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N
onnegative matrix factorization (NMF) is a useful 
tool in a broad range of applications, from signal sep-
aration to computer vision and machine learning. 
NMF is a hard (NP-hard) computational 
problem for which various 

approximate solutions have been devel-
oped over the years. Given the 
widespread interest in NMF and 
its applications, it is perhaps 
surprising that the pertinent 
Cramér–Rao lower bound 
(CRLB) on the accuracy of 
the nonnegative latent fac-
tor estimates has not been 
worked out in the literature. 
In hindsight, one reason may 
be that the required computa-
tions are more subtle than usual: the 
problem involves constraints and ambi-
guities that must be dealt with, and the Fisher 
information matrix is always singular. We provide a concise 
tutorial derivation of the CRLB for both symmetric NMF and 
asymmetric NMF, using the latest CRLB tools, which should be of 
broad interest for analogous derivations in related factor analysis 
problems. We illustrate the behavior of these bounds with respect 
to model parameters and put some of the best NMF algorithms to 
the test against one another and the CRLB. The results help illumi-
nate what can be expected from the current state of art in NMF 

algorithms, and they are reassuring in that the gap to optimality is 
small in relatively sparse and low rank scenarios. 

Introduction
NMF is the problem of (approximately) factor-

ing an element-wise nonnegative matrix 
,X WHT.  where W  is ,I K#  H  

is ,J K#  ( , ),minK I J1  and 
,0W $  0H $  element-wise 

[1], [2]. Symmetric NMF is 
the problem of factoring a 
square matrix ,X WWT.  
where the I K#  matrix 

0W $  element-wise. Both 
general (asymmetric) and 

symmetric NMF have a long 
history and various applications; 

they were more recently introduced 
to the signal processing community, pri-

marily as means to restore identifiability in bilin-
ear matrix factorization/blind source separation (BSS). 

The CRLB [3, Ch. 3] is the most widely used estimation 
benchmark in signal processing. In many cases it is relatively 
easy to compute, and it is asymptotically achievable by maxi-
mum likelihood (ML) estimators in high signal-to-noise ratio 
(SNR) scenarios [3, pp. 164]. In other cases, there may be tech-
nical difficulties in deriving (or complexity issues in comput-
ing) the pertinent CRLB; but due to the central role of this 
bound in signal processing research, work on developing CRLB 
tools continues [4]–[7], thereby enlarging the set of problems 
for which the CRLB can be used in practice. 
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Interestingly, despite the popularity of NMF, the pertinent 
CRLB on the latent factors has not been studied, to the best of our 
knowledge. This is surprising, especially because ML NMF is NP-
hard, and it is natural to wonder how far from the best achievable 
estimation performance existing (suboptimal) NMF algorithms 
operate, under different scenarios. The missing link can perhaps 
be explained by the fact that most NMF researchers come from dif-
ferent communities, and, even for someone versed in statistical 
signal processing, the CRLB computations for NMF are subtle, 
requiring modern tools, as we will see. The aim of this article is 
threefold: first, to fill this gap; second, to put some of the leading 
NMF algorithms to the test using the CRLB as a benchmark; and 
third, to do so in an easily accessible way that can serve as a start-
ing point for analogous derivations in related constrained matrix 
and tensor factorization problems. 

Fundamentals

Identifiability
Rank-constrained matrix factorization is highly unidentifiable with-
out additional constraints. For any given factorization X WHT=  
and any invertible ,Q  X WHT= t t  with WQW T=t  and .H HQ 1= -t  
For symmetric factorization ,X WWT=  we need only further 
require Q  to be unitary. To force the factorization to be unique, one 
must put additional constraints on the latent factors (the columns 
of W  and ),H  e.g., orthogonality in the case of singular value 
decomposition (SVD). With W := , , ,w wK1 g6 @  H := , , ,h hK1 g6 @  
WHT = ;w h w hT

K K
T

1 1 g+ +  hence we may permute the rank-one 
outer products ,w hk k

T
k
K

1=" ,  and/or scale wk  by s 02  and coun-
terscale hk  by /s1  without changing .WHT  These ambiguities are 
inherent to NMF, requiring additional conventions (as opposed to 
conditions) to resolve, similar to ordering the singular values in the 
SVD. These inherent ambiguities are often inconsequential in 
applications, and we will say that a model is essentially identifiable 
or essentially unique when it can be identified up to these inher-
ently unresolvable ambiguities. Still, these ambiguities are reflected 
in, and in fact dominate the CRLB, unless they are properly 
accounted for. In this article, for asymmetric NMF, we assume the 
columns of W  are scaled to sum up to one, i.e., 

	 w w w 1i
i

I

i
i

I

i

I

1
1

2
1 1

iKg= = = =
= = =

/ / / � (1)

to overcome the scaling ambiguity. Once we get estimates of 
W  and ,H  denoted Wt  and ,Ht  respectively, using any NMF algo-
rithm, we scale the columns of Wt  to satisfy (1), and counter-
scale the corresponding columns of .Ht  Then least-squares 
matching of the columns of Wt  to those of W  is equivalent to 
the so-called linear assignment problem [8], whose solution can 
be found by the Hungarian algorithm [9], [10]. The MATLAB 
code is available at http://www.mathworks.com/matlabcentral/
fileexchange/11609-hungarian-algorithm. In the symmetric 
case, there is no scaling ambiguity, so we directly use the Hun-
garian algorithm to find the best column permutation. 

Conditions for (essential) uniqueness of NMF (ensuring 
that Q  can only be a positively scaled permutation matrix in the 

asymmetric case, or simply a permutation matrix in the symmet-
ric case) have previously been studied in [11]–[13], and are sum-
marized in [14]. In a nutshell, NMF is not always unique, and 
pertinent conditions ensuring uniqueness are complicated (e.g., a 
sufficient condition for uniqueness requires the conic hull of the 
row vectors of W  to be a superset of a specific second-order cone 
[14]). The following corollary is a useful rule of thumb: if the suffi-
cient condition given in [14, Th. 4] is satisfied for the symmetric 
NMF ,X WWT=  then 

■■ the supports (sets of indices of nonzero entries) of any two 
columns of W  are not contained in one another. 

■■ each column of W  contains at least K 1-  zeros.
The same holds for both W  and H  in the asymmetric case 

.X WHT=  These two properties together are neither sufficient 
nor necessary for uniqueness; in practice however, as shown 
empirically in [14, Examples 3 and 4], it is very likely that NMF 
will give an essentially unique solution if these two conditions are 
both satisfied. Notice that if we set the zero entries of W (and H  in 
the asymmetric case) randomly, with density (number of nonzero 
entries over the number of entries) less than / ,I K I-^ h  then for 
large I  these conditions will be met with high probability. 

Algorithms
Owing to the NP-hardness of asymmetric NMF [15], numerous 
approximation algorithms have been developed (cf. [16] and ref-
erences therein). On the contrary, there are relatively few algo-
rithms available for symmetric NMF (cf. [17] and references 
therein and [14]). If a symmetric matrix admits an exact sym-
metric NMF (not necessarily low rank), it is called completely 
positive (CP) [18]. It was recently proven that checking whether 
a matrix is CP is also NP-hard [19]. 

He et al. [17] summarized existing algorithms for symmetric 
NMF, which turned out being very similar (all based on so-called 
multiplicative updates). They concluded that those algorithms 
all belong to two basic kinds of algorithms: a -symmetric NMF 
and b -symmetric NMF, where a  and b  are tuning parameters 
that moderate performance (e.g., the algorithm in [20] belongs 
to a -symmetric NMF with / ,1 4a =  and the algorithm in [21] 
belongs to b -symmetric NMF with / ) .1 2b =  A very different 
algorithm based on Procrustes rotation was proposed in [14]. 

The algorithms for asymmetric NMF can be broadly classi-
fied as optimization-based and geometry-based. The cost func-
tion in optimization-based methods usually measures the 
quality of factorization, e.g., in terms of Euclidian distance, K-L 
divergence, etc., and may include regularization terms that cap-
ture presumed properties of the sought latent factors, e.g., spar-
sity, smoothness, etc. None of these formulations is jointly 
convex in W  and H  (WHT  is a bilinear form); but in most cases 
they are conditionally convex over one factor given the other. 
Most optimization-based methods therefore adopt an alternat-
ing optimization approach—a few algorithms employ all-at-
once (joint) parameter updates using gradient or Newton steps, 
but these require careful parameter tuning to ensure conver-
gence to a local optimum. In the context of alternating opti-
mization algorithms, for the update of one factor, one can take a 
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gradient direction but with a very conservative step-size such 
that positivity is always satisfied; this can be reduced to a multi-
plicative update [22], [23]. Alternatively, a more aggressive step-
size can be used, but then a projection back to the nonnegative 
orthant is required [24]. A less popular way is to take the sec-
ond-order derivative into account [25]. 

The most commonly used cost function is Euclidean distance. 
One reason for this is that when one factor is fixed, and if we 
ignore the nonnegativity constraint, the problem reduces to lin-
ear least squares, in which case we know the solution in closed 
form. Therefore, a straightforward way is to simply replace the 
negative entries of the least squares result with zeros in each 
update [26]—which is, however, suboptimum, and not guaran-
teed to converge. Taking the nonnegativity constraints back into 
consideration, the conditional update problem is nonnegative 
least squares, which is convex but the solution is not in closed 
form. Existing methods use quadratic programming [27], active 
set [28], [29], and coordinate descent [30]. 

Geometry-based methods stem from the geometric interpreta-
tion of NMF by Donoho [11]. The basic idea is to find a simplicial 
cone, with a certain number of extreme rays, that is contained in 
the nonnegative orthant and contains all the data points. The 
effectiveness of geometry-based methods is application dependent; 
in cases where the so-called separability assumption [11] is rea-
sonable, the extreme rays of the simplicial cone can be found by 
selecting from the data vectors per se [31], [32]. In other cases, 
nonnegativity is not strictly required for one factor, and the aim is 
to find the minimum volume simplicial cone that contains the 
data points [33], [34]. A polytope approximation method [35] 
seems to be more general compared to the others in this genre. 

Modern CRLB tools
Suppose a set of measurements X  is drawn from a probability 
density function ( ; )p X i  parameterized by ,i  and our goal is 
to estimate i  given the realizations of .X  If the regularity 
condition { ( ; )}lnp 0E XX d i =i  is satisfied, then we can define  
the Fisher information matrix (FIM) as [ ( ; )]lnpF E XX d_ ii i$
[ ( ; )] ,ln p X Td ii .  and the CRLB on the covariance matrix of any 
unbiased estimator of i  on the basis of X  is the inverse of the FIM 

[3, Ch. 3], i.e., the difference between the estimator covariance 
matrix and the inverse of the FIM is positive semidefinite. From 
this, it follows that { } { },trE F2

2 1
X $i i- i

-t  where it  is any unbi-
ased estimator of i  on the basis of .X  More detailed discussion of 
the CRLB, including conditions under which there exists an esti-
mator that can attain the bound, can be found in classic textbooks 
on estimation theory, e.g., [3, Ch. 3]. 

When the FIM is singular, Stoica and Marzetta [6] have shown 
that we can use the Moore–Penrose pseudoinverse instead (in 
hindsight, this can be deduced from the Schur complement gen-
eralized to singular matrices [36, p. 651]). The pseudoinverse is 
still a lower bound, albeit it is generally looser, and more difficult 
to attain. Important references on the CRLB for problems with 
constraints on the unknown parameters, represented by equalities 
and inequalities, include [4], [5], and [7]. Their results show that 
inequality constraints do not affect the CRLB, whereas equality 
constraints do. (Strictly speaking, inequalities do not affect the 
CRLB if they are not equivalent to equalities. For example, the two 
inequality constraints 0$i  and ,0#i  are equivalent to .0i =  
See the definition of a regular point in [4] for details.) Suppose the 
equality constraints are ( ) ,0g i =  then we can define U  as an 
orthonormal matrix whose columns span the null space of 

( ),gd ii  the Jacobian matrix of ( ),g i  i.e., ( ) 0g Ud i =i  and 
.IU UT =  Then the constrained CRLB is modified as 

	 { } ( ) ,trE U U F U UT T
2
2

X $i i- @
i

t $ .

where the superscript “†” denotes the pseudoinverse. A simple 
derivation of the CRLB under affine equality constraints is 
given in “Cross-Checking the Constrained CRLB.” 

Cramér–Rao Bounds for NMF
In this section, we derive the CRLB for both symmetric and 
asymmetric NMF, under an additive white Gaussian noise 
(AWGN) model. Note that at low SNRs, Gaussian noise may gen-
erate observations having negative values, albeit the probability 
that this happens is negligible at higher SNRs. Yet the same is 
true for any additive noise model that is not one sided. A multi-
plicative noise model can capture two-sided perturbations with 
nonnegative noise, but if the signal elements are ,1$  then tak-
ing the logarithm one obtains a NMF model with two-sided 
additive noise in the log domain. Hence the possibility of having 
negative data is unavoidable. Furthermore, Gaussian noise is 
implicitly assumed in all NMF applications where least squares 
is adopted for model fitting—including, e.g., the hierarchical 
alternating least squares (HALS) algorithm [30]. This is so 
because the least squares criterion can be interpreted as ML 
under a Gaussian noise model. Beyond this, it is interesting to 
note that for general signal models observed in  independent 
and identically distributed (i.i.d.) additive noise, the CRLB 
under any noise distribution that possesses everywhere continu-
ous first and second derivatives is the same as the correspond-
ing Gaussian CRLB up to a constant multiplicative factor that 
depends on the noise distribution [37]. Hence, our results are 
more general than meets the eye. 

CROSS-CHECKING THE CONSTRAINED CRLB
It is instructive to check the constrained CRLB for the special case 
of affine ( )g i  via the CRLB under transformation [3, Sec. 3.8]. 
Suppose ( ) ,0g bGi i= - =  and suppose U  satisfies that it is an 
orthonormal basis of the nullspace of .G  Then any feasible i  can 
be represented by the unconstrained variable a  as U 0ii a= + &

( ),UT
0i ia = -  where 0i  is one feasible point. Thus, 

	 ( ; ) ( ; ) .ln lnp px xU F U F UT T&d di a= =i a a i

Now a  is an unconstrained parameter to estimate, and the 
CRLB of i  via transformation of a  is 

	 ( ) ( ) ( ) .F U U F U UT T Td da a =@ @
i a i i
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As a warm-up, a derivation of the CRLB for scalar NMF is pre-
sented in “Identifiability, FIM, and CRLB for the Scalar Case.” 

A CRLB for Symmetric NMF
Consider the I I#  symmetric matrix X  generated as 

	 ,X WW NT= + � (2)

where W  is ,I K#  ,0W $  and the elements of N  are drawn 
from an i.i.d. Gaussian distribution with zero-mean and vari-
ance .2v  The IK IK#  Fisher information matrix for W  is 

	 ( ( ) ( ) ),2F W W I I W P I WT
I K K

T
2W 7 7 7
v

= + � (3)

where I I  is the identity matrix of size ,I I#  and likewise for IK  
and all the boldface I  with a subscript indicating its size in the 
rest of the article, “7” indicates matrix Kronecker product [38, 
Sec. 10.2.1], and P  is a specific permutation matrix; see the 
supporting supplementary material that accompanies this arti-
cle in IEEE Xplore. Here the constraints are ,0W $  which do 
not affect the CRLB. In addition, FW  is rank deficient (see the 
supporting supplementary material), so we need to compute its 
pseudoinverse to get the CRLB. 

In practice, when the size of W  is large, we are usually inter-
ested in the overall reconstruction error ,W W F

2
- t  and the 

CRLB implies that { } { } .trE W W FF
2

X W$- @t  We also look at 
the relative error, normalized by ,W F

2  so that the scale and 
the size of W  are taken into account. Thus, the normalized 
aggregate CRLB for symmetric NMF is given by 

	 { { } .} tr
W

E
W
FW W

F

F

F
2 2

2
X W$

- @t
� (4)

For ,K 1=  the symmetric decomposition is unique even 
without nonnegativity constraints, and the FIM is invertible. 
The CRLB can be calculated in closed form, as provided in 
“Identifiability, FIM, and CRLB for the Symmetric Vector Case.” 

Figure 1 illustrates how this normalized CRLB changes as 
a function of the outer dimension I  (the number of rows of 

,)W  the inner dimension K  (the number of columns of ,)W  
and the density (the amount of nonzero entries). The pattern 
of (non)zeros in W  were drawn from an i.i.d. Bernoulli distri-
bution, and the nonzero entries of W  were drawn from an 
i.i.d. exponential distribution. In Figure 1(a), the inner dimen-
sion is fixed to be ten, while the outer dimension increases 
from 50 to 150, for different densities; in (b), the outer dimen-
sion is fixed at 100, while the inner dimension increases from 
five to 25, with different densities. In all cases, the SNR 

	 log
I

10SNR WWT
F

10 2 2

2

v
=

IDENTIFIABILITY, FIM, AND CRLB FOR THE SCALAR CASE
Before we delve into FIM and CRLB computations for NMF, it is 
instructive to consider the scalar case first, particularly 

,x wh n= +  where w  and h  are nonnegative reals. This is 
clearly unidentifiable unless, e.g., we fix .w 1=  Then this is 
equivalent to the linear estimation problem ,x h n= +  and if n  
is Gaussian with variance ,2v  the CRLB is .2v  But for now, let us 
treat it as an estimation problem with two unknown parameters 
[ ] ,wh T  with the constraint .w 1=  Then the FIM is 

	 ,
h
hw

wh
w

h
h

h1 1
1

F ,w h 2

2

2 2

2

v v
= =; ;E E

while [ ]01u T=  spans the null space of the Jacobian of the 
equality constraint. Therefore, the CRLB is 

	 ( ) ,
0
0

0
u u F u u,

T
w h

T1
2v

=- = G

which is consistent with what we get by treating it as a single 
parameter problem. The symmetric scalar model x w n2= +  is 
sign-unidentifiable, but with the nonnegativity constraint w 0$  
it becomes identifiable. For n  zero-mean Gaussian with variance 

,2v  it is easy to compute the Fisher information for ,w  which is 

	 .F w4
w 2

2

v
=

Notice that the Fisher information is zero if ,w 0=  and as a 
special case of pseudoinverse, .0 0=@  Since the parametric con-
straint is an inequality, the CRLB is unaffected according to [4], so 
for any unbiased estimator ,wt

	 {( ) }
,

.w w w

w

w

0

4

0

0Ex
2 2

2 !
$ v-

=

-t *

This is illustrated in Figure S1. Notice that the pseudoinverse 
of the FIM is a legitimate bound, albeit far from being attaina-
ble when .w 0=  The situation is not as bad in the matrix 
case—in fact, we will see that existing algorithms come close to 
attaining the optimistic CRLB obtained from the pseudoin-
verse, under certain conditions.
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[FigS1]  The CRLB for scalar symmetric NMF.
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is fixed at 10 dB. Each CRLB with the specified size and den-
sity is calculated as the average of 100 Monte Carlo draws of 

.W  Note how the density of W  affects the CRLB—the sparser 
the latent factors, the lower the CRLB. Not surprisingly, the 
CRLB increases as the ratio between the outer dimension and 
the inner dimension decreases. 

CRLB for Asymmetric NMF
Consider the I J#  asymmetric matrix generated as 

	 ,X WH NT= + � (5)

where W  is ,I K#  ,0W $  H  is ,J K#  ,0H $  and the ele-
ments of N  are drawn from an i.i.d. Gaussian distribution with 
zero-mean and variance .2v  The ( ) ( )I J K I J K#+ +  Fisher 
information matrix of W  and H  is (cf. supporting supplemen-
tary material in IEEE Xplore, which also shows that FW,H  is 
rank deficient) 

	
( ) ( )

( ) ( )
.1F

H H I
I H P I W

I W P I H
W W I

T
I

K K
T

K K
T

T
J

2,W H
7

7 7

7 7

7v
= = G � (6)

Here, the constraints on the parameters are ,0W $  ,0H $  
and (1). In calculating the CRLB, we only need to take into 
account the equality constraints. The Jacobian of the equality 
constraints over W  is 

	 ,
w

w

1

1
1I( )

ii

I

iKi

I
K

T
11

1

vec W 7d h

-

-

=
=

=

R

T

S
S
SS

V

X

W
W
WW

/

/
where 1 is the all 1 vector with dimension .I  Upon defining 

	 ,    ,e e
i i

i1v V v v vi l
l

i

i I2
1

1 1 2 1g=
+

- =
=

+ -e o 6 @/ � (7)

we have 1 0VT =  and .V V IT
I 1= -  Therefore, let 

	 ,
0

0
U

I V
I

K

JK

7
= ; E

satisfying 
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IDENTIFIABILITY, FIM, AND CRLB FOR THE  
SYMMETRIC VECTOR CASE
Consider the vector case 

	 .X ww NT= +

Obviously, this problem is also identifiable if ,0N =  apart from 
a sign ambiguity. We do not need to impose nonnegativity con-
straints on all the elements of w to resolve the ambiguity, but 
only on one element, e.g., .w 01 $  The FIM can be computed as 
a special case of the formula (3), whose derivation can be found 
in the supplementary material in IEEE Xplore, yielding 

	 ,w wwI2Fw I
T

2
2

v
= +^ h

which is nonsingular for ,0w !  and we can calculate its 
inverse in closed form, using the matrix inversion lemma [38], 

	 .ww
2 2

1F w I wI
T1

2
2 4

w
v= -- - -
e o

Thus, 

	
{ { } .

}
w

w w
w

wI
2 2

1trE F
2 2

1 2
4

2
wX

$ v= -
- -

-
t

e o

Notice here that italic I  is the dimension of w (not to be con-
fused with the identity matrix .)I
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[Fig1]  (a) and (b) The symmetric NMF CRLB—how the outer dimension, inner dimension, and density affects the CRLB, for SNR=10 dB.
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Using the FIM F ,W H  and the null basis U  above, we obtain the 
CRLB for W  and H  as ( ) .U U F U U,

T T
W H

@  
In practice, the reconstruction errors W W F

2
- t  and H H F

2
- t  

are usually assessed separately since W  and H  model different 
entities (e.g., loadings and scores). Partition ( )U F U,

T
W H

@  into blocks 

	 ( ) ,U F U,
T

T
1

2

2

3
W H

U
U
U
U

=@ ; E

where 1U  is IK IK#  and 3U  is .JK JK#  Then 

	 { {( ) ( ) } ,( } tr
W

E
W

I V I VW W
F

F

F

K K
T

2 2
1

2
X 7 7

$
U- t � (8a)

	 { { } ,} tr
H

E
H

H H
F

F

F
2 2

3
2

X
$

U- t � (8b)

with similar normalization as in the symmetric case. 
Similar to the symmetric case, for K 1=  the asymmetric 

decomposition is essentially unique, and the matrix we need to 
pseudoinvert for calculating the CRLB is actually nonsingular. The 
closed form CRLB for this case is given in “Identifiability, FIM, and 
CRLB for the Asymmetric Vector Case.” 

Figure 2 plots the CRLB for asymmetric NMF for various sizes 
and densities. Figure 2(a) and (b) shows the CRLB for ,W  which is 
constrained such that each column sums up to one, while (c) and 
(d) show the CRLB for ,H  which does not have any scaling con-
straints. Figure 2(a) and (c) shows the CRLB when the size of W  is 
fixed at ,100 10#  and the number of rows in H  increases from 
50 to 150, with different densities.  Figure 2(b) and (d) shows the 
CRLB when the number of rows in W  and H  is fixed at 100 and 
120, respectively, and the number of columns in W  and H  
increases from five to 25, with different densities. As usual, SNR 

	 log
I J

10SNR WHT
F

10 2

2

v
=

is fixed at 10 dB. Each CRLB point for a specified size and density is 
calculated as the average of 100 Monte Carlo draws. Figure 2(c) 

may seem curious: it shows the normalized CRLB with respect to 
H  when we fix W  and gradually increase the number of rows of 
,H  and we observe that the normalized CRLB does not change 

very much. It slowly increases as the outer-dimension of H  
increases, as opposed to the normalized CRLB for ,W  which seems 
to decrease exponentially. This is because the block in the FIM 
F ,W H  that corresponds to H  is ,W W IT

J7  where the dimension of 
I J  changes according to the dimension of ,H  which contributes 
the most to the block of the CRLB that corresponds to .H  The 
W WT  part is fixed, and the size of I J  grows approximately linearly 
with ,H F

2  which explains intuitively why the normalized CRLB 
for H  does not change very much. Apart from that, the overall ten-
dency of the CRLB versus the size is similar to the symmetric case: 
it goes down as one of the outer dimensions increases, and it goes 
up as the common inner dimension increases, as intuitively 
expected from “equations versus unknowns” considerations. Note, 
however, that here as the number of observations increases, so 
does the number of unknown parameters. For example, if a new 
column is appended to X  then a new row is appended to H  as 
well, and the CRLB may worsen, depending on the new entries and 
other factors [e.g., the way we resolve the scaling ambiguity; see 
Figure 2(a) and (c)].

What is more, the sparser W  and ,H  the lower the CRLB 
in all cases. 

Putting NMF algorithms to the test

Symmetric NMF
We compared three algorithms for symmetric NMF with the 
CRLB derived in the section “Cramer–Rao Bounds for NMF.” 
These are a -symmetric NMF and b -symmetric NMF with 

.0 99a b= =  [17], and the algorithm recently proposed in [14]. 
The true W  is generated such that a certain proportion of its 
entries are randomly set to zero, and the rest are drawn from an 
i.i.d. exponential distribution. Using the generative model (2) the 

IDENTIFIABILITY, FIM, AND CRLB FOR THE ASYMMETRIC VECTOR CASE
For ,K 1=  i.e., when w  and h  are vectors, asymmetric factori-
zation is identifiable from noiseless (rank-one) data, similar to 
the symmetric case. There is still a scaling issue, and we can 
resolve this by fixing the scaling of one factor, e.g., setting 

w1 1T =  as we did in the matrix case. Then, using (6), the FIM is 

	 .1F
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The corresponding U  matrix is 
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with the same V  as defined in (7). Let us first try to calculate 
the following inversion 
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where 1U  and 3U  are the inverse of the Schur complement [36,  
p. 650] of h I I2 2
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Again, the inverses can be calculated in closed form by using 
the matrix inversion lemma. Using the Pythagorean theorem 
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= + ^ ^h h  (details omitted), we obtain 
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resulting X  will not be symmetric, so we use / ( ),1 2 X XT+^ h  since 
all algorithms are designed specifically for symmetric nonnegative 
matrices. Reference [17] did not provide a termination criterion, 
so both a-symmetric NMF and b-symmetric NMF are left to run 
for a large number of iterations (104), to ensure the best possible 
results. For the algorithm in [14], we used the termination criter-
ion described in [14, Fig. 4] with the tolerance set to machine pre-
cision eps. We used a single draw of W  for each (size, density) 
combination reported. Under various SNRs, the normalized 
squared error /W WWF F

22-t^ ^h h is calculated and averaged 
over 100 Monte Carlo tests, so that we can get a better approxima-
tion to the expected error / .E W W WF F

22
X -t^ ^h h" ,  

The results are plotted in Figure 3, where (a) shows the nor-
malized squared error benchmarked by the CRLB, (b) shows the 
(aggregate) bias for each estimate, defined as 

	 ( ) ,T
1bias W W

t

T

t

F1
= -

=

t/ � (9)

where T  is the number of trials, in this case 100, and (c) shows 
the model fitting error for each algorithm. The dashed lines in (c) 
show the total noise power; a good approximation should yield a 
fitting error close to the noise power. The plots in the left column 

show a case where the symmetric NMF problem is relatively 
“overdetermined,” since the inner dimension (30) is small com-
pared to the outer dimension (200), and the latent factors are 
quite sparse (density 0.5). The two other columns show more dif-
ficult cases—low rank (30 versus 200) but relatively dense latent 
factors for the middle column, not-so-low rank (50 versus 100) 
but relatively sparse latent factors for the right column. Recall the 
discussion in the section “Fundamentals” for the rule of thumb 
for when identifiability can be expected—the middle and right col-
umns illustrate cases where this requirement is barely satisfied. 

In all cases, the aggregate bias is small and goes to zero as 
SNR increases, indicating that the estimates provided by these 
algorithms are asymptotically unbiased, and we can use the 
CRLB to approximately bound the performance. Generally 
speaking, a /b -symmetric NMF slightly outperform the Pro-
crustes rotation algorithm [14] in the low SNR regime but fail 
to reach the CRLB in the high SNR regime. The algorithm in 
[14] exhibits classic threshold behavior—for SNR higher than 
some threshold, the mean square error (MSE) stays close to the 
CRLB. The reason is that it employs eigenanalysis to estimate 
the column space of W  as a first step and then applies Procrus-
tes rotations in the estimated subspace. On the other hand, both 
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[Fig2]  (a)–(d) The asymmetric NMF CRLB—how the outer dimensions, inner dimension, and density affects the CRLB, for SNR=10 dB.



	 IEEE SIGNAL PROCESSING MAGAZINE  [83] ma y 2014

symmetric NMF variants are modifications of the multiplicative 
update algorithm using X WWT

F
2

-  (Gaussian log-likelihood) as 
the objective, so that it is not surprising that they perform better 
in the low-SNR regime. We can also see this from Figure 3(b), as 
the biases of a /b-symmetric NMF are lower than that of the Pro-
crustes method under low SNR. 

Asymmetric NMF
In this section, we compare several asymmetric NMF algorithms 
aiming to minimize the Euclidian distance. Notice that the data 
we synthetically generated were corrupted by additive i.i.d. Gauss-
ian noise, so using Euclidian distance as the objective actually 
gives us the ML estimate. This is why algorithms that use other 
divergence functions as the objective were not considered here. 
The algorithms tested are:

■■ multiplicative update (MU) proposed by Lee and Seung [22]
■■ alternating least squares (ALS) proposed by Berry et al. [26]

■■ projected gradient (PG) proposed by Lin [24] (the MATLAB 
code can be downloaded from http://www.csie.ntu.edu.
tw/~cjlin/nmf/index.html)

■■ fast HALS proposed by Cichocki and Phan [30, Algor. 2]
■■ block principle pivoting (BPP) alternating nonnegative least 

squares using BPP proposed by Kim and Park [29] (the MAT-
LAB code can be downloaded from http://www.cc.gatech.
edu/~hpark/nmfsoftware.php).
For all algorithms, we used the optimality condition in [39] to 

check for termination, i.e., calculate 

	
(( ) )
(( ) )W

H X HW W
X WH HT

T T
F

U

U -

-= G

in each iteration and terminate when it is smaller than the 
machine precision eps, with a maximum number of iteration set as 

0 20 40 60 80 100
10−15

10−10

10−5

100

105

SNR

Size of W Is 200 × 30 Density 0.5 Size of W Is 200 × 30 Density 0.8 Size of W Is 100 × 50 Density 0.5

10−6

10−4

10−2

100

B
ia

s

10−5

100

105

1010

X
 −

 W
W

T
2

ˆ
ˆ

F

0 20 40 60 80 100
SNR

0 20 40 60 80 100
SNR

0 20 40 60 80 100
SNR

0 20 40 60 80 100
SNR

0 20 40 60 80 100
SNR

0 20 40 60 80 100
SNR

0 20 40 60 80 100
SNR

(a)

(b)

(c)

0 20 40 60 80 100
SNR

Procrustes α−SNMFβ−SNMF CRLB

W
2 F

W
 −

 W
2

ˆ
F

/

10−15

10−10

10−5

100

105

10−8

10−6

10−4

10−2

100

B
ia

s

10−5

100

105

1010

X
 −

 W
W

T
2

ˆ
ˆ

F
W

2 F
W

 −
 W

2
ˆ

F
/

10−10

10−5

100

105

10−6

10−4

10−2

100

B
ia

s

10−5

100

105

1010

X
 −

 W
W

T
2

ˆ
ˆ

F
W

2 F
W

 −
 W

2
ˆ

F
/

[Fig3]  (a) The normalized squared error of three existing symmetric NMF algorithms versus the CRLB; similarly, (b) shows the 
(aggregate) bias, and (c) shows the fitting error.



	 IEEE SIGNAL PROCESSING MAGAZINE  [84] ma y 2014

104. In the expression, U stands for the Hadamard (element-wise) 
matrix product. Similar to the symmetric case, the entries of W  
and H  were generated such that a certain proportion of them are 
randomly set to 0, and the rest are drawn from an i.i.d. exponential 
distribution. Then the columns of W  are scaled to sum up to one. 

Three tests were conducted and illustrated in Figures 4 and 5 
for W  and H , respectively—low-rank and sparse latent factors on 
the left, low rank but moderately dense in the middle, and an 
unbalanced case (J much larger than I) where the rank is not 
small compared to the smaller outer dimension, with density set 
relatively small to ensure identifiability. Similar to Figure 3, 
Figures 4(a) and 5(a) show the normalized squared error for each 
algorithm benchmarked by the CRLB, Figures 4(b) and 5(b) show 

the (aggregate) bias of W  as defined in (9), and similarly for ,H  
and Figure 4(c) shows the fitting error for each algorithm.

As we can see from Figures 4(b) and 5(b) the biases are gener-
ally small and approach zero with increasing SNR, indicating that 
we can use the CRLB to approximately bound performance. In all 
three cases, HALS, BPP, and PG were able to provide a good esti-
mate with MSE close to the CRLB, under all SNRs tested. On the 
other hand, MU and ALS are not guaranteed to work well even 
under very high SNR. All methods separate the variables into 
blocks, and HALS, BPP, and PG aim to find the conditionally opti-
mal point before moving to the next block, whereas the updates of 
MU and ALS cannot guarantee this. Interestingly, in the “well-
posed” case shown in the left columns of Figures 4 and 5, ALS 
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gave similar results to those three methods, indicating that if we 
know a priori that the latent factors are both low rank and sparse, 
it is worth trying ALS, since its updates rules only require linear 
least-squares followed by simple projection to the nonnegative ort-
hant, which is much simpler than the rest. 

Recap and take-home points

What we learned
NMF entails a singular FIM as well as constraints and ambiguities 
that must be dealt with in the computation of the pertinent 
CRLB. We learned how to tackle those and used the results to 
benchmark and develop insights on what can be expected from 
some of the best available algorithms. For symmetric NMF, the 
CRLB can be approached using the Procrustes rotation algorithm 
[14] in the high SNR regime, or a /b -symmetric NMF in low 
SNR cases. For asymmetric NMF, the best-performing algorithms 
were able to give results with MSE close to the CRLB. In both 
cases, approaching the CRLB is possible when the signal rank is 
small and the latent factors are not dense, i.e., when there is a 
small number of latent components whose loadings contain suffi-
ciently many zeros. This is quite remarkable given that the CRLB 
with a singular FIM is generally unattainable; see Figure S1. 

There may be room for improvement in cases involving moderate 
SNR and/or moderate rank and/or moderate density.

Why it is important
Beyond NMF, the approach and techniques we learned can be used 
to facilitate analogous derivations for related factor analysis prob-
lems. For example, the FIMs provided here can be applied to more 
general bilinear matrix factorizations, e.g., using other types of 
constraints on .W  The FIM will remain the same, but the U  
matrix will be different. Also, we can exploit a basis of the 
nullspace of the FIM to reduce the complexity of computing its 
pseudoinverse, and this idea is more broadly applicable to other 
bilinear matrix factorizations. The results can also be extended 
toward, e.g., nonnegative tensor factorization. 

Supplementary material
The supplementary material that is available through IEEE 
Xplore contains detailed FIM derivations, as well as auxiliary 
results on FIM rank and efficient numerical computation of its 
pseudoinverse. These results reduce the complexity of comput-
ing the CRLB from (( ) )O IK 3  to ( )O IK5  in the symmetric case, 
and from ((( ) ) )O I J K 3+  to (( ) )O I J K5+  in the asymmetric 
case (recall , ,I J K$  and usually , ) .I J K&  The supplementary 
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material also includes streamlined and optimized MATLAB code 
for computing these CRLBs. 

Authors
Kejun Huang (huang663@umn.edu) received the B.Eng. degree 
in communication engineering from Nanjing University of Infor-
mation Science and Technology, Nanjing, China, in 2010. He has 
been working toward his Ph.D. degree in the Department of Elec-
trical and Computer Engineering, University of Minnesota, since 
2010. His research interests include signal processing, machine 
learning, and data analytics. His current research focuses on iden-
tifiability, algorithms, and performance analysis for factor analysis 
of big matrix and tensor data. 

Nicholas D. Sidiropoulos (nikos@umn.edu) received the 
diploma in electrical engineering from the Aristotelian University 
of Thessaloniki, Greece, and M.S. and Ph.D. degrees in electrical 
engineering from the University of Maryland, College Park, in 
1988, 1990, and 1992, respectively. He was an assistant professor 
at the University of Virginia (1997–1999); associate professor at 
the University of Minnesota, Minneapolis (2000–2002); professor 
at the Technical University of Crete, Greece (2002–2011); and 
professor at the University of Minnesota, Minneapolis (2011–pre-
sent). His current research focuses on signal and tensor analytics, 
with applications in cognitive radio, big data, and preference 
measurement. He received the National Science Foundation/
CAREER Award (1998), the IEEE Signal Processing Society (SPS) 
Best Paper Award (2001, 2007, 2011), and the IEEE SPS Meritori-
ous Service Award (2010). He has served as an IEEE SPS Distin-
guished Lecturer (2008–2009) and chair of the IEEE Signal 
Processing for Communications and Networking Technical Com-
mittee (2007–2008). He received the Distinguished Alumni Award 
of the Department of Electrical and Computer Engineering, Uni-
versity of Maryland, College Park (2013). 

References
[1] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor 
model with optimal utilization of error estimates of data values,” Environmetrics, 
vol. 5, no. 2, pp. 111–126, 1994.
[2] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix 
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.
[3] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: 
Estimation Theory. Englewood Cliffs, NJ: Prentice Hall, 1993. 
[4] J. D. Gorman and A. O. Hero, “Lower bounds for parametric estimation with 
constraints,” IEEE Trans. Inform. Theory, vol. 36, no. 6, pp. 1285–1301, 1990.
[5] P. Stoica and B. C. Ng, “On the Cramér–Rao bound under parametric con-
straints,” IEEE Signal Processing Lett., vol. 5, no. 7, pp. 177–179, 1998. 
[6] P. Stoica and T. L. Marzetta, “Parameter estimation problems with singular in-
formation matrices,” IEEE Trans. Signal Processing, vol. 49, no. 1, pp. 87–90, 2001.
[7] Z. Ben-Haim and Y. C. Eldar, “On the constrained Cramér–Rao bound with a 
singular Fisher information matrix,” IEEE Signal Processing Lett., vol. 16, no. 6, 
pp. 453–456, 2009.
[8] P. Tichavský and Z. Koldovský, “Optimal pairing of signal components separated 
by blind techniques,” IEEE Signal Processing Lett., vol. 11, no. 2, pp. 119–122, 2004.
[9] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Res. 
Logist. Quart., vol. 2, no. 1–2, pp. 83–97, 1955. 
[10] R.E. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems. 
Philadelphia, PA: SIAM, 2009.
[11] D. L. Donoho and V. C. Stodden, “When does non-negative matrix factorization 
give a correct decomposition into parts?,” in Advances in Neural Information 
Processing Systems (NIPS). Cambridge, MA: MIT Press, 2003, vol. 16, pp. 1141–1148.
[12] H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, and S. H. 
Jensen, “Theorems on positive data: On the uniqueness of NMF,” Computat. Intell. 
Neurosci., vol. 2008, Article ID 764206, 9 pages, DOI: 10.1155/2008/764206.

[13] N. Gillis, “Sparse and unique nonnegative matrix factorization through data 
preprocessing,” J. Mach. Learn. Res., vol. 13, pp. 3349–3386, Nov. 2012.
[14] K. Huang, N. D. Sidiropoulos, and A. Swami, “Non-negative matrix factor-
ization revisited: Uniqueness and algorithm for symmetric decomposition,” IEEE 
Trans. Signal Processing, vol. 62, no. 1, pp. 211–224, Jan. 2014.
[15] S. A. Vavasis, “On the complexity of nonnegative matrix factorization,” SIAM J. 
Optim., vol. 20, no. 3, pp. 1364–1377, 2009. 
[16] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and 
Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis 
and Blind Source Separation. Hoboken, NJ: Wiley, 2009. 
[17] Z. He, S. Xie, R. Zdunek, G. Zhou, and A. Cichocki, “Symmetric nonnegative 
matrix factorization: Algorithms and applications to probabilistic clustering,” IEEE 
Trans. Neural Networks, vol. 22, no. 12, pp. 2117–2131, 2011.
[18] A. Berman and N. Shaked-Monderer, Completely Positive Matrices. 
Singapore: World Scientific, 2003. 
[19] P. J. C. Dickinson and L. Gijben, “On the computational complexity of mem-
bership problems for the completely positive cone and its dual,” Computat. Optim. 
Applicat., submitted for publication. DOI:10.1007/s10589-013-9594-z  
[20] Z. Yang and E. Oja, “Quadratic nonnegative matrix factorization,” Pattern 
Recognit., vol. 45, no. 4, pp. 1500–1510, 2012. 
[21] C. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative matrix 
factorization and spectral clustering,” in Proc. SIAM Int. Conf. Data Mining 
(SDM’05), 2005, vol. 5, pp. 606–610. 
[22] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” 
Adv. Neural Inform. Process. Syst. (NIPS), vol. 13, pp. 556–562, 2001.
[23] A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and Z. He, “Extended 
SMART algorithms for non-negative matrix factorization,” in Artificial Intelli-
gence and Soft Computing (ICAISC). New York: Springer, 2006, pp. 548–562.
[24] C.-J. Lin, “Projected gradient methods for nonnegative matrix factorization,” 
Neural Computat., vol. 19, no. 10, pp. 2756–2779, 2007. 
[25] R. Zdunek and A. Cichocki, “Nonnegative matrix factorization with constrained 
second-order optimization,” Signal Process., vol. 87, no. 8, pp. 1904–1916, 2007.
[26] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, 
“Algorithms and applications for approximate nonnegative matrix factorization,” 
Computat. Stat. Data Anal., vol. 52, no. 1, pp. 155–173, 2007. 
[27] M. Heiler and C. Schnörr, “Learning sparse representations by non-negative 
matrix factorization and sequential cone programming,” J. Mach. Learn. Res.,  
vol. 7, pp. 1385–1407, July 2006.
[28] H. Kim and H. Park, “Nonnegative matrix factorization based on alternating 
nonnegativity constrained least squares and active set method,” SIAM J. Matrix 
Anal. Applicat., vol. 30, no. 2, pp. 713–730, 2008. 
[29] J. Kim and H. Park, “Fast nonnegative matrix factorization: An active-set-like 
method and comparisons,” SIAM J. Sci. Comput., vol. 33, no. 6, pp. 3261–3281, 2011.
[30] A. Cichocki and A.-H. Phan, “Fast local algorithms for large scale nonnega-
tive matrix and tensor factorizations,” IEICE Trans. Fundam. Electron., Commun. 
Comput. Sci., vol. 92, no. 3, pp. 708–721, 2009.
[31] B. Klingenberg, J. Curry, and A. Dougherty, “Non-negative matrix factoriza-
tion: Ill-posedness and a geometric algorithm,” Pattern Recognit., vol. 42, no. 5, 
pp. 918–928, 2009.
[32] R. Zdunek, “Initialization of nonnegative matrix factorization with vertices of 
convex polytope,” in Artificial Intelligence and Soft Computing. New York: 
Springer, 2012, pp. 448–455. 
[33] J. Li and J. M. Bioucas-Dias, “Minimum volume simplex analysis: A fast algo-
rithm to unmix hyperspectral data,” in Proc. IEEE Int. Geoscience and Remote 
Sensing Symp. (IGARSS), 2008, vol. 3, pp. 250–253.
[34] W. S. B. Ouedraogo, A. Souloumiac, M. Jaidane, and C. Jutten, “Sim-
plicial cone shrinking algorithm for unmixing nonnegative sources,” in Proc. 
IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) 2012,  
pp. 2405–2408. 
[35] M. T. Chu and M. M. Lin, “Low-dimensional polytope approximation and its 
applications to nonnegative matrix factorization,” SIAM J. Sci. Comput., vol. 30, 
no. 3, pp. 1131–1155, 2008. 
[36] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, UK: 
Cambridge Univ. Press, 2004. 
[37] A. Swami, “Cramér-Rao bounds for deterministic signals in additive and multi-
plicative noise,” Signal Process., vol. 53, no. 2, pp. 231–244, 1996.
[38] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook. Kongens Lyngby, 
Denmark: Technical Univ. Denmark, 2006.
[39] M. Chu, F. Diele, R. Plemmons, and S. Ragni. (2004). Optimality, computa-
tion, and interpretation of nonnegative matrix factorizations. [Online]. Available: 
http://www4.ncsu.edu/~mtchu/Research/Papers/nnmf.pdf
[40] C. Hung and T. L. Markham, “The Moore-Penrose inverse of a partitioned 
matrix B C ,M = A D` j ” Linear Algebra Applica., vol. 11, no. 1, pp. 73–86, 1975. 
[41] C. Hung and T. L. Markham, “The Moore-Penrose inverse of a sum of 
matrices,” J. Aust. Math. Soc., Ser. A, vol. 24, no. 4, pp. 385–392, 1977. 

� [SP]


