

−
‖ai‖2 |aH

i (x − ui)|
aia

H
i (x − ui).

This means the corresponding νi and αi updates can be similarly
modified as

νi ←
ξi − αi

|ξi − αi |

[√
ci − |ξi − αi |

]

−
‖ai‖2 ,

αi ←
ξi − αi

|ξi − αi |
[√

ci − |ξi − αi |
]

−
,

and the rest of the updates in (9) stays the same. Conversely, if
the constraint is a ≥ inequality, we only keep the nonnegative
part of

√
ci − |ξi − αi | in the updates of νi and αi . If it is a

bound constraint

ci − ε ≤ |aH
i x|2 ≤ ci + ε,

according to our previous discussion on “rounding” for this kind
of constraint, we can define τi as

τi ←

⎧
⎪⎪⎨

⎪⎪⎩

√
ci − ε − |ξi − αi |, if |ξi − αi |2 < ci − ε,

√
ci + ε − |ξi − αi |, if |ξi − αi |2 > ci + ε,

0, otherwise.

Then the corresponding updates of νi and αi are

νi ←
ξi − αi

|ξi − αi |
τi

‖ai‖2 ,

αi ←
ξi − αi

|ξi − αi |
τi.

As we will see later, this type of memory efficient implemen-
tation can even be extended to cases when the constraints are not
exactly homogeneous rank one quadratics. Furthermore, recall
our previous discussion that a homogeneous rank one quadratic
constraint is simply a linear constraint with an unknown phase
(or sign in the real case), implying that if we have actual linear
constraints in the QCQP problem, a similar idea can also be ap-
plied to avoid explicitly introducing a huge number of auxiliary
variables, while still maintaining the simplicity of the updates.

B. Initialization and Parameter Setting

At this point we need to remind the reader that, although the
consensus ADMM algorithm we derived for non-convex QC-
QPs has an appealing form and cheap per-iteration complexity,
it is after all a heuristic for what is in general an NP-hard prob-
lem. We may then anticipate that appropriate initialization and
judicious parameter tuning will be more important than in stan-
dard applications of ADMM to convex problems. Nevertheless,
we have devised practical rules that seem to work well in most
cases, as discussed below.

The only parameter that needs to be tuned is ρ, which is only
involved in the update of x if we have an explicit objective.
Clearly a smaller ρ steers the x-update towards putting more
emphasis on decreasing the cost function, whereas a bigger ρ
puts more weight on agreeing with the auxiliary variables {zi},
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each guaranteed to satisfy one constraint. We found empirically
that if we start with a feasible x, then we can afford to have a
relatively small value of ρ for faster decrease of the cost, while
preventing x from diverging towards infeasibility.

How can we find a feasible point for initialization? In some
cases it is easy, for example when all the Ai’s are positive semi-
definite, and all the inequality constraints are homogeneous and
one-sided, then a simple scaling suffices to make an arbitrary
point feasible. In general, finding a feasible point is also NP-
hard. In our context, we can attempt to find a feasible point by
using the same consensus ADMM algorithm for the following
feasibility problem, rewritten in the consensus form

find x, {zi}m
i=1 ,

such that zH
i Aizi − 2�

{
bH

i zi

}
≤ ci,

zi = x,∀i = 1, ...,m,

Applying consensus ADMM, we obtain the following updates

x ← 1
m

m∑

i=1

(zi + ui),

zi ← arg min
zi

‖zi − x + ui‖2 ,

subject to zH
i Aizi − 2�

{
bH

i zi

}
≤ ci

ui ← ui + zi − x,

which are completely independent of ρ1. This type of iterates
with random initialization usually converges much faster in find-
ing a feasible point, if one exists. The result can then serve as
initialization for subsequent ADMM updates with the cost func-
tion brought back into consideration. If the first phase fails to
find a feasible point even after multiple trials, then we have,
to some extent, numerical evidence that the problem may be
infeasible, and for practical purposes there is often no point in
proceeding further anyway.

C. Parallel and Distributed Implementation

Consensus ADMM is by its very nature highly parallelizable,
since the update of each auxiliary variable zi is independent of
all others. This nice property is thankfully maintained even in the
squeezed form (9), since all the operations involved are element-
wise, except for two matrix vector multiplications AH

s x and
Asν, which can also be parallelized easily. This means that the
proposed algorithm can easily achieve p-fold acceleration by
using p processors on a shared-memory system.

A more interesting case is when a large amount of data is
stored in distributed storage, and different agents need to coor-
dinate with a master node with small communication overheads.
Suppose the data for the constraints {Ai , bi} are stored across
p agents, all connected to the master node which is in charge of
the cost function. Since we assign each constraint an individual
variable zi and dual ui , suppose the k-th agent is in charge of
mk constraints, a naive implementation would require the j-th
agent to send mj of the zi’s and ui’s to the central node in

1Or one can interpret this as ρ being +∞.

each iteration. This is not necessary, as a matter of fact, since
for the update of x only the sum of all the zi’s and the ui’s is
required. Therefore, to minimize communication overheads, the
j-th agent can simply define xj =

∑
i∈Ωj

(zi + ui), where Ωj

is the index set of the constraints handled by the j-th agent. At
the master node, another summation over all the xj ’s is carried
out for the exact update of x.

V. APPLICATIONS AND NUMERICAL EXPERIMENTS

So far we have introduced the general idea of applying con-
sensus ADMM to QCQPs with efficient per-iteration updates,
and explored memory-efficient and parallel/distributed imple-
mentation issues. In this section, we will look into some impor-
tant QCQP applications, write down explicitly the algorithm,
and compare its numerical performance with some state-of-the-
art algorithms. All simulations were performed in MATLAB on
a Linux desktop with 8 Intel i7 cores and 32 GB of RAM.

A. Feasible Point Pursuit

One of the main drawbacks of the SDR approach for non-
convex QCQPs is that when it is not obvious how to find a
feasible point that satisfies the constraint set, there is a high
chance that SDR, followed by taking the principal component
and/or Gaussian randomization, will not satisfy all the con-
straints either. Recently, a new algorithm called FPP-SCA [11]
was proposed to address this issue by iteratively linearizing
the non-convex part of the problem, while adding nonnegative
slacks to each constraint and penalizing the sum of slacks in the
cost function as well. Simulations in [11] suggest that FPP-SCA
works well with high probability, even when SDR fails.

Consensus ADMM can also be used to find feasible points,
and it is possible to aim it towards finding a feasible point
having smallest �2 norm. Instead of giving each constraint a
slack and trying to minimize the sum of the slacks, consensus
ADMM gives each constraint a local variable and tries to drive
these local variables to consensus. Explicitly, let us consider the
following problem:

minimize
x∈Cn

‖x‖2

subject to xH Aix ≤ ci,∀i = 1, ...,m, (10)

where A1 , ...,Am are in general Hermitian indefinite and full
rank. Following our discussion in Section III-B, the detailed
consensus ADMM algorithm for (10) is given in Algorithm 3,
where we have applied the two stage approach described in
Section IV-B: we attempt to find a feasible point in the first
phase, followed by stably decreasing its norm in the second
phase. We found empirically that simply setting ρ = 1 works
very well for the second phase in this context.

Now let us compare consensus-ADMM with FPP-SCA on
some synthetically generated problems. After fixing the prob-
lem dimension n and m, we first generate xfeas ∼ CN (0, I). A
Hermitian indefinite matrix Ai is generated by first randomly
drawing a n × n matrix from CN (0, 1), and then taking the
average of its Hermitian and itself. The corresponding ci is
set to be xH

feasAixfeas − |vi | where vi is randomly generated
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TABLE I
AVERAGED PERFORMANCE, OVER 100 MONTE-CARLO TRIALS, IN FEASIBLE

POINT PURSUIT

In each column, consensus-ADMM is on the left, and FPP-SCA is on the right. The
average loss is defined as 10 log1 0 (‖x‖2 /Trace {X}), where X is the solution of the
SDR.

from N (0, 1). The constructed constraint set is therefore guar-
anteed to be non-empty, because we know xfeas is feasible, sim-
ilar to the problem setting considered in [11]. For n = 20 and
m ∈ {32, 40, 48}, the averaged results over 100 Monte-Carlo
trials are presented in Table I, and in each trial both ADMM and
FPP-SCA are initialized with the same point, which is randomly
generated from CN (0, I). As we can see, our proposed algo-
rithm is able to produce similar performance with a much shorter
execution time. It is possible to develop specialized solvers for
FPP-SCA to accelerate it, but it is a non-trivial task which may
require a lot of thinking, whereas our algorithm, readily available
in Algorithm 3, only requires elementary operations and simple
iterations, thus it is also easy to code in a lower-level language.

To illustrate the scalability of our algorithm, we tested it on a
larger problem with n = 100 and m = 200, and our algorithm
took about 8 minutes to find a feasible point with smallest norm,
which took about 104 iterations. As shown in Fig. 1, the final
result is not very far away from the generally unattainable lower
bound provided by the SDR, with loss only about 0.45 dB.
If all we need is a feasible point, then it only requires about
200 iterations, showing great efficiency in finishing the most

Fig. 1. Residual of the equality constraints
∑m

i=1 ‖zi − x‖2 (left) and cost
function ‖x‖2 (right) vs. iteration number of Algorithm 3 for one random
problem instance.

important task. In comparison, FPP-SCA requires more than 25
minutes to achieve a similar result.

B. Multicast Beamforming

Transmit beamforming is a wireless communication tech-
nique for transmitting signals to one or more users in a spatially
selective way. A transmit beamforming system comprises a base
station equipped with n antennas, transmitting signals to a set
of m users within a certain service area, each having a single
antenna. Assuming the transmitter is able to acquire channel
state information (CSI) for all the users, multicast beamforming
corresponds to the case when the base station selectively broad-
casts a common information-bearing signal to many users, en-
suring a minimum received signal-to-noise ratio (SNR) at each
user terminal, with the goal that the total transmission power
is much smaller than the traditional method of radiating power
isotropically around its service area. Clearly, this also controls
interference to other nearby systems, e.g., in neighboring cells.

There are various formulations of multicast beamforming,
ranging from single-group to multiple-groups, perfect CSI at the
base station to channel second order statistics only, to name just a
few; cf. [20] and the references therein. Almost all formulations
are within the range of non-convex QCQP (and NP-hard [21]),
therefore it makes sense to test the performance of our proposed
algorithm in this application. For brevity, we only consider the
case when perfect CSI is available at the base station transmitter,
corresponding to a fixed wireless scenario.

1) Single-Group Multicast Beamforming: The most ba-
sic multicast beamforming formulation takes the following
form [21]:

minimize
w∈Cn

‖w‖2 ,

subject to |hH
i w|2 ≥ 1,∀i = 1, ...,m, (11)

where each hi corresponds to the channel coefficients scaled
according to the additive noise power and receive SNR re-
quirement. Given {hi}, we wish to guarantee a certain
SNR to all the receivers, while minimizing the transmit
power ‖w‖2 .

Problem (11) is exactly in the form of (7), except that the
constraints are with inequalities, thus we can direly use the
memory-efficient updates (9). For initialization, we found em-
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Fig. 2. Averaged performance of various methods for (11) over 100 Monte-
Carlo trials, with n = 100 and m from 30 to 200. Performance gap relative to
the generally unattainable SDR lower bound on the left, and computation time
on the right.

pirically that it is better to initialize with a feasible point, so
that we can afford to use a smaller ρ to provide faster conver-
gence, reducing the risk of having unstable sequences. Fortu-
nately it is easy to find a feasible point for (11) – for any random
initialization point, one only needs to scale it up until all the
constraints are satisfied. The complete algorithm for (11), in-
cluding the initialization strategy and our choice of ρ is given in
Algorithm 4.

We test the numerical performance of Algorithm 4 on prob-
lem (11), and we compare it with the standard SDR followed
by Gaussian randomization [21], successive linear approxima-
tion (SLA) [22], and the recently proposed multiplicative update
(MU) [23], which uses an approximate formulation and leads
to highly efficient approximate solutions to (11). CVX [24] is
used to solve the SDR and SLA in our experiment. We fix
n = 100, and vary m ∈ {30, 50, 80, 100, 200}, with each chan-
nel vector hi randomly generated from CN (0, I). The aver-
aged gap to the SDR lower bound, and the averaged compu-
tation time for all algorithms, with averages taken over 100
Monte-Carlo trials, are shown in Fig. 2, with each algorithm
initialized at the same randomly generated points. As we can
see, ADMM is able to give slightly worse performance than
SLA in terms of transmission power, while requiring far smaller
execution time.

TABLE II
AVERAGED PERFORMANCE OF VARIOUS METHODS FOR (11) OVER 100

MONTE-CARLO TRIALS, WITH n = 500 AND m = 100

To test the scalability of our algorithm, we also applied it to a
massive MIMO multicast scenario with n = 500 antennas and
m = 100 users. In this case, CVX is not able to solve the SDR
within reasonable amount of time, so we can only compare the
transmission power ‖w‖2 without knowing how far it is from
the SDR lower bound. It is reported in [23] that MU followed
by one step of SLA gives the best result in both minimizing the
transmission power and keeping computation time low, so we
compare our algorithm with this two-step strategy here, with one
or up to ten SLA iterations (unless ‖w‖2 converges, i.e., per-
iteration improvement is less than 10−5). For fair comparison,
ADMM is initialized with the same point generated by MU.
ADMM is able to compute a beamformer that is better than one
step of SLA and do so in less time; in fact the transmission
power obtained via ADMM is only slightly worse than ten steps
of SLA. Notice that the update rule of ADMM is as simple
as that of MU; both are simple enough to implement in real
communication hardware, whereas SLA requires a full-blown
convex optimization solver – which seems unrealistic for base
station deployment as of this writing.

2) Secondary User Multicast Beamforming: We now con-
sider adding primary user interference constraints to the ba-
sic multicast beamforming formulation in (11). This secondary
multicast underlay scenario has been considered in [25], and the
problem of interest can be formulated as

minimize
w∈Cn

‖w‖2 ,

subject to |hH
i w|2 ≥ τ,∀i = 1, ...,m,

|gH
k w|2 ≤ η,∀k = 1, ..., l, (12)

where in this case we have l additional primary users who should
be protected for excess interference cause by the secondary
multicast transmission, and gk denotes the channel vector from
the multicast transmitter to the k-th (single-antenna) primary
user receiver.

Again, the efficient updates in (8) for rank one quadratic
constraints can be used. As for initialization, there is no obvi-
ous way to find a feasible point in this case, so the two-stage
procedure we discussed before is used, which ignores the cost
function first to find a feasible point, and then uses this feasible
point to initialize the complete updates with a relatively small ρ
to accelerate convergence. The complete algorithm is given in
Algorithm 5.

Similar to the previous simulation settings, we fix n = 100
and l = 10, and vary m ∈ {30, 50, 80, 100}, with channel co-
efficients randomly generated from CN (0, I). For τ = 10 and
η = 1, the averaged performance over 100 Monte-Carlo runs
comparing to the SDR lower bound and FPP-SCA as described
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Fig. 3. Averaged performance of ADMM and FPP-SCA for (12) over 100
Monte-Carlo trials, with performance degradation relative to the generally
unattainable SDR lower bound on the left, and computation time on the right.

in [11] is shown in Fig. 3. SDR randomization almost always
fails to find a feasible point in this case, thus not considered
in this experiment. Both methods are initialized with a random
point from CN (0, I), and manage to obtain a good feasible point
in all problem instances that we tried. We allow ADMM to take
multiple initializations if the first stage of Algorithm 5 does not
find a feasible point after 103 iterations, thus the computation
time of ADMM is more likely to vary (as seen on the right panel
of Fig. 3 for m = 80 and 100), although much smaller than
that of FPP-SCA, which requires a general-purpose convex op-
timization solver, in our case CVX [24]. Note that ADMM also

yields better performance than FPP-SCA in terms of transmit
power ‖w‖2 .

C. Phase Retrieval

Phase retrieval is the problem of estimating a signal from
the magnitude of complex linear measurements, without access
to the corresponding phases. This problem arises in various
applications like crystallography, microscopy, and optical
imaging [26]. Specifically, let s be the desired signal, the
measurements {yi}m

i=1 are collected via yi = |aH
i s|2 , possibly

perturbed by noise. In the sequel we will see that for a number
of noise models this problem can be written as non-convex
QCQP, therefore we can test our algorithm together with
other state-of-the-art phase retrieval methods. Notice that for
some specific measurement systems the problem actually has
hidden convexity, e.g., this is the case for 1-D over-sampled
Fourier measurements [27], but here we focus on a general
measurement setup.

1) Noiseless Case: Assuming all the measurements are ex-
act, we can write the phase retrieval problem as the following
feasibility problem

find x ∈ Cn ,

such that |aH
i x|2 = yi,∀i = 1, ...,m. (13)

This is exactly in the form of (7) except that there is no ex-
plicit cost function, so we can apply the memory efficient
implementation of consensus-ADMM to obtain the following
updates

x ← 1
m

(zs + us) ,

ξ ← AH
s x,

νi ← ξi − αi

|ξi − αi |

√
yi − |ξi − αi |

‖ai‖2 ,

zs ← mx − us + Asν,
us ← us + zs − mx,

αi ← ξi − αi

|ξi − αi |
(
√

yi − |ξi − αi |) ,

(14)

where As = [a1a2 ...am ] is obtained by stacking all the ai

vectors as its columns. Notice that since we do not have an
explicit cost function, it does not matter what value of ρ we
choose – they all work the same for this problem.

2) Bounded Noise: In practice the measurements are seldom
perfect, so we need to incorporate uncertainties in the measure-
ments. A simple assumption is that measurements are quantized
at relatively high resolution, in which case we can model the
measurements as being corrupted by noise that is uniformly dis-
tributed between [−ε, ε]. We can modify the noiseless formula-
tion (13) as follows (similar to the B-FPP formulation proposed
in [28])

find x ∈ Cn ,

such that yi − ε ≤ |aH
i x|2 ≤ yi + ε,∀i = 1, ...,m. (15)
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Again we can apply the memory efficient implementation with
the following updates

x ← 1
m (zs + us) ,

ξ ← AH
s x,

τi ←

⎧
⎪⎪⎨

⎪⎪⎩

√
yi − ε − |ξi − αi |, if |ξi − αi |2 < yi − ε,

√
yi + ε − |ξi − αi |, if |ξi − αi |2 > yi + ε,

0, otherwise,
νi ← ξi −αi

|ξi −αi |
τi

‖ai ‖2 ,

zs ← mx − us + Asν,

us ← us + zs − mx,

αi ← ξi −αi

|ξi −αi |τi.

(16)

3) Gaussian Noise: Another interesting scenario is that
where measurements are corrupted by additive white Gaussian
noise, in which case maximum likelihood estimation can be
cast as the following non-convex QCQP (similar to the LS-FPP
formulation proposed in [28])

minimize
x∈Cn ,w∈Rm

1
2
‖w‖2

subject to |aH
i x|2 = yi + wi,∀i = 1, ...,m. (17)

This kind of constraint is not covered in our previous discus-
sions, so we study this case in a bit more detail here. Let us
first rewrite (17) into a consensus optimization form by intro-
ducing m auxiliary variables z1 , ...,zm replicating x for each
constraint

minimize
x,{zi },w

1
2
‖w‖2

subject to |aH
i zi |2 = yi + wi,

zi = x,∀i = 1, ...,m.

The plain vanilla version of ADMM, treating x as the first block
and {zi} and w as the second block, takes the following form:

x ← 1
m

m∑

i=1

(zi + ui) ,

(zi , wi) ← arg min
|aH

i x|2 =yi +wi

1
2
|wi |2 + ρ‖zi − x + ui‖2 ,

ui ← ui + zi − x.

The main difficulty boils down to an efficient method for the
second update, which can be written explicitly as

minimize
zi ,wi

1
2
|wi |2 + ρ‖zi − x + ui‖2

subject to |aH
i zi |2 = yi + wi. (18)

The same idea of using the Lagrangian can be applied to
solve (18). Constructing the Lagrangian with a single multiplier
μi and setting its derivative with respect to wi and zi equal to

0, we have

wi = μi,

which, interestingly, means that the optimal multiplier is actually
equal to the estimated noise term, and

zi =
(
ρI + μiaia

H
i

)−1
ρ(x − ui)

= x − ui −
μia

H
i (x − ui)

ρ + μi‖ai‖2 ai . (19)

Plugging them back into the equality constraint, we end up with
an equation with respect to μi

ρ2 |aH
i (x − ui)|2

(ρ + ‖ai‖2μi)2 = yi + μi. (20)

Equation (20) is equivalent to a cubic equation, for which we
know the formula for the three roots. Moreover, since we know
the three roots of a real cubic equation are either all real or
one real and two complex conjugates, and that the correct μi

we are looking for is real, we can deliberately select the value
of ρ so that the latter case happens, resolving the ambiguity
in solving (20). Detailed derivation of the formula for solving
(20) is given in Appendix B, where it is also shown that by
setting ρ = 1.1maxi yi‖ai‖2 , each equation (20) is guaranteed
to have a unique real root, thus being the correct multiplier we
are looking for.

Memory efficient implementation is again applicable here,
which eventually leads to the following updates:

x ← 1
m

(zs + us) ,

ξ ← AH
s x,

μi ← steps described in Appendix B,

νi ← − μi

ρ + μi‖ai‖2 (ξi − αi) ,

zs ← mx − us + Asν,

us ← us + zs − mx,

αi ← − μi‖ai‖2

ρ + μi‖ai‖2 (ξi − αi) .

(21)

The only unclear part in (21) is the update of μi . However,
since μi is a solution of (20), which only depends on aH

i (x +
ui) = ξi + αi , it is indeed possible to implement (21) without
explicitly calculating the individual zi’s and ui’s.

4) Adding Priors: In a lot of cases there is useful prior in-
formation available about the signal that can help enhance the
estimation performance. For example, one may know a pri-
ori that the signal to be estimated is real, non-negative, and/or
sparse. All of these type of prior information can easily be in-
corporated into the x-update, which usually boils down to very
simple projections, like zeroing out the imaginary part and/or
zeroing out the negative values.

For sparsity, a popular method is to add an �1 penalty to
the cost, which in our case leads to a soft-thresholding to
1
m (zs + us) for the update of x. However, recall that we are
dealing with NP-hard problems and there is no guarantee that
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Fig. 4. Empirical probability of resolution based on 100 Monte-Carlo trials
for various number of measurements.

our algorithm is always going to reach a global solution. There-
fore, for practical purposes it is sometimes better to just use
the straight-forward cardinality constraint, which is easy to tune
for the desired sparsity level, and has an equally simple hard-
thresholding update.

5) Simulations: Now we show some numerical results on
the performance of the proposed algorithms. There exist many
algorithms designed for phase retrieval under specific scenar-
ios, for example, the classical Gerchberg-Saxton algorithm [29]
and Fienup’s algorithm [30] were designed for Fourier-based
measurements, and have been successfully applied in the phase
retrieval community for decades. More recently, inspired by
the success of compressive sensing, random Gaussian measure-
ments have gained more attention, and the state-of-the-art al-
gorithms include alternating minimization [31] and Wirtinger
flow [32], both of which contain a special initialization step
to help convergence. SDR-based methods have also been de-
veloped, including PhaseLift [33] and PhaseCut [34], however,
they again suffer from effectively squaring the problem dimen-
sion, and how to recover a good approximate solution to the
original problem when they return a higher rank matrix is an
open question.

We consider the columns of the sensing matrix {ai} to be gen-
erated from an i.i.d. complex Gaussian distribution CN (0, I).
In a noiseless scenario, we apply the updates (14) to the problem
of phase retrieval with random Gaussian measurements, and
compare it with two state-of-the-art algorithms designed for this
setting: Wirtinger flow [32] and alternating minimization [31].
Notice that algorithm (14) only requires two matrix-vector
multiplications, thus the per-iteration complexity is the same as
that of Wirtinger flow and alternating minimization.

We randomly generate a desired signal s ∈ Cn where n =
128, then take m phase-less measurements |aH

i s|2 with m rang-
ing from 2n to 5n. Using the same initialization proposed in [31]
and [32], we let consensus-ADMM (Algorithm (14)), Wirtinger
flow, and alternating minimization run for at most 105 iterations,
and the probability of resolution over 100 Monte-Carlo trials is
given in Fig. 4, where we declare that the signal has been re-
solved if (after adjusting for the global phase ambiguity of the
estimate x),

minθ‖ejθx − s‖2 < 10−5 .

TABLE III
PERFORMANCE OF QUANTIZED PHASE RETRIEVAL

TABLE IV
PERFORMANCE OF GAUSSIAN NOISE PHASE RETRIEVAL

It is very satisfying to see that consensus-ADMM has higher
empirical probability of resolution than both Wirtinger flow
and alternating minimization. Due to the similar per-iteration
complexities of the three algorithms, running 105 iterations take
approximately the same time for all of them.

Finally, we briefly show the performance of Algorithm (16)
and (21), under their corresponding noise models, and we
only show the results for n = 128 and m = 5n, with s and
As generated as before. Consider the quantized measurements
y = �|AH

s s|2�, where �·� rounds the argument to the nearest
integer, we can use formulation (15) with ε = 0.5, and apply
Algorithm (16). The number of constraint violations and the
mean squared error (MSE) are given in Table III, each averaged
over 100 Monte Carlo trials, where MSE is defined as

MSE = 10 log10
(
minθ‖ejθx − s‖2).

As we can see, Algorithm (16) is able to give a solution that
is consistent with all the measurements in all cases, whereas
the other two algorithms cannot, even though their MSE
performance is still pretty good. For additive white Gaussian
noise y = |AH

s s|2 + w, we fix the SNR to be 20 dB, and the
averaged performance over 100 Monte Carlo trials is shown in
Table IV. Algorithm (21) performs almost as well as Wirtinger
flow, and both perform better than alternating minimization in
this case. This is as expected, since alternating minimization
aims to solve a different formulation, which is not the maximum
likelihood one for this model. To sum up, consensus-ADMM is
able to achieve similar (if not better) performance to the state-
of-the-art methods for phase retrieval with random Gaussian
measurements.

VI. CONCLUSION

In this paper, we have proposed a new algorithm for general
non-convex QCQPs, which is very different from any existing
methods, general or specialized, for such problems. The main
ideas behind this proposed algorithm are:

• Any QCQP-1 can be optimally solved, irrespective of
(non-)convexity;

• Consensus ADMM can be used to solve general QCQPs,
in such a way that each update requires to solve a number
of QCQP-1’s.
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For the type of QCQP-1’s encountered here, we showed that
they can be solved very efficiently, and made important steps
towards enhancing scalability of the overall algorithm, including

• Memory-efficient implementations for certain types of
“simple” constraints, e.g., rank one quadratics;

• Parallel/distributed implementations with small communi-
cation overhead.

The proposed algorithm and various custom implementations
were fully fleshed out and applied to various important non-
convex QCQP problems, from pure feasibility pursuit to two
real-world engineering tasks: multicast beamforming and phase
retrieval. the proposed algorithms consistently exhibited favor-
able performance compared to the prior state of art, including
classical and more modern methods for phase retrieval, which
has drawn renewed interest in recent years. We believe that the
general applicability of the proposed algorithm has the potential
to bring significant performance improvements to many other
applications of non-convex QCQP as well.

APPENDIX A
PROOF OF THEOREM 1

A KKT point x� of (1), together with the corresponding dual
variable μ� , satisfies that

A0x� − b0 +
m∑

i=1

μi� (Aix� − bi) = 0, (22a)

μ� ≥ 0, (22b)

xH
� Aix� − 2�

{
bH

i x�

}
≤ ci, (22c)

μi�

(
xH

� Aix� − 2�
{
bH

i x�

})
= 0,

∀i = 1, ...,m. (22d)

Let us use a superscript t to denote the point obtained at
iteration t by the update rule (4), then at iteration t + 1, since
we assume that each {zt

i} is well defined, we have that

A0x
t+1 + mρxt+1 = b0 + ρ

m∑

i=1

(zt
i + ut

i), (23a)

∃μt+1
i ≥ 0 s.t. ut+1

i + μt+1
i

(
Aiz

t+1
i − bi

)
= 0,

∀i = 1, ...,m

where in the second equation we used the fact that

ut+1 = ut + zt+1
i − xt+1 .

Now by assuming zt+1
i − xt+1 → 0, we trivially have that

ut+1
i − ut

i → 0.

Therefore, for t sufficiently large, we have

A0x
t+1 + mρxt+1 = b0 + ρ

m∑

i=1

(
xt − μt+1

i

(
Aix

t+1 − bi

))
.

By further assuming

xt+1 − xt → 0,

this becomes exactly (22a) by setting μ� = ρμt+1 . The rest of
the KKT conditions are guaranteed by the feasibility of zt+1

i for
the i-th constraint, and our assumption that zt+1 − xt+1 → 0.

APPENDIX B
SOLVING (20)

We derive the solution for equation (20), which can be equiv-
alently written as the following cubic equation after we drop the
subscripts,

‖a‖4μ3 + (2ρ‖a‖2 + y‖a‖4)μ2 + (2yρ‖a‖2 + ρ2)μ

+ yρ2 − ρ2 |aH (x − u)|2 = 0. (24)

For a general cubic equation

γ3μ
3 + γ2μ

2 + γ1μ + γ0 = 0,

the three roots can be found with the following formulas (assum-
ing all of these quantities are non-zero, which can be ensured
by our specific choice of ρ presented in the sequel)

Δ0 = γ2
2 − 3γ3γ1 ,

Δ1 = 2γ3
2 − 9γ3γ2γ1 + 27γ2

3 γ0 ,

C =
3

√
Δ1 +

√
Δ2

1 − 4Δ3
0

2
,

μ̂k = − 1
3γ3

(
γ2 + ιkC +

Δ0

ιkC

)
,

where ι1 = 1, ι2 = −1+j
√

3
2 , ι3 = −1−j

√
3

2 are the three cubic
roots of 1. Furthermore, if all the coefficients are real, then there
is at least one real root, and the other two are either complex
conjugates or both real, depending on whether Δ2

1 − 4Δ3
0 is

negative or positive.
Now, let us plug in the coefficients of (24) into the formula,

to get

Δ0 = (ρ‖a‖2 − y‖a‖4)2 ,

Δ1 = −2(ρ‖a‖2− y‖a‖4)3−27ρ2‖a‖8 |aH (x + u)|2 ,

Δ2
1 − 4Δ3

0 =
(
27ρ2‖a‖8 |aH (x + u)|2

)2

+
(
27ρ2‖a‖8 |aH (x + u)|2

)

×
(
4(ρ‖a‖2 − y‖a‖4)3

)
.

Before we proceed, recall that the coefficients of (20) are all
real, and the root that we are looking for, which is the optimal
Lagrange multiplier, is also real. Therefore, to make our life
easier, we can choose the value of ρ to ensure that Δ2

1 − 4Δ3
0 >

0, for example by setting ρ > y‖a‖2 . Then we can proceed to
the rest of the steps and choose the solution to be μ̂1 , the only real
root of (20). Putting the subscripts back and considering there
are m of them, this means we should set ρ > maxi yi‖ai‖2 .
In practice smaller ρ usually leads to faster convergence, we
therefore recommend setting

ρ = 1.1max
i

yi‖ai‖2 .
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