
5052 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

A Flexible and Efficient Algorithmic Framework for
Constrained Matrix and Tensor Factorization

Kejun Huang, Student Member, IEEE, Nicholas D. Sidiropoulos, Fellow, IEEE,
and Athanasios P. Liavas, Member, IEEE

Abstract—We propose a general algorithmic framework for
constrained matrix and tensor factorization, which is widely used
in signal processing and machine learning. The new framework is a
hybrid between alternating optimization (AO) and the alternating
direction method of multipliers (ADMM): each matrix factor
is updated in turn, using ADMM, hence the name AO-ADMM.
This combination can naturally accommodate a great variety of
constraints on the factor matrices, and almost all possible loss mea-
sures for the fitting. Computation caching and warm start strate-
gies are used to ensure that each update is evaluated efficiently,
while the outer AO framework exploits recent developments in
block coordinate descent (BCD)-type methods which help ensure
that every limit point is a stationary point, as well as faster and
more robust convergence in practice. Three special cases are stud-
ied in detail: non-negative matrix/tensor factorization, constrained
matrix/tensor completion, and dictionary learning. Extensive sim-
ulations and experiments with real data are used to showcase the
effectiveness and broad applicability of the proposed framework.

Index Terms—Constrained matrix/tensor factorization,
non-negative matrix/tensor factorization, canonical polyadic
decomposition, PARAFAC, matrix/tensor completion, dictionary
learning, alternating optimization, alternating direction method
of multipliers.

I. INTRODUCTION

CONSTRAINED matrix and tensor factorization tech-
niques are widely used for latent parameter estimation

and blind source separation in signal processing, dimensional-
ity reduction and clustering in machine learning, and numerous
other applications in diverse disciplines, such as chemistry and
psychology. Least-squares low-rank factorization of matrices
and tensors without additional constraints is relatively well-
studied, as in the matrix case the basis of any solution is simply
the principal components of the singular value decomposition
(SVD) [2], also known as principal component analysis (PCA),
and in the tensor case alternating least squares (ALS) and other

Manuscript received October 22, 2015; revised April 19, 2016; accepted May
20, 2016. Date of publication June 07, 2016; date of current version August
06, 2016. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Wei Liu. Part of this work was presented
at EUSIPCO 2015 [1]. Their work was supported in part by NSF IIS-1247632,
IIS-1447788, and a UM Informatics Institute fellowship.

K. Huang and N. D. Sidiropoulos are with the Department of Electrical
and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
USA (e-mail: huang663@umn.edu; nikos@umn.edu).

A. P. Liavas is with the Department of Electronic and Computer Engineering,
Technical University of Crete, Chania 73100, Greece (e-mail: liavas@telecom.
tuc.gr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2016.2576427

algorithms usually yield satisfactory results [3]. ALS is also
used for matrix factorization, especially when the size is so
large that performing the exact PCA is too expensive.

Whereas unconstrained matrix and tensor factorization algo-
rithms are relatively mature, their constrained counterparts leave
much to be desired as of this writing, and a unified framework
that can easily and naturally incorporate multiple constraints
on the latent factors is sorely missing. Existing algorithms are
usually only able to handle one or at most few specialized con-
straints, and/or the algorithm needs to be redesigned carefully
if new constraints are added. Commonly adopted constraints
imposed on the latent factors include non-negativity [4], spar-
sity (usually via sparsity-inducing �1 regularization [5]), and
simplex constraints [6], to name just a few.

On top of the need to incorporate constraints on the latent
factors, many established and emerging signal processing ap-
plications entail cost (loss) functions that differ from classical
least-squares. Important examples include matrix completion
[7] where missing values are ignored by the loss function, and
robust PCA [8] where the �1 loss is used. In the matrix case with-
out constraints on the latent factors, these can be formulated as
convex problems via nuclear norm regularization and solved
in polynomial-time [9]. With explicit constraints imposed on
the latent factors, and/or for tensor data, however, non-convex
(multi-linear) formulations are unavoidable, and a unified algo-
rithmic framework that can handle a variety of constraints and
loss functions would be very welcome.

In this paper, we propose a general algorithmic frame-
work that seamlessly and relatively effortlessly incorporates
many common types of constraints and loss functions, building
upon and bridging together the alternating optimization (AO)
framework and the alternating direction method of multipliers
(ADMM), hence the name AO-ADMM.

While combining these frameworks may seem conceptually
straightforward at first sight, what is significant is that AO-
ADMM outperforms all prior algorithms for constrained ma-
trix and tensor factorization under nonparametric constraints
on the latent factors. One example is non-negative matrix fac-
torization, where the prior art includes decades of research.
This is the biggest but not the only advantage of AO-ADMM.
Carefully developing various aspects of this combination,
we show that

• AO-ADMM converges to a stationary point of the original
NP-hard problem;

• Using computation caching, warm-start, and good param-
eter settings, its per-iteration complexity is similar to that
of ALS;

1053-587X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

HUANG et al.: FLEXIBLE AND EFFICIENT ALGORITHMIC FRAMEWORK FOR CONSTRAINED MATRIX AND TENSOR FACTORIZATION 5053

• AO-ADMM can incorporate a wide-range of constraints
and regularization penalties on the latent factors at essen-
tially the same complexity;

• It can also accommodate a wide variety of cost/loss func-
tions, with only moderate increase in complexity relative
to the classical least-squares loss; and

• The core computations are exactly the same as ALS
for unconstrained factorization, with some additional
element-wise operations to handle constraints, making it
easy to incorporate smart implementations of ALS, in-
cluding sparse, parallel, and high-performance computing
enhancements.

A. Notation

We denote the (approximate) factorization of a matrix Y ≈
WHT , where Y is m × n, W is m × k, and H is n × k, with
k ≤ m,n, and in most cases much smaller. Note that adding
constraints on W and H may turn the solution from easy to
find (via SVD) but non-unique, to NP-hard to find but essentially
unique. It has been shown that simple constraints like non-
negativity and sparsity can make the factors identifiable, but at
the same time, computing the optimal solution becomes NP-
hard—see [10] and references therein.

An N -way array of dimension n1 × n2 × · · · × nN , with
N ≥ 3, is denoted with an underscore, e.g., Y . In what follows,
we focus on the so-called parallel factor analysis (PARAFAC)
model, also known as canonical decomposition (CANDE-
COMP) or canonical polyadic decomposition (CPD), which is
essentially unique under mild conditions [11], but constraints
certainly help enhance estimation performance, and even iden-
tifiability. The factorization is denoted as Y ≈ [Hd]

N
d=1 , which

is a concise way of representing the model

Y (i1 , . . . , iN) ≈
k∑

j=1

N∏

d=1

Hd (id , j) , ∀i1 , . . . , iN .

Each matrix Hd is of size nd × k, corresponding to the factor
of the d-th mode.

B. Multi-Linear Algebra Basics

With the increasing interest in tensor data processing, there
exist many tutorials on this topic, for example, [12][13][14].
Here we briefly review some basic multi-linear operations that
will be useful for the purposes of this paper, and refer the readers
to those tutorials and the references therein for a more compre-
hensive introduction.

The mode-d matricization, also known as mode-d ma-
trix unfolding, of Y , denoted as Y (d) , is a matrix of size∏N

j=1,j �=d nj × nd . Each row of Y (d) is a vector obtained by
fixing all the indices of Y except the d-th one, and the matrix is
formed by stacking these row vectors by traversing the rest of
the indices from N back to 1. As an example, for N = 3, the

three matricizations are

Y(1) =

⎡

⎢⎢⎢⎣

Y (:, 1, :)T

...

Y (:, n2 , :)
T

⎤

⎥⎥⎥⎦, Y(2) =

⎡

⎢⎢⎢⎣

Y (1, :, :)T

...

Y (n1 , :, :)
T

⎤

⎥⎥⎥⎦Y(3) =

⎡

⎢⎢⎢⎣

Y (1, :, :)

...

Y (n1 , :, :)

⎤

⎥⎥⎥⎦ ,

where Y (i, :, :) , Y (:, i, :) , Y (:, :, i) are the i-th matrix slabs
of the three-way tensor Y , of size n2 × n3 , n1 × n3 , n1 × n2 ,
respectively. Notice that, though essentially in the same spirit,
this definition of mode-d matricization may be different from
other expressions that have appeared in the literature, but we
adopt this one for ease of our use.

The Khatri-Rao product of matrices A and B having the
same number of columns, denoted as A � B, is defined as the
column-wise Kronecker product of A and B. More explicitly,
if A is of size n × k, then

A � B =
[
A (:, 1) ⊗ B (:, 1) · · · A (:, k) ⊗ B (:, k)

]

=

⎡

⎢⎢⎣

A (1, 1) B (:, 1) · · · A (1, k) B (:, k)
... · · ·

...

A (n, 1) B (:, 1) · · · A (n, k) B (:, k)

⎤

⎥⎥⎦ .

The Khatri-Rao product is associative (although not commu-
tative). We therefore generalize the operator � to accept more
than two arguments in the following way

N
�

j=1
j �=d

H i = H1 � · · · � Hd−1 � Hd+1 � · · · � HN .

With the help of this notation, if Y admits an exact PARAFAC
model Y = [Hd]

N
d=1 , then it can be expressed in matricized

form as

Y (d) =

⎛

⎝ N
�

j=1
j �=d

Hj

⎞

⎠HT
d .

Lastly, a nice property of the Khatri-Rao product is that

(A � B)T (A � B) = AT A � BT B,

where � denotes the element-wise (Hadamard) matrix product.
More generally, it holds that

⎛

⎝ N
�

j=1
j �=d

Hj

⎞

⎠
T ⎛

⎝ N
�

j=1
j �=d

Hj

⎞

⎠ =
N
�

j=1
j �=d

HT
j Hj .

II. ALTERNATING OPTIMIZATION FRAMEWORK:
PRELIMINARIES

We start by formulating the factorization problem as an opti-
mization problem in the most general form

minimize
H1 ,...,HN

l
(
Y − [Hd]

N
d=1

)
+

N∑

d=1

rd (Hd) , (1)

with a slight abuse of notation by assuming N can also take
the value of 2. In (1), l (·) can be any loss measure, most likely
separable down to the entries of the argument, and rd (Hd) is

5054 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

the generalized regularization on Hd , which may take the value
of +∞ so that any hard constraints can also be incorporated. For
example, if we require that the elements of Hd are nonnegative,
denoted as Hd ≥ 0, then

rd (Hd) =

{
0, Hd ≥ 0,

+∞, otherwise.

Because of the multi-linear term [Hd]
N
d=1 , the regularized fitting

problem is non-convex, and in many cases NP-hard [15], [16]. A
common way to handle this is to use the alternating optimization
(AO) technique, i.e., update each factor Hd in a cyclic fashion.
The popular ALS algorithm is a special case of this when l (·)
is the least-squares loss, and there is no regularization. In this
section, we will first revisit the ALS algorithm, with the focus
on the per-iteration complexity analysis. Then, we will briefly
discuss the convergence of the AO framework, especially some
recent advances on the convergence of the traditional block
coordinate descent (BCD) algorithm.

A. Alternating Least-Squares Revisited

Consider the unconstrained matrix factorization problem

minimize
W ,H

1
2
‖Y − WHT ‖2

F , (2)

and momentarily ignore the fact that the optimal solution of
(2) is given by the SVD. The problem (2) is non-convex in W
and H jointly, but is convex if we fix one and treat only the
other as variable. Supposing W is fixed, the sub-problem for
H becomes the classical linear least squares and, if W has full
column rank, the unique solution is given by

HT =
(
W T W

)−1
W T Y . (3)

In practice, the matrix inverse
(
W T W

)−1
is almost never ex-

plicitly calculated. Instead, the Cholesky decomposition of the
Gram matrix W T W is computed, and for each column of
W T Y , a forward and a backward substitution are performed to
get the corresponding column of HT . Since W is m × k and
Y is m × n, forming W T W and W T Y takes O

(
mk2

)
and

O (mnk) flops, respectively, computing the Cholesky decom-
position requires O

(
k3

)
flops, and finally the back substitution

step takes O
(
nk2

)
flops, similar to a matrix multiplication. If

m,n > k, then the overall complexity is O (mnk).
An important implication is the following. Clearly, if n =

1, the cost of solving a least-squares problem is O
(
mk2

)
.

For n > 1, however, the complexity becomes O (mnk) instead
of O

(
mnk2

)
, because we can amortize a factor of k. The rea-

son is that, although it seems we are now trying to solve n
least-squares problems, they all share the same matrix W , thus
the Cholesky decomposition of W T W can be reused through-
out. This is a very nice property of unconstrained least squares
problems, which can be exploited to improve the computational
efficiency of the ALS algorithm.

One may recall that another well-adopted method for least-
squares is to compute the QR decomposition of W as W =
QR, so that HT = R−1QT Y . This can be shown to give the

same computational complexity as the Cholesky version, and
is actually more stable numerically. However, if W has some
special structure, it is easier to exploit this structure if we use
Cholesky decomposition. Therefore, in this paper we only con-
sider solving least-squares problems using the Cholesky decom-
position.

One important structure that we encounter is in the tensor
case. For the ALS algorithm for PARAFAC, the update of Hd

is the solution of the following least squares problem

minimize
Hd

1
2

∥∥∥∥∥∥
Y (d) −

⎛

⎝ N
�

j=1
j �=d

Hj

⎞

⎠HT
d

∥∥∥∥∥∥

2

F

,

and the solution is given by

HT
d =

⎛

⎝ N
�

j=1
j �=d

HT
j Hj

⎞

⎠
−1⎛

⎝ N
�

j=1
j �=d

Hj

⎞

⎠
T

Y (d) .

As we can see, the Gram matrix is computed efficiently by ex-
ploiting the structure, and its Cholesky decomposition can be
reused. The most expensive operation is actually the computa-
tion of (�j �=dHj)

T Y (d) , but very efficient algorithms for this
(that work without explicitly forming the Khatri-Rao product
and the d-mode matricization) are available [17]–[22]. If we
were to adopt the QR decomposition approach, however, none
of these methods could be applied.

In summary, least squares is a very mature technique with
many favorable properties that render the ALS algorithm very
efficient. On the other hand, most of the algorithms that deal
with problems with constraints on the factors or different loss
measures do not inherit these good properties. The goal of this
paper is to propose an AO-based algorithmic framework, which
can easily handle many types of constraints on the latent factors
and many loss functions, with per-iteration complexity essen-
tially the same as the complexity of an ALS step.

B. The Convergence of AO

Consider the following (usually non-convex) optimization
problem with variables separated into N blocks, each with its
own constraint set

minimize
x1 ,...,xN

f (x1 , . . . ,xN)

subject to xd ∈ Xd , ∀d = 1, . . . , N. (4)

A classical AO method called block coordinate descent (BCD)
cyclically updates xd via solving

minimize
ξ

f
(
xr+1

1 , . . . ,xr+1
d−1 , ξ,xr

d+1 , . . . ,x
r
N

)

subject to ξ ∈ Xd , (5)

at the (r + 1)-th iteration [23, Sec. 2.7]. Obviously, this will de-
crease the objective function monotonically. If some additional
assumptions are satisfied, then we can have stronger conver-
gence claims [23, Proposition 2.7.1]. Simply put, if the sub-
problem (5) is convex and has a unique solution, then every
limit point is a stationary point; furthermore, if X1 , . . . ,XN are

HUANG et al.: FLEXIBLE AND EFFICIENT ALGORITHMIC FRAMEWORK FOR CONSTRAINED MATRIX AND TENSOR FACTORIZATION 5055

all compact, which implies that the sequence generated by BCD
is bounded, then BCD is guaranteed to converge to a stationary
point, even if (4) is non-convex [24].

In many cases (5) is convex, but the uniqueness of the solution
is very hard to guarantee. A special case that does not require
uniqueness, first noticed by Grippo and Sciandrone [25], is when
N = 2. On hindsight, this can be explained by the fact that for
N = 2, BCD coincides with the so-called maximum block im-
provement (MBI) algorithm [26], which converges under very
mild conditions. However, instead of updating the blocks cycli-
cally, MBI only updates the one block that decreases the ob-
jective the most, thus the per-iteration complexity is (N − 1)
times higher than BCD; therefore MBI is not commonly used
in practice when N is large.

Another way to ensure convergence, proposed by Razaviyayn
et al. [27], is as follows. Instead of updating xd as the solution
of (5), the update is obtained by solving a majorized version
of (5), called the block successive upper-bound minimization
(BSUM). The convergence of BSUM is essentially the same,
but now we can deliberately design the majorizing function to
ensure that the solution is unique. One simple way to do this is
to put a proximal regularization term

minimize
ξ

f
(
xr+1

1 , . . . , xr+1
d−1 , ξ, xr

d+1 , . . . , x
r
N

)
+

μr
d

2
‖ξ − xr

d‖
2

subject to ξ ∈ Xd , (6)

for some μr
d > 0 at every iteration for each block, where xr

d is
the update of xd from the previous iteration. If (5) is convex,
then (6) is strongly convex, which gives a unique minimizer.
Thus, the algorithm is guaranteed to converge to a stationary
point, as long as the sequence generated by the algorithm is
bounded. In the context of ALS, this type of update strategy is
independently shown in [28] to converge to a stationary point.
Similar results are also proved in [29], where the authors used
a different majorization for constrained matrix/tensor factoriza-
tion; we shall compare with them in numerical experiments.

III. SOLVING THE SUB-PROBLEMS USING ADMM

The AO algorithm framework is usually adopted when each
of the sub-problems can be solved efficiently. This is indeed
the case for the ALS algorithm, since each update is in closed-
form. For the general factorization problem (1), we denote the
sub-problem as

minimize
H

l
(
Y − WHT

)
+ r (H) . (7)

For the matrix case, this is simply the sub-problem for the right
factor, and one can easily figure out the update of the left factor
by transposing everything; for the tensor case, this becomes the
update of Hd by setting Y = Y (d) and W = �j �=d Hj . This
is for ease of notation, as these matricizations and Khatri-Rao
products need not be actually computed explicitly. Also notice
that this is the sub-problem for the BCD algorithm, and for better
convergence we may want to add a proximal regularization term
to (7), which is very easy to handle, thus omitted here.

We propose to use the alternating direction method of multi-
pliers (ADMM) to solve (7). ADMM, if used in the right way,

inherits a lot of the good properties that appeared in each update
of the ALS method. Furthermore, the AO framework naturally
provides good initializations for ADMM, which further accel-
erates its convergence for the subproblem. As a preview, the
implicit message here is that closed-form solution is not neces-
sary for computational efficiency, as we will explain later. After
a brief introduction of ADMM, we first apply it to (7) which
has least-squares loss, and then generalize it to universal loss
measures.

A. Alternating Direction Method of Multipliers

ADMM solves convex optimization problems that can be
written in the form

minimize
x,z

f (x) + g (z)

subject to Ax + Bz = c,

by iterating the following updates

x ← arg min
x

f (x) + (ρ/2) ‖Ax + Bz − c + u‖2
2 ,

z ← arg min
z

g (z) + (ρ/2) ‖Ax + Bz − c + u‖2
2 ,

u ← u + (Ax + Bz − c) ,

where u is a scaled version of the dual variables corresponding
to the equality constraint Ax + Bz = c, and ρ is specified by
the user.

A comprehensive review of the ADMM algorithm can be
found in [30] and the references therein. The beauty of ADMM
is that it converges under mild conditions (in the convex case),
while artful splitting of the variables into the two blocks x
and z can yield very efficient updates, and/or distributed im-
plementation. Furthermore, if f is strongly convex and Lips-
chitz continuous, then linear convergence of ADMM can be
achieved; cf. guidelines on the optimal step-size ρ in [31,
Sec. 9.3], and [32] for an analysis of ADMM applied to quadratic
programming.

B. Least-Squares Loss

We start by considering l (·) in (7) to be the least-squares
loss (1/2) ‖ · ‖2

F . The problem is reformulated by introducing a
k × n auxiliary variable H̃

minimize
H,H̃

1
2

∥∥∥Y − WH̃
∥∥∥

2

F
+ r (H)

subject to H = H̃
T
. (8)

It is easy to adopt the ADMM algorithm and derive the following
iterates:

H̃ ←
(
W T W + ρI

)−1
(
W T Y + ρ(H + U)T

)
,

H ← arg min
H

r (H) +
ρ

2

∥∥∥H − H̃
T

+ U
∥∥∥

2

F
,

U ← U + H − H̃
T
. (9)

5056 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

One important observation is that, throughout the iterations the
same matrix W T Y and matrix inverse

(
W T W + ρI

)−1
are

used. Therefore, to save computations, we can cache W T Y and
the Cholesky decomposition of W T W + ρI = LLT . Then the
update of H̃ is dominated by one forward substitution and one
backward substitution, resulting in a complexity of O

(
k2n

)
.

The update of H is the so-called proximity operator of the

function (1/ρ) r (·) around point (H̃
T − U), and in particular

if r (·) is the indicator function of a convex set, then the update of
H becomes a projection operator, a special case of the proximity
operator. For a lot of regularizations/constraints, especially those
that are often used in matrix/tensor factorization problems, the
update of H boils down to element-wise updates, i.e., costing
O (kn) flops. Here we list some of the most commonly used
constraints/regularizations in the matrix factorization problem,
and refer the reader to [33, Sec. 6]. For simplicity of notation,

let us define H̄ = H̃
T − U .

• Non-negativity. In this case r (·) is the indicator function
of R+ , and the update is simply zeroing out the negative
values of H̄ . In fact, any element-wise bound constraints
can be handled similarly, since element-wise projection is
trivial.

• Lasso regularization. For r (H) = l‖H‖1 , the sparsity
inducing regularization, the update is the well-known soft-
thresholding operator: hij =

[
1 − (l/ρ) |h̄ij |−1

]
+ h̄ij .

The element-wise thresholding can also be converted to
block-wise thresholding if one wants to impose structured
sparsity, leading to the group Lasso regularization.

• Simplex constraint. In some probabilistic model analysis
we need to constrain the columns or rows to be element-
wise non-negative and sum up to one. As described in [34],
this projection can be done with a randomized algorithm
with linear-time complexity on average.

• Smoothness regularization. We can encourage the
columns of H to be smooth by adding the regularization
r (H) = (l/2) ‖TH‖2

F where T is obtained from an
n × n tri-diagonal matrix with 2 on the diagonal and
−1 on the super- and sub-diagonal by removing its first
and last row. Its proximity operator is given by H =
ρ
(
lT T T + ρI

)−1
H̄ . Although it involves a large matrix

inversion, notice that it has a fixed bandwidth of 2, thus
can be efficiently calculated in O (kn) time [35, Sec. 4.3].

• It is also possible to define projections onto non-convex
constraints, for example cardinality constraints can be han-
dled by hard thresholding (as opposed to soft thresholding
for lasso regularization). However, ADMM is not guar-
anteed to converge to the conditionally optimal solution
in this case, therefore non-convex constraints are not fur-
ther discussed in this paper. We only mention in passing
that, in the cursory experiments that we conducted for this
case, AO-ADMM performance is not bad compared to the
alternatives.

We found empirically that by setting ρ = ‖W ‖2
F /k, the

ADMM iterates for the regularized least-squares problem (8)
converge very fast. This choice of ρ can be seen as an approx-
imation to the optimal ρ given in [31], but much cheaper to

obtain. With a good initialization, naturally provided by the AO
framework, the update of H usually does not take more than 5
or 10 ADMM iterations, and very soon reduces down to only
1 iteration. The proposed algorithm for the sub-problem (8) is
summarized in Algorithm 1. As we can see, the pre-calculation
step takes O

(
k2m + k3

)
flops to form the Cholesky decom-

position, and O (mnk) flops to form F . Notice that these are
actually the only computations in Algorithm 1 that involve W
and Y , which implies that in the tensor case, all the tricks to
compute W T W and W T Y can be applied here, and then we
do not need to worry about them anymore. The computational
load of each ADMM iteration is dominated by the H̃-update,
with complexity O

(
k2n

)
.

It is interesting to compare Algorithm 1 with an update of
the ALS algorithm, whose complexity is essentially the same as
the pre-calculation step plus one iteration. For a small number
of ADMM iterations, the complexity of Algorithm 1 is of the
same order as an ALS step.

For declaring termination, we adopted the general termi-
nation criterion described in [30, Sec. 3.3.1]. After some
calibration, we define the relative primal residual

r =
∥∥∥H − H̃

T
∥∥∥

2

F
/‖H‖2

F , (10)

and the relative dual residual

s = ‖H − H0‖2
F /‖U‖2

F , (11)

where H0 is H from the previous ADMM iteration, and termi-
nate Algorithm 1if both of them are smaller than some threshold.

Furthermore, if the BSUM framework is adopted, we need to
solve a proximal regularized version of (8), and that term can
easily be absorbed into the update of H̃ .

C. General Loss

Now let us derive an ADMM algorithm to solve the more
general problem (7). For this case, we reformulate the problem

HUANG et al.: FLEXIBLE AND EFFICIENT ALGORITHMIC FRAMEWORK FOR CONSTRAINED MATRIX AND TENSOR FACTORIZATION 5057

by introducing two auxiliary variables H̃ and Ỹ

minimize
H,H̃,Ỹ

l
(
Y − Ỹ

)
+ r (H)

subject to H = H̃
T
, Ỹ = WH̃. (12)

To apply ADMM, let H̃ be the first block, and (Ỹ ,H) be the
second block, and notice that in the second block update Ỹ
and H can in fact be updated independently. This yields the
following iterates:

H̃ ←
(
W T W + ρI

)−1
(
W T

(
Ỹ + V

)
+ ρ(H + U)T

)

⎧
⎪⎨

⎪⎩

H← arg min
H

r (H) + ρ
2

∥∥∥H − H̃
T

+ U
∥∥∥

2

F
,

Ỹ ← arg min
Ỹ

l
(
Y − Ỹ

)
+ 1

2

∥∥∥Ỹ − WH̃ + V
∥∥∥

2

F
,

{
U ← U + H − H̃

T
,

V ← V + Ỹ − WH̃.
(13)

where U is the scaled dual variable corresponding to the con-

straint H = H̃
T

, and V is the scaled dual variable correspond-
ing to the equality constraint Ỹ = WH̃ . Notice that we set the
penalty parameter ρ corresponding to the second constraint to be
1, since it works very well in practice, and also leads to very intu-
itive results for some loss functions. This can also be interpreted
as first pre-conditioning this constraint to be 1√

ρ Ỹ = 1√
ρ WH̃ ,

and then a common ρ is used. Again we set ρ = ‖W ‖2
F /k.

As we can see, the update of H̃ is simply a linear least
squares problem, and all the previous discussion about caching
the Cholesky decomposition applies. It is also easy to absorb an
additional proximal regularization term into the update of H̃ ,
if the BSUM framework is adopted. The update of Ỹ is (simi-
lar to the update of H) a proximity operator, and since almost
all loss functions we use are element-wise, the update of Ỹ is
also very easy. The updates for some of the most commonly
used non-least-squares loss functions are listed below. For sim-
plicity, we define Y = WH̃ − V , similar to the previous
sub-section.

• Missing values. In the case that only a subset of the en-
tries in Y are available, a common way to handle this
is to simply fit the low-rank model only to the available
entries. Let A denote the index set of the available val-
ues in Y , then the loss function becomes l(Y − Ỹ) =
1
2

∑
(i,j)∈A (yij − ỹij)

2 . Thus, the update of Ỹ in (13) be-
comes

ỹij =

{
1
2

(
yij + yij

)
, (i, j) ∈ A,

yij , otherwise.

• Robust fitting. In the case that data entries are not uni-
formly corrupted by noise but only sparingly corrupted
by outliers, or when the noise is dense but heavy-tailed
(e.g., Laplacian-distributed), we can use the �1 norm as
the loss function for robust (resp. maximum-likelihood)
fitting, i.e., l(Y − Ỹ) = ‖Y − Ỹ ‖1 . This is similar to the

�1 regularization, and the element-wise update is

ỹij =

⎧
⎪⎨

⎪⎩

yij , |yij − yij | ≤ 1,

yij − 1, yij − yij > 1,

yij + 1, yij − yij < −1.

• Huber fitting. Another way to deal with possible outliers
in Y is to use the Huber function to measure the loss
l(Y − Ỹ) =

∑
i,j φl(yij − ỹij) where

φl (z) =

{
1
2 z2 , |z| ≤ l,

l|z| − 1
2 l2 , otherwise.

The element-wise closed-form update is

ỹij =

⎧
⎪⎨

⎪⎩

1
2

(
yij + yij

)
, |yij − yij | ≤ 2l,

yij − l, yij − yij > 2l,

yij + l, yij − yij < −2l.

• Kullback-Leibler divergence. A commonly adopted loss
function for non-negative integer data is the Kullback-
Leibler (K-L) divergence defined as

D
(
Y ||Ỹ

)
=

∑

i,j

(
yij log

yij

ỹij
− yij + ỹij

)

for which the proximity operator is

Ỹ =
1
2

((
Y − 1

)
+

√(
Y − 1

)2
+ 4Y

)
,

where all the operations are taken element-wise [36]. Fur-
thermore, the K-L divergence is a special case of certain
families of divergence functions, such as α-divergence and
β-divergence [37], whose corresponding updates are also
very easy to derive (boil down to the proximity operator of
a scalar function).

An interesting observation is that if the loss function is in fact
the least-squares loss, the matrix (Ỹ + V) that H̃ is trying to
fit in (13) is the data matrix Y per se. Therefore, the update rule
(13) boils down to the update rule (9) in the least-squares loss
case, with some redundant updates of Ỹ and V . The detailed
ADMM algorithm for (12) is summarized in Algorithm 2. We
use the same termination criterion as in Algorithm 1.

Everything seems to be in place to seamlessly move from the
least-squares loss to arbitrary loss. Nevertheless, closer scrutiny
reveals that some compromises must be made to take this leap.
One relatively minor downside is that with a general loss func-
tion we may lose the linear convergence rate of ADMM—albeit
with the good initialization naturally provided by the AO frame-
work and our particular choice of ρ, it still converges very fast in
practice. The biggest drawback is that, by introducing the aux-
iliary variable Ỹ and its dual variable V , the big matrix product
W T (Ỹ + V) must be re-computed in each ADMM iteration,
whereas in the previous case one only needs to compute W T Y
once. This is the price we must pay; but it can be moderated by
controlling the maximum number of ADMM iterations.

Scalability considerations: As big data analytics become in-
creasingly common, it is important to keep scalability issues in
mind as we develop new analysis methodologies and algorithms.

5058 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

Big data Y is usually stored as a sparse array, i.e., a list of (in-
dex,value) pairs, with the unlisted entries regarded as zeros
or missing. With the introduction of Ỹ and V , both of size(Y),
one hopes to be able to avoid dense operations. Fortunately, for
some commonly used loss functions, this is possible. Notice that
by defining Y = WH̃ − V , the V -update essentially becomes

V ← Ỹ − Y ,

which means a significant portion of entries in V are
constants—0 if the entries are regarded as missing, ±1 or ±l in
the robust fitting or Huber fitting case if the entries are regarded
as “corrupted”—thus they can be efficiently stored as a sparse
array. As for Ỹ , one can simply generate it “on-the-fly” us-
ing the closed-form we provided earlier (notice that Y has the
memory-efficient “low-rank plus sparse” structure). The only
occasion that Ỹ is needed is when computing W T Ỹ .

IV. SUMMARY OF THE PROPOSED ALGORITHM

We propose to use Algorithm 1or 2 as the core sub-routine for
alternating optimization. The proposed “universal” multi-linear
factorization algorithm is summarized as Algorithm 3. A few
remarks on implementing Algorithm 3 are in order.

Since each factor Hd is updated in a cyclic fashion, one
expects that after a certain number of cycles Hd (and its dual
variable U d) obtained in the previous iteration will not be very
far away from the update for the current iteration. In this sense,
the outer AO framework naturally provides a good initial point
to the inner ADMM iteration. With this warm-start strategy,
the optimality gap for the sub-problem is then bounded by the
per-step improvement of the AO algorithm, which is small.
This mode of operation is crucial for insuring the efficiency
of Algorithm 3. Our experiments suggest that soon after an
initial transient stage, the sub-problems can be solved in just
one ADMM iteration (with reasonable precision).

Similar ideas can be used for Ỹ and V in the matrix case if
we want to deal with non-least-squares loss, and actually only

one copy of them is needed in the updates of both factors. A few
different options are available in the tensor case. If memory is
not an issue in terms of the size of Y , a convenient approach
that is commonly adopted in ALS implementations is to store all
N matricizations Y (1) , . . . ,Y (N) , so they are readily available
without need for repetitive data re-shuffling during run-time.
If this practice is adopted, then it makes sense to also have N
copies of Ỹ and V , in order to save computation. Depending
on the size and nature of the data and how it is stored, it may be
completely unrealistic to keep multiple copies of the data and
the auxiliary variables, at which point our earlier discussion on
scalable implementation of Algorithm 2 for big but sparse data
can be instrumental.

Sometimes an additional proximal regularization is added to
the sub-problems. The benefit is two-fold: it helps the conver-
gence of the AO outer-loop when N ≥ 3; while for the ADMM
inner-loop it improves the conditioning of the sub-problem,
which may accelerate the convergence of ADMM, especially
in the general loss function case when we do not have strong
convexity. The convergence of AO-ADMM is summarized in
Proposition 1.

Proposition 1: If the sequence generated by AO-ADMM in
Algorithm 3 is bounded, then for

1) N = 2,
2) N > 2, μ > 0,
AO-ADMM converges to a stationary point of (1).

HUANG et al.: FLEXIBLE AND EFFICIENT ALGORITHMIC FRAMEWORK FOR CONSTRAINED MATRIX AND TENSOR FACTORIZATION 5059

Proof: The first case with μ = 0 is covered in [26,
Theorem 3.1], and the cases when μ > 0 are covered in [27,
Theorem 2]. �

Note that for N = 2, using μ = 0 yields faster convergence
than μ > 0. For N > 2, i.e., for tensor data, we can update μ as
follows

μ ← 10−7 + 0.01

∥∥∥Y − [Hd]
N
d=1

∥∥∥
‖Y ‖ , (14)

which was proposed in [27] for unconstrained tensor factoriza-
tion, and works very well in our context as well.

The convergence result in Proposition 1 has an additional
assumption that the sequence generated by the algorithm is
bounded. For unconstrained PARAFAC, diverging components
may be encountered during AO iterations [38], [39], but adding
Frobenius norm regularization for each matrix factor (with a
small weight) ensures that the iterates remain bounded.

As we can see, the ADMM is an appealing sub-routine for
alternating optimization, leading to a simple plug-and-play gen-
eralization of the workhorse ALS algorithm. Theoretically, they
share the same per-iteration complexity if the number of inner
ADMM iterations is small, which is true in practice, after an ini-
tial transient. Efficient implementation of the overall algorithm
should include data-structure-specific algorithms for W T Y or
(�j �=dHj)

T Y (d) , which dominate the per-iteration complex-
ity, and may include parallel/distributed computation along the
lines of [40].

Finally, if a non-least-squares loss is to be used, we suggest
that the least-squares loss is first employed to get preliminary es-
timates (using Algorithm 3 calling Algorithm 1) which can then
be fed as initialization to run Algorithm 3 calling Algorithm 2.
The main disadvantage of Algorithm 2 compared to Algorithm
1 is that the big matrix (or tensor) multiplication W T (Ỹ + V)
needs to be calculated in each ADMM iteration. Therefore, this
strategy can save a significant amount of computations at the
initial stage.

V. CASE STUDIES AND NUMERICAL RESULTS

In this section we will study some well-known constrained
matrix/tensor factorization problems, derive the corresponding
update for H in Algorithm 1 or H and Ỹ in Algorithm 2, and
compare it to some of the state-of-the-art algorithms for that
problem. In all examples we denote our proposed algorithm
as AO-ADMM. All experiments are performed in MATLAB
2015a on a Linux server with 32 Xeon 2.00 GHz cores and 128
GB memory.

A. Non-Negative Matrix and Tensor Factorization

Perhaps the most common constraint imposed on the latent
factors is non-negativity—which is often supported by physical
considerations (e.g., when the latent factors represent chemical
concentrations, or power spectral densities) or other prior in-
formation, or simply because non-negativity sometimes yields
interpretable factors [4]. Due to the popularity and wide range
of applications of NMF, numerous algorithms have been pro-

posed for fitting the NMF model, and most of them can be
easily generalized to the tensor case. After a brief review of the
existing algorithms for NMF, we compare our proposed algo-
rithm to some of the best algorithms reported in the literature to
showcase the efficiency of AO-ADMM.

Let us start by considering NMF with least-squares loss,
which is the prevailing loss function in practice. By adopting
the alternating optimization framework, the sub-problem that
emerges for each matrix factor is non-negative (linear) least-
squares (NNLS). Some of the traditional methods for NNLS are
reviewed in [41] (interestingly, not including ADMM), and most
of them have been applied to NMF or non-negative PARAFAC,
e.g., the active-set (AS) method [42], [43] and block-principle-
pivoting (BPP) [44], [45]. Recall that in the context of the over-
all multi-linear factorization problem we actually need to solve
a large number of (non-negative) least-squares problems shar-
ing the same mixing matrix W , and in the unconstrained case
this means we only need to calculate the Cholesky factoriza-
tion of W T W once. Unfortunately, this good property that
enables high efficiency implementation of ALS is not preserved
by either AS or BPP. Sophisticated methods that group sim-
ilar rows to reduce the number of inversions have been pro-
posed [46], although as k grows larger this does not seem
appealing in the worst case. Some other methods, like the
multiplicative-update (MU) [47] or hierarchical alternating least
squares (HALS) [37], ensure that the per-iteration complexity
is dominated by calculating W T W and W T Y , although more
outer-loops are needed for convergence. These are actually one
step majorization-minimization or block coordinate descent ap-
plied to the NNLS problem. An accelerated version of MU and
HALS is proposed in [48], which essentially does a few more
inner-loops after computing the most expensive W T Y .

ADMM, on the other hand, may not be the fastest algorithm
for a single NNLS problem, yet its overhead can be amortized
when there are many NNLS problem instances sharing the same
mixing matrix, especially if good initialization is readily avail-
able. This is in contrast to an earlier attempt to adopt ADMM
to NMF [49], which did not use Cholesky caching, warm start,
and a good choice of ρ to speed up the algorithm. Furthermore,
ADMM can seamlessly incorporate different regularizations as
well as non-least-squares loss.

We should emphasize that AO forms the backbone of our pro-
posed algorithm—ADMM is only applied to the sub-problems.
There are also algorithms that directly apply an ADMM
approach to the whole problem [36], [40], [50]. The per-iteration
complexity of those algorithms is also the same as the un-
constrained alternating least-squares. However, due to the non-
convexity of the whole problem, the loss is not guaranteed to
decrease monotonically, unlike alternating optimization. More-
over, both ADMM and AO guarantee that every limit point is
a stationary point, but in practice AO almost always converges
(as long as the updates stay bounded), which is not the case for
ADMM applied to the whole problem.

In another recent line of work [29], a similar idea of using an
improved AO framework to ensure convergence is used. When
[29] is specialized to non-negative matrix/tensor factorization,
each update becomes a simple proximal-gradient step with an

5060 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

Fig. 1. Convergence of some NMF algorithms on the Extended Yale B dataset.

extrapolation. The resulting algorithm is also guaranteed to con-
verge (likewise assuming that the iterates remain bounded), but it
turns out to be slower than our algorithm, as we will show in our
experiments. Some interesting work on non-negative PARAFAC
can also been found in [51] and the references therein.

To apply our proposed algorithm to NMF or non-negative
PARAFAC with least-squares loss, Algorithm 1 is used to solve
the sub-problems, with line 8 customized as

H ←
[
H̃

T − U
]

+
,

i.e., zeroing out the negative values of (H̃
T − U). The tolerance

for the ADMM inner-loop is set to 0.01.
1) Non-Negative Matrix Factorization: We compare AO-

ADMM with the following algorithms:
• AO-BPP. AO using block principle pivoting [44]1;
• accHALS. Accelerated HALS [48]2;
• APG. Alternating proximal gradient [29]3;
• ADMM. ADMM applied to the whole problem [50]4.
AO-BPP and HALS are reported in [44] to outperform other

methods, accHALS is proposed in [48] to improve HALS,
APG is reported in [29] to outperform AO-BPP, and we in-
clude ADMM applied to the whole problem to compare the
convergence behavior of AO and ADMM for this non-convex
factorization problem.

The aforementioned NMF algorithms are tested on two
datasets. One is a dense image data set, the Extended Yale
Face Database B5, of size 32256 × 1932, where each column
is a vectorized 168 × 192 image of a face, and the dataset is a
collection of face images of 29 subjects under various poses and
illumination conditions. The other one is the Topic Detection
and Tracking 2 (TDT2) text corpus6, of size 10212 × 36771,
which is a sparse document-term matrix where each entry counts
the frequency of a term in one document.

The convergence of the relative error ‖Y −
WHT ‖F /‖Y ‖F versus time in seconds for the Extended
Yale B dataset is shown in Fig. 1, with k = 100 on the left
and k = 300 on the right; and for the TDT2 dataset in Fig. 2,
with k = 500 on the left and k = 800 on the right. The ADMM

1http://www.cc.gatech.edu/∼hpark/nmfsoftware.php
2https://sites.google.com/site/nicolasgillis/code
3http://www.math.ucla.edu/∼wotaoyin/papers/bcu/matlab.html
4http://mcnf.blogs.rice.edu/
5http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
6http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

Fig. 2. Convergence of some NMF algorithms on the TDT2 dataset.

TABLE I
AVERAGED PERFORMANCE OF NMF ALGORITHMS ON SYNTHETIC DATA

Algorithm ‖Y − W HT ‖F run time iterations

AO-ADMM 193.1026 21.7 s 86.9
AO-BPP 193.1516 40.9 s 52.2
accHALS 193.1389 26.8 s 187.0
APG 193.1431 25.3 s 240.2
ADMM 193.6808 31.9 s 125.2

algorithm [50] is not included for TDT2 because the code
provided online is geared towards imputation of matrices with
missing values—it does not treat a sparse input matrix as the
full data, unless we fill-in all zeros.

We also tested these algorithms on synthetic data. For m =
n = 2000 and k = 100, the true W and H are generated by
drawing their elements from an i.i.d. exponential distribution
with mean 1, and then 50% of the elements are randomly set to
0. The data matrix Y is then set to be Y = WHT + N , where
the elements of N are drawn from an i.i.d. Gaussian distribution
with variance 0.01. The averaged results of 100 Monte-Carlo
trials are shown in Table I. As we can see, AO-based methods are
able to attain smaller fitting errors than directly applying ADMM
to this non-convex problem, while AO-ADMM provides the
most efficient per-iteration complexity.

2) Non-Negative PARAFAC: Similar algorithms are com-
pared in the non-negative PARAFAC case:

• AO-BPP. AO using block principle pivoting [45]1;
• HALS. Hierarchical alternating least-squares [37]1;
• APG. Alternating proximal gradient [29]2;
• ADMM. ADMM applied to the whole problem [40];
• SDF. Structured data fusion provided by tensorlab

[52], using “all-at-once” updates based on quasi-Newton
or Gauss-Newton method [53], [54].

For our proposed AO-ADMM algorithm, a diminishing prox-
imal regularization term in the form (6) is added to each sub-
problem to enhance the overall convergence, with the regular-
ization parameter μ updated as (14).

Two real datasets are being tested: one is a dense CT image
dataset7 of size 260 × 190 × 150, which is a collection of 150
CT images of a female’s ankle, each with size 260 × 190; the
other one is a sparse social network dataset—Facebook Wall
Posts8, of size 46952 × 46951 × 1592, that collects the number

7http://www.nlm.nih.gov/research/visible/
8http://konect.uni-koblenz.de/networks/facebook-wosn-wall

HUANG et al.: FLEXIBLE AND EFFICIENT ALGORITHMIC FRAMEWORK FOR CONSTRAINED MATRIX AND TENSOR FACTORIZATION 5061

Fig. 3. Convergence of some non-negative PARAFAC algorithms on the CT
dataset.

Fig. 4. Convergence of some non-negative PARAFAC algorithms on the
Facebook Wall Posts dataset.

of wall posts from one Facebook user to another over a period of
1592 days. The sparse tensor is stored in the sptensor format
supported by the tensor toolbox [55], and all the afore-
mentioned algorithms use this toolbox to handle sparse tensor
data, except SDF, which only accepts the sparse tensor structure
defined by tensorlab.However, due to the algorithms being
used by SDF, the memory requirement exceeded the limit for
the latter case, thus it is omitted for the Facebook wall posts
dataset.

Similar to the matrix case, the normalized root mean squared
error versus time in seconds for the CT dataset is shown in Fig. 3,
with k = 10 on the left and k = 30 on the right, and that for the
Facebook Wall Posts data is shown in Fig. 4, with k = 30 on
the left and k = 100 on the right. As we can see, AO-ADMM
again converges the fastest, not only because of the efficient
per-iteration update from Algorithm 1, but also thanks to the
additional proximal regularization to help the algorithm avoid
swamps, which are not uncommon in alternating optimization-
based algorithms for tensor decomposition.

Monte-Carlo simulations were also conducted using synthetic
data for 3-way non-negative tensors with n1 = n2 = n3 = 500
and k = 100, with the latent factors generated in the same man-
ner as for the previous NMF synthetic data, and the tensor data
generated as the low-rank model synthesized from those factors
plus i.i.d. Gaussian noise with variance 0.01. The averaged result
over 100 trials is given in Table II. As we can see, AO-ADMM
again outperforms all other algorithms in all cases considered.

B. Constrained Matrix and Tensor Completion

As discussed before, real-world data are often stored as
a sparse array, i.e., in the form of (index,value) pairs.

TABLE II
AVERAGED PERFORMANCE OF NON-NEGATIVE PARAFAC ALGORITHMS ON

SYNTHETIC DATA

Algorithm ‖Y − [H1 , H2 , H3]‖ run time iterations

AO-ADMM 1117.597 145.2 s 25.1
AO-BPP 1117.728 679.0 s 22.6
HALS 1117.655 1838.7 s 137.7
APG 1117.649 1077.4 s 156.3
ADMM 1156.799 435.9 s 77.2
SDF 1118.427 375.8 s N/A

Depending on the application, the unlisted entries in the ar-
ray can be treated as zeros, or as not (yet) observed but possibly
nonzero. A well-known example of the latter case is the Netflix
prize problem, which involves an array of movie ratings indexed
by customer and movie. The data is extremely sparse, but the
fact that a customer did not rate a movie does not mean that the
customer’s rating of that movie would be zero—and the goal is
actually to predict those unseen ratings to provide good movie
recommendations.

For matrix data with no constraints on the latent factors, con-
vex relaxation techniques that involve the matrix nuclear norm
have been proposed with provable matrix reconstruction bounds
[7]. Some attempts have been made to generalize the matrix nu-
clear norm to tensor data [56], [57], but that boils down to the
Tucker model rather than the PARAFAC model that we consider
here. A key difference is that Tucker modeling can only hope to
impute (recover missing values) in the data, whereas PARAFAC
can uniquely recover the latent factors—the important ‘dimen-
sions’ of consumer preference in this context. Another key dif-
ference is that the aforementioned convex relaxation techniques
cannot incorporate constraints on the latent factors, which can
improve the estimation performance. Taking the Netflix prob-
lem as an example, user-bias and movie-bias terms are often
successfully employed in recommender systems; these can be
easily subsumed in the factorization formulation by constrain-
ing, say, the first column of W and the second column of H
to be equal to the all-one vector. Moreover, interpreting each
column of W (H) as the appeal of a certain movie genre
to the different users (movie ratings for a given type of user,
respectively), it is natural to constrain the entries of W and H
to be non-negative.

When matrix/tensor completion is formulated as a con-
strained factorization problem using a loss function as in
Section III.C, there are traditionally two ways to handle it. One
is directly using alternating optimization, although due to the
random positions of the missing values, the least-squares prob-
lem for each row of H will involve a different subset of the
rows of W , thus making the update inefficient even in the un-
constrained case. A more widely used way is an instance of
expectation-maximization (EM): one starts by filling the miss-
ing values with zeros, and then iteratively fits a (constrained)
low-rank model and imputes the originally missing values with
predictions from the interim low-rank model. More recently,
an ADMM approach that uses an auxiliary variable for the full
data was proposed [50], although if we look carefully at that

5062 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

Fig. 5. Illustration of the missing values in the Amino acids fluorescence data.

Fig. 6. The emission loadings (H2) produced by the N -way toolbox on the
left, which uses EM, and by AO-ADMM on the right.

auxiliary variable, it is exactly equal to the filled-in data given
by the EM method.

In fact, the auxiliary variable Ỹ that we introduce is similar
to that of [50], thus also related to the way that EM imputes
the missing values—one can treat our method as imputing the
missing values per ADMM inner-loop, the method in [50] as
imputing per iteration, and EM as imputing after several itera-
tions. However, our proposed AO-ADMM is able to give better
results than EM, despite the similarities. As an illustrative ex-
ample, consider the Amino acids fluorescence data9, which is
a 5 × 201 × 61 tensor known to be generated by a rank-3 non-
negative PARAFAC model [58]. However, some of the entries
are known to be badly contaminated, and are thus deleted, as
shown in Fig. 5. Imposing non-negativity on the latent factors,
the emission loadings H2 of the three chemical components
provided by the EM method using the N -way toolbox [59] and
AO-ADMM are shown in Fig. 6. While both results are satisfac-
tory, AO-ADMM is able to suppress the artifacts caused by the
systematically missing values in the original data, as indicated
by the arrows in Fig. 6.

We now evaluate our proposed AO-ADMM on a movie rating
dataset called MovieLens10, which consists of 100,000 movie
ratings from 943 users on 1682 movies. MovieLens includes
5 sets of 80%–20% splits of the ratings for training and test-
ing, and for each split we fit a matrix factorization model based
on the 80% training data, and evaluate the correctness of the
model on the 20% testing data. The averaged performance on
this 5-fold cross validation is shown in Fig. 7, where we used
the mean absolute error (MAE) for comparison with the classi-
cal collaborative filtering result [60] (which attains a MAE of
0.73). On the left of Fig. 7, we used the traditional least-squares
criterion to fit the available ratings, whereas on the right we
used the Kullback-Leibler divergence for fitting, since it is a
meaningful statistical model for integer data. For each fitting
criterion, we compared the performance by imposing Tikhonov

9http://www.models.kvl.dk/Amino_Acid_fluo
10http://grouplens.org/datasets/movielens/

Fig. 7. Training and testing mean absolute error (MAE) versus model rank
of the MovieLens data, averaged over a 5-fold cross validation, comparing
least-squares fitting (on the left) and Kullback-Leibler fitting (on the right),
with Tikhonov regularization, non-negativity constraint, or non-negativity with
biases on the latent factors.

regularization (l/2) ‖ · ‖2
F with l = 0.1, or non-negativity, or

non-negativity with biases (i.e., in addition constraining the first
column of W and second column of H to be all ones). Some
observations are as follows:

� Low-rank indeed seems to be a good model for this movie
rating data, and the right rank seems to be 4 or 5, higher
rank leads to over-fitting, as evident from Fig. 7;

� Imposing non-negativity reduces the over-fitting at higher
ranks, whereas the fitting criterion does not seem to be
playing a very important role in terms of performance;

� By adding biases, the best case prediction MAE at rank 4
is less than 0.69, an approximately 6% improvement over
the best result reported in [60].

Notice that our aim here is to showcase how AO-ADMM
can be used to explore possible extensions to the matrix com-
pletion problem formulation, rather than come up with the best
recommender system method, which would require significant
exploration in its own right. We believe with the versatileness
of AO-ADMM, researchers can easily test various models for
matrix/tensor completion, and quickly narrow down the one that
works the best for their specific application.

C. Dictionary Learning

Many natural signals can be represented as an (approx-
imately) sparse linear combination of some (possibly over-
complete) basis, for example the Fourier basis for speech signals
and the wavelet basis for images. If the basis (or dictionary when
over-complete) is known, one can directly do data compression
via greedy algorithms or convex relaxations to obtain the sparse
representation [61], or even design the sensing procedure to
reduce the samples required for signal recovery [62]. If the
dictionary is not known, then one can resort to the so called
dictionary learning (DL) to try to learn a sparse representation
[63], if one exists. The well-known benchmark algorithm for
DL is called k-SVD [64], which is a geometry-based algorithm,
and can be viewed as a generalization of the clustering algo-
rithms k-means and k-planes. However, as noted in the original
paper, k-SVD does not scale well as the size of the dictionary
increases. Thus k-SVD is often used to construct a dictionary of
small image patches of size 8 × 8, with a few hundreds of atoms.

HUANG et al.: FLEXIBLE AND EFFICIENT ALGORITHMIC FRAMEWORK FOR CONSTRAINED MATRIX AND TENSOR FACTORIZATION 5063

DL can also be formulated as a matrix factorization problem

minimize
D,S

1
2
‖Y − DS‖2

F + r (S)

subject to D ∈ D, (15)

where r (·) is a sparsity inducing regularization, e.g., the cardi-
nality, the �1 norm, or the log penalty; conceptually there is no
need for a constraint on D, however, due to the scaling ambi-
guity inherent in the matrix factorization problem, we need to
impose some norm constraint on the scaling of D to make the
problem better defined. For example, we can bound the norm of
each atom in the dictionary, ||di || ≤ 1,∀i = 1, . . . , k, where di

is the i-th column of D, and we adopt this constraint here.
Although bounding the norm of the columns of D works well,

it also complicates the update of D—without this constraint,
each row of D is the solution of an independent least-squares
problem sharing the same mixing matrix, while the constraint
couples the columns of D, making the problem non-separable.
Existing algorithms either solve it approximately [65] or by
sub-optimal methods like cyclic column updates [66]. On
the other hand, this is not a problem at all for our proposed
ADMM sub-routine Algorithm 1: the row separability of the
cost function and the column separability of the constraints are
handled separately by the two primal variable blocks, while
our previously discussed Cholesky caching, warm starting, and
good choice of ρ ensure that an exact dictionary update can be
done very efficiently.

The update of S, sometimes called the sparse coding step,
is a relatively well-studied problem for which numerous
algorithms have been proposed. We mainly focus on the
�1 regularized formulation, in which case the sub-problem
becomes the well-known LASSO, and in fact a large number of
LASSOs sharing the same mixing matrix. Algorithm 1 can be
used by replacing the proximity step with the soft-thresholding
operator. Furthermore, if an over-complete dictionary is trained,
the least-squares step can also be accelerated by using the
matrix inversion lemma:

(
DT D + ρI

)−1
= ρ−1I − ρ−1DT

(
ρI + DDT

)−1
D.

Thus, if m � k, one can cache the Cholesky of
ρI + DDT = LLT instead, and replace the least-squares step
in Algorithm 1with

S̃ ← ρ−1
(
B − DT

(
LT

)−1
L−1DB

)
,

where B = DT Y + ρ (S + U). The use of ADMM for
LASSO is also discussed in [67]–[69], and [30], and we
generally followed the one described in [30, Sec. 7]. Again,
one should notice that compared to a plain LASSO, our
LASSO sub-problem in the AO framework comes with a
good initialization, therefore only a very small number of
ADMM-iterations are required for convergence.

It is interesting to observe that for the particular constraints
and regularization used in DL, incorporating non-negativity
maintains the simplicity of our proposed algorithm—for both
the norm bound constraint and �1 regularization, the proximity
operator in Algorithm 1 with non-negativity constraint simply

Fig. 8. Trained dictionary from the MNIST handwritten digits dataset.

requires zeroing out the negative values before doing the same
operations. In some applications non-negativity can greatly
help the identification of the dictionary [70].

As an illustrative example, we trained a dictionary from the
MNIST handwritten digits dataset11, which is a collection of
gray-scale images of handwritten digits of size 28 × 28, and for
each digit we randomly sampled 1000 images, forming a matrix
of size 784 × 10000. Non-negativity constraints are imposed on
both the dictionary and the sparse coefficients. For k = 100, and
by setting the �1 penalty parameter l = 0.5, the trained dictio-
nary after 100 AO-ADMM (outer-)iterations is shown in Fig. 8.
On average approximately 11 atoms are used to represent each
image, and the whole model is able to describe approximately
60% of the energy of the original data, and the entire training
time takes about 40 seconds. Most of the atoms in the dictionary
remain readable, which shows the good interpretability afforded
by the additional non-negativity constraint.

For comparison, we tried the same data set with the same
parameter settings with the popular and well-developed DL
package SPAMS12. For fair comparison, we used SPAMS in
batch mode with batch size equal to the size of the training
data, and run it for 100 iterations (same number of iterations as
AO-ADMM). The quality of the SPAMS dictionary is almost
the same as that of AO-ADMM, but it takes SPAMS about 3
minutes to run through these 100 iterations, versus 40 seconds
for AO-ADMM. The performance does not change much if
we remove the non-negativity constraint when using SPAMS,
although the resulting dictionary then loses interpretability.
Notice that SPAMS is fully developed in C++, whereas our
implementation is simply written in MATLAB, which leaves
considerable room for speed improvement using a lower-level
language compiler.

VI. CONCLUSION

In this paper we proposed a novel AO-ADMM algorithmic
framework for matrix and tensor factorization under a variety
of constraints and loss functions. The main advantages of the
proposed AO-ADMM framework are:

• Efficiency. By carefully adopting AO as the optimization
backbone and ADMM for the individual sub-problems, a

11http://www.cs.nyu.edu/∼roweis/data.html
12http://spams-devel.gforge.inria.fr/index.html

5064 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 19, OCTOBER 1, 2016

significant part of the required computations can be effec-
tively cached, leading to a per-iteration complexity similar
to the workhorse ALS algorithm for unconstrained fac-
torization. Warm-start that is naturally provided by AO
together with judicious regularization and choice of pa-
rameters further reduce the number of inner ADMM and
outer AO iterations.

• Flexibility. Thanks to ADMM, which is a special case of
the proximal algorithm, non-least-squares terms can be
handled efficiently with element-wise complexity using
the well-studied proximity operators. This includes almost
all non-parametric constraints and regularization penalties
commonly imposed on the factors, and even non-least-
squares fitting criteria.

• Convergence. AO guarantees monotone decrease of the
loss function, which is a nice property for the NP-hard fac-
torization problems considered. Moreover, recent advances
on generalizations of the traditional BCD algorithms fur-
ther guarantee convergence to a stationary point.

Case studies on non-negative matrix/tensor factorization, con-
strained matrix/tensor completion, and dictionary learning, with
extensive numerical experiments using real data, corroborate our
main claims. We believe that AO-ADMM can serve as a plug-
and-play framework that allows easy exploration of different
types of constraints and loss functions, as well as different types
of matrix and tensor (co-)factorization models.

REFERENCES

[1] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “Efficient algorithms for
‘universally’ constrained matrix and tensor factorization,” presented at the
EUSIPCO, Nice, France, Aug. 31–Sept. 4 2015.

[2] C. Eckart and G. Young, “The approximation of one matrix by another of
lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[3] G. Tomasi and R. Bro, “A comparison of algorithms for fitting the
PARAFAC model,” Comput. Statist. Data Anal., vol. 50, no. 7, pp. 1700–
1734, 2006.

[4] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[5] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by V1?,” Vision Res., vol. 37, no. 23,
pp. 3311–3325, 1997.

[6] T. Hofmann, “Probabilistic latent semantic indexing,” in Proc. ACM SIGIR
Conf., 1999, pp. 50–57.

[7] E. J. Candès and B. Recht, “Exact matrix completion via convex optimiza-
tion,” Found. Comput. Math., vol. 9, no. 6, pp. 717–772, 2009.

[8] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?,” J. ACM, vol. 58, no. 3, p. 11, 2011.

[9] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solu-
tions of linear matrix equations via nuclear norm minimization,” SIAM
Rev., vol. 52, no. 3, pp. 471–501, 2010.

[10] K. Huang, N. D. Sidiropoulos, and A. Swami, “Non-negative matrix fac-
torization revisited: Uniqueness and algorithm for symmetric decom-
position,” IEEE Trans. Signal Process., vol. 62, no. 1, pp. 211–224,
Jan. 2014.

[11] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear decom-
position of N-way arrays,” J. Chemometr., vol. 14, no. 3, pp. 229–239,
2000.

[12] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis: Applications in the
Chemical Sciences. New York, NY, USA: USA, 2005.

[13] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[14] P. Comon, “Tensors: A brief introduction,” IEEE Signal Process. Mag.,
vol. 31, no. 3, pp. 44–53, 2014.

[15] S. A. Vavasis, “On the complexity of nonnegative matrix factorization,”
SIAM J. Optim., vol. 20, no. 3, pp. 1364–1377, 2009.

[16] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM,
vol. 60, no. 6, p. 45, 2013.

[17] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM J. Scientif. Comput., vol. 30, no. 1,
pp. 205–231, 2007.

[18] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos, “GigaTensor:
Scaling tensor analysis up by 100 times-algorithms and discoveries,” in
Proc. ACM SIGKDD, 2012, pp. 316–324.

[19] A.-H. Phan, P. Tichavsky, and A. Cichocki, “Fast alternating LS al-
gorithms for high order CANDECOMP/PARAFAC tensor factoriza-
tions,” IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4834–4846,
2013.

[20] N. Ravindran, N. D. Sidiropoulos, S. Smith, and G. Karypis, “Memory-
efficient parallel computation of tensor and matrix products for big ten-
sor decomposition,” in Proc. Asilomar Conf. Signals, Syst., Comput.,
2014, pp. 581–585.

[21] J. H. Choi and S. V. N. Vishwanathan, “DFacTo: Distributed factorization
of tensors,” in Adv. Neural Inf. Process. Syst., 2014, pp. 1296–1304.

[22] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., 2015, pp. 61–70.

[23] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Scientific, 1999.

[24] P. Tseng, “Convergence of a block coordinate descent method for non-
differentiable minimization,” J. Optim. Theory Appl., vol. 109, no. 3,
pp. 475–494, 2001.

[25] L. Grippo and M. Sciandrone, “On the convergence of the block nonlinear
Gauss-Seidel method under convex constraints,” Oper. Res. Lett., vol. 26,
no. 3, pp. 127–136, 2000.

[26] B. Chen, S. He, Z. Li, and S. Zhang, “Maximum block improvement and
polynomial optimization,” SIAM J. Optim., vol. 22, no. 1, pp. 87–107,
2012.

[27] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis
of block successive minimization methods for nonsmooth optimization,”
SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.

[28] N. Li, S. Kindermann, and C. Navasca, “Some convergence results on the
regularized alternating least-squares method for tensor decomposition,”
Linear Algebra Appl., vol. 438, no. 2, pp. 796–812, 2013.

[29] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor factor-
ization and completion,” SIAM J. Imag. Sci., vol. 6, no. 3, pp. 1758–1789,
2013.

[30] S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[31] E. Ryu and S. P. Boyd, “A primer on monotone operator methods,” Appl.
Comput. Math., vol. 15, no. 1, pp. 3–43, 2016.

[32] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parameter
selection for the alternating direction method of multipliers (ADMM):
Quadratic problems,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 644–
658, Mar. 2015.

[33] N. Parikh and S. P. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 123–231, 2014.

[34] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient pro-
jections onto the �1 -ball for learning in high dimensions,” in Proc. ACM
ICML, 2008, pp. 272–279.

[35] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins Univ. Press, 1996.

[36] D. L. Sun and C. Fevotte, “Alternating direction method of multipliers
for non-negative matrix factorization with the beta-divergence,” in Proc.
IEEE ICASSP, 2014, pp. 6201–6205.

[37] A. Cichocki and A.-H. Phan, “Fast local algorithms for large scale non-
negative matrix and tensor factorizations,” IEICE Trans. Fund. Electron.,
Commun., Comput. Sci., vol. 92, no. 3, pp. 708–721, 2009.

[38] J. B. Kruskal, R. A. Harshman, and M. E. Lundy, “How 3-MFA data
can cause degenerate PARAFAC solutions, among other relationships,”
Multiway Data Anal., pp. 115–122, 1989.

[39] A. Stegeman, “Finding the limit of diverging components in three-way
candecomp/parafac-a demonstration of its practical merits,” Comput. Stat.
Data Anal., vol. 75, pp. 203–216, Jul. 2014.

[40] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms for con-
strained tensor factorization via the alternating direction method of
multipliers,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5450–
5463, 2015.

HUANG et al.: FLEXIBLE AND EFFICIENT ALGORITHMIC FRAMEWORK FOR CONSTRAINED MATRIX AND TENSOR FACTORIZATION 5065

[41] D. Chen and R. J. Plemmons, “Nonnegativity constraints in numerical
analysis,” in Proc. Symp. Birth Numer. Anal., 2009, pp. 109–140.

[42] R. Bro and S. De Jong, “A fast non-negativity-constrained least squares
algorithm,” J. Chemometr., vol. 11, no. 5, pp. 393–401, 1997.

[43] H. Kim and H. Park, “Nonnegative matrix factorization based on alternat-
ing nonnegativity constrained least squares and active set method,” SIAM
J. Matrix Anal. Appl., vol. 30, no. 2, pp. 713–730, 2008.

[44] J. Kim and H. Park, “Fast nonnegative matrix factorization: An active-set-
like method and comparisons,” SIAM J. Scientif. Comput., vol. 33, no. 6,
pp. 3261–3281, 2011.

[45] J. Kim and H. Park, “Fast nonnegative tensor factorization with an active-
set-like method,” High-Performance Scientific Computing. New York, NY,
USA: Springer, 2012, pp. 311–326.

[46] M. H. Van Benthem and M. R. Keenan, “Fast algorithm for the solu-
tion of large-scale non-negativity-constrained least squares problems,” J.
Chemometr., vol. 18, no. 10, pp. 441–450, 2004.

[47] D. D. Lee and H. S. Seung, “Algorithms for non-negative ma-
trix factorization,” in Adv. Neural Inf. Process. Syst. (NIPS), 2001,
pp. 556–562.

[48] N. Gillis and F. Glineur, “Accelerated multiplicative updates and hierarchi-
cal als algorithms for nonnegative matrix factorization,” Neural Comput.,
vol. 24, no. 4, pp. 1085–1105, 2012.

[49] X. Cai, Y. Chen, and D. Han, “Nonnegative tensor factorizations using
an alternating direction method,” Frontiers Math. China, vol. 8, no. 1,
pp. 3–18, 2013.

[50] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction algorithm
for matrix completion with nonnegative factors,” Frontiers Math. China,
vol. 7, no. 2, pp. 365–384, 2012.

[51] J. E. Cohen, R. C. Farias, and P. Comon, “Fast decomposition of large
nonnegative tensors,” IEEE Signal Process. Lett., vol. 22, no. 7, pp. 862–
866, 2015.

[52] L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab v2.0, Jan. 2014
http://www.tensorlab.net/.

[53] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion,”
IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp. 586–600, 2015.

[54] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, “Breaking the
curse of dimensionality using decompositions of incomplete tensors:
Tensor-based scientific computing in big data analysis,” IEEE Signal Pro-
cess. Mag., vol. 31, no. 5, pp. 71–79, 2014.

[55] B. W. Bader et al., MATLAB tensor toolbox, vers. 2.6, Feb. 2015, [Online].
Available: http://www.sandia.gov/∼tgkolda/TensorToolbox/

[56] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank
tensor recovery via convex optimization,” Inverse Problems, vol. 27, no. 2,
p. 025010, 2011.

[57] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating
missing values in visual data,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 208–220, 2013.

[58] X. Fu, K. Huang, W.-K. Ma, N. D. Sidiropoulos, and R. Bro, “Joint
tensor factorization and outlying slab suppression with applications,” IEEE
Trans. Signal Process., vol. 63, no. 23, pp. 6315–6328, 2015.

[59] C. A. Andersson and R. Bro, “The N-way toolbox for MATLAB,”
Chemometr. Intell. Lab. Syst., vol. 52, no. 1, pp. 1–4, 2000.

[60] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative
filtering recommendation algorithms,” in Proc. 10th Int. Conf. World Wide
Web, 2001, pp. 285–295.

[61] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions
of systems of equations to sparse modeling of signals and images,” SIAM
Rev., vol. 51, no. 1, pp. 34–81, 2009.

[62] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, 2008.

[63] I. Tosic and P. Frossard, “Dictionary learning,” IEEE Signal Process. Mag.,
vol. 28, no. 2, pp. 27–38, 2011.

[64] M. Aharon, M. Elad, and A. Bruckstein, “k-SVD: An algorithm for de-
signing overcomplete dictionaries for sparse representation,” IEEE Trans.
Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006.

[65] M. Razaviyayn, H.-W. Tseng, and Z.-Q. Luo, “Dictionary learning
for sparse representation: Complexity and algorithms,” in Proc. IEEE
ICASSP, 2014, pp. 5247–5251.

[66] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” J. Mach. Learn. Res., vol. 11, pp. 19–60,
2010.

[67] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast im-
age recovery using variable splitting and constrained optimization,” IEEE
Trans. Image Process., vol. 19, no. 9, pp. 2345–2356, 2010.

[68] J. Yang and Y. Zhang, “Alternating direction algorithms for l1 -problems in
compressive sensing,” SIAM J. Scientif. Comput., vol. 33, no. 1, pp. 250–
278, 2011.

[69] E. Esser, Y. Lou, and J. Xin, “A method for finding structured sparse
solutions to nonnegative least squares problems with applications,” SIAM
J. Imag. Sci., vol. 6, no. 4, pp. 2010–2046, 2013.

[70] P. O. Hoyer, “Non-negative matrix factorization with sparseness con-
straints,” J. Mach. Learn. Res., vol. 5, pp. 1457–1469, 2004.

Kejun Huang (S’13) received the B.Eng. in com-
munication engineering from Nanjing University
of Information Science and Technology, Nanjing,
China, in 2010. He received the Ph.D. degree in
electrical engineering from University of Minnesota,
Minneapolis, MN, USA, in 2016. His research inter-
ests include signal processing, machine learning, and
optimization.

Nicholas D. Sidiropoulos (F’09) received the
Diploma in electrical engineering from the Aris-
totelian University of Thessaloniki, Greece, and M.S.
and Ph.D. degrees in electrical engineering from the
University of Maryland—College Park, in 1988, 1990
and 1992, respectively. He served as assistant profes-
sor at the University of Virginia, associate professor
at the University of Minnesota, and professor at TU
Crete, Greece. Since 2011, he has been at the Univer-
sity of Minnesota, where he currently holds an ADC
Chair in digital technology. His research spans topics

in signal processing theory and algorithms, optimization, communications, and
factor analysis—with a long-term interest in tensor decomposition and its appli-
cations. His current focus is primarily on signal and tensor analytics for learning
from big data. He received the NSF/CAREER award in 1998, and the IEEE
Signal Processing (SP) Society Best Paper Award in 2001, 2007, and 2011. He
served as IEEE SP Society Distinguished Lecturer (2008–2009), and as Chair
of the IEEE Signal Processing for Communications and Networking Technical
Committee (2007–2008). He received the 2010 IEEE SP Society Meritorious
Service Award, and the 2013 Distinguished Alumni Award from the Department
of ECE, University of Maryland. He is a Fellow of EURASIP (2014).

Athanasios P. Liavas (M’89) received the Diploma
and the Ph.D. from the Department of Computer
Engineering and Informatics, University of Patras,
Greece, in 1989 and 1993, respectively. He served as
Assistant Professor at the Department of Mathemat-
ics of the University of the Aegean (2001–2004); As-
sociate Professor (2004–2009); and Professor (2009–
present) at the School of Electronic and Computer
Engineering of the Technical University of Crete. His
research interests lie in the area of signal processing
and machine learning.

Dr. Liavas is a member of the Technical Chamber of Greece.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

