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Abstract—This paper is concerned with regression under a
“sum” of partial order constraints. Examples include locally
monotonic, piecewise monotonic, runlength constrained, and uni-
modal and oligomodal regression. These are of interest not only in
nonlinear filtering but also in density estimation and chromato-
graphic analysis. It is shown that under a least absolute error
criterion, these problems can be transformed into appropriate
finite problems, which can then be efficiently solved via dynamic
programming techniques. Although the result does not carry
over to least squares regression, hybrid programming algorithms
can be developed to solve least squares counterparts of certain
problems in the class.

Index Terms—Dynamic programming, locally monotonic,
monotone regression, nonlinear filtering, oligomodal, piecewise
monotonic, regression under order constraints, runlength
constrained, unimodal.

I. INTRODUCTION

FOR THE purposes of this paper, a (nonparametric) regres-
sion problem is an optimization problem of the following

form: Given a vector , find
to

where is typically some metric or semi-metric [1], and
is some set of feasible (or,admissible) solutions known as the
characteristic setof the regression.

A common is the norm (Euclidean distance to the
origin), leading to least squares (LS) regression. LS regression
is optimal (in the maximum likelihood sense) when measure-
ment errors are additive, i.i.d. Gaussian. Gaussianity is an
often-made assumption, for both practical (tractability) and
theoretical (central limit theorem [2]) considerations. Another
common is the norm, leading to least absolute error
(LAE) regression. The use of the norm instead of the
norm may add a certain measure of robustness to the regres-
sion: LAE regression is optimal (in the maximum likelihood
sense) when measurement errors are additive, i.i.d. Laplacian.
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The Laplacian is a much longer tailed distribution than the
Gaussian; therefore, it is better suited to model impulsive
noise. Constant LAE regression for
samples can reject up to impulses (outliers), regardless of
strength; constant LS regression may be significantly affected
by such impulses. Refer to [3] for a discussion on the statistical
optimality of regression under a semimetric.

Following [1], given any , we define its associated
sign skeleton as

if
if
if

Definition 1: A skeletonizableconstraint set is any such
that membership of in can be determined by sole knowl-
edge of its sign skeleton .

This paper deals with regression under skeletonizable con-
straint sets. Note that since membership ofin can be
determined by sole knowledge of its sign skeleton, there
exists some such that if
and only if , in which case,

. The inner minimization is a
regression under a partial order constraint. LS regression under
partial order constraints is the subject of [4]. The overall
minimization is a regression over a union (“sum”) of partial
order constraints.

Another issue is whether or not allows the elements of
to take on continuous or only discrete (and finitely many)

values. Although the latter is often the case of interest in digital
filtering applications [5]–[7], in many other applications (e.g.,
chromatography), we are interested in regression in [8].

This paper deals with LAE and LS regression in
under skeletonizable constraint sets. We focus on a selected
subset of problems in this class, namely, locally monotonic,
piecewise monotonic, runlength constrained, and unimodal and
oligomodal regression. These are of interest in segmentation
and nonlinear filtering [1], [3], [5], [6], [7], [9] density
estimation [4], psychology [10], databases [11], biology [12],
texture perception [13], and optimum decoding for magnetic
media storage [14]. In the context of nonlinear filtering, these
regressions offer optimal counterparts of standard nonlinear
filters, such as iterated median or morphological filters, while
obviating the restriction to monotone increasing operators [5],
[6]. It is shown that under a least absolute error criterion, these
problems can be transformed into appropriatefinite problems,
which can then be efficiently solved via dynamic programming
(DP) techniques. Although the result does not carry over to
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least squares regression, hybrid programming algorithms can
be developed to solve least squares counterparts of certain
problems in the class.

A. Organization

The rest of this paper is structured as follows. Section II
presents a result that sets the stage for efficient DP solution
of LAE regression under skeletonizable. Section III is con-
cerned with locally monotonic regression in and includes
background and motivation, a review of previous approaches,
and some pertinent material on monotone regression and
Kruskal’s algorithm. Section IV is concerned with piecewise
monotonic regression in . Section V presents simulation
results for locally monotonic and piecewise monotonic re-
gression. Section VI discusses an algorithm for runlength
constrained regression, whereas Section VII discusses algo-
rithms for unimodal and oligomodal regression. Conclusions
are drawn in Section VIII.

II. A QUANTIZATION RESULT FOR

SKELETONIZABLE LAE REGRESSIONS

We have the following Lemma, which is a generalization
of [1, Lemma 4].

Lemma 1: Suppose that is an norm, and ,
i.e., for some .
Furthermore, suppose thatis skeletonizable. If is a solution
of

then is a piecewise-constant sequence whose pieces are
constant regressions of the corresponding segments ofunder
the given distance metric.

Proof: Lemma 4 of [1] makes the same claim for the
special case of locally monotonic regression. The proof follows
along the lines of the proof in [1]. In particular, recall that since
membership of in can be determined by sole knowledge of
its sign skeleton , there exists some
such that if and only if , in which case,

. Fix ,
and consider the inner minimization. An optimalcan always
be thought of as a piecewise constant sequence (some or all of
its pieces may contain just one element). If any given constant
piece of is not a constant regression of the corresponding
elements of , then its fit (and, thus, the fit of) may always
be improved by perturbing its level by an infinitesimal amount
to bring it closer to the said regressionwithout changing the
sign skeleton . This is true because strict inequality allows
for an open ball of free movement of level in either direction.
This contradicts conditional optimality of conditioned on

. Thus, an optimal for any given is a piecewise-
constant sequence whose pieces are constant regressions of the
corresponding segments ofunder the given distance metric.
This holds for all , and the result follows.

Lemma 2: If is norm, i.e.,
, and is skeletonizable, then there exists a solution

of

such that for all , there exists an
such that .

Proof: Constant regression under amounts to picking
a median of the elements involved (e.g., [1]). If the number
of elements is odd, then the median is the -order
statistic of the given elements; if is even, then the closed
interval delimited by the -order statistic and the -
order statistic is the set of all medians of the given elements
[1]. Either way, one may always select a median from the
given elements.

Corollary 1: Suppose that is norm. Define
. Furthermore,

suppose that is skeletonizable. Then, there exists a solution
of

which is also a solution of

All other solutions of the former problem are equivalent to
in the sense that they all achieve the same .

Any multiple solutions of the latter problem solve the former
problem as well.

This is important becauseit reduces regression over a subset
of to a finite problem. In all cases of interest to us, does
not have the algebraic structure of a subspace, nor is it convex;
thus, the original problem is difficult. The finite problem, on
the other hand, often admits an efficient algorithmic solution.

In the sequel, we explore several regression problems that
satisfy the conditions of this result. As we will see, the
corresponding LS versions do not admit such a “universal”
solution and have to be addressed on a one-by-one basis using
different means.1

III. L OCALLY MONOTONIC REGRESSION IN

A. Background on Locally Monotonic Regression

Locally monotonic regression is the optimal counterpart
of iterated median filtering. In [1], Restrepo and Bovik de-
veloped an elegant mathematical framework in which they
studied locally monotonic regressions in . They proved
existence of such regressions and provided algorithms for their
computation. However, the complexity of their algorithms is
exponential in , which is the size of the input sample.
In addition to existence, Restrepo and Bovik showed that
locally monotonic regression admits a maximum likelihood
interpretation [3].

1The `1 norm is “special” in a particular sense. Other such strong results
exist for the`1 norm but do not extend to the case of the`2 norm. A recent
example appears in [15], where it is shown that a similar property holds for
the solution of a particularregularizationproblem defined vià1 norms. Note
that here, we instead have aclassof regressionproblems for which our result
is valid.
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In [6], the first author considereddigital locally monotonic
regressions in which the output symbols are drawn from a
finite alphabet and, by making a connection to Viterbi decod-
ing, provided a fast (linear in ) algorithm that computes any
such regression, be it under a metric, semi-metric, or arbitrary
bounded per-letter cost measure.

A few definitions are in order. If is a real-valued sequence
(string) of length and is any integer less than or equal
to , then asegmentof of length is any substring of
consecutive components of. Let

be any such segment. is
monotonic if either or

.
Definition 2: A real-valued sequence of length is

locally monotonicof degree (or lomo- or simply
lomo in case is understood) if each and every one of its
segments of length is monotonic.

Notice that some segments may be increasing, others de-
creasing, and the sequence may still pass the test of local
monotonicity. In general, monotonicity implies local mono-
tonicity, but not vice versa. Any sequence is locally monotonic
of degree ; therefore, the interesting degrees are 3
through . Throughout the following, we assume that

. If , then a sequence of length that is
lomo- is lomo- as well; thus, thelomotonicityof a sequence
is defined as the highest degree of local monotonicity that it
possesses [1].

A sequence is said to exhibit an increasing (resp. de-
creasing) transition at coordinateif (resp.

). The following (cf. [1], [16], [17]) is a
key property of locally monotonic signals: If is locally
monotonic of degree , then has a constant segment (run
of identical elements) of length at least in between an
increasing and a decreasing transition. The reverse is also true.

The study of local monotonicity (which led to the idea of
locally monotonic regression) has a relatively long history in
the field of nonlinear filtering. Local monotonicity appeared
in the study of the set of root signals of the median filter
[16]–[23]. The median is arguably the most widely known and
used nonlinear filter. Locally monotonic signals of degree
are roots of the -point 1-D median filter (meaning
that they are not affected by filtering using a -
point median filter). Not all median roots are locally monotonic
[23]; however, locally monotonic signals can be thought of
as the class of “well-behaved” median roots, at least from
a nonlinear filtering perspective. In practice, iterations of
the median usually (but not always) converge to a locally
monotonic approximation of the input signal. It is then natural
to ask for thebestpossible locally monotonic approximation
of the input at hand, rather than settle for the arbitrarily chosen
locally monotonic approximation provided by iterated median
filtering. This gives rise to locally monotonic (lomo) regression
[1], [3]

where is the set of all sequences of elements of that
are locally monotonic of lomo-degree.

B. Previous Approaches

Previous algorithms for lomo regression include the follow-
ing.

• TheTubeandBlotchingalgorithms of Restrepo and Bovik
[1]: These are of exponential complexity.

• The work of Sidiropoulos on fast digital locally mono-
tonic regression [6]: This algorithm has complexity linear
in the number of samples but solves a discretized problem.

• The recent work of de la Vega and Restrepo [24], in
which the authors show that, in computing a LS lomo-
regression, we do not need flat segments of length greater
than or equal to : This result can be utilized to
cut down search complexity and construct more efficient
LS lomo regression algorithms. The authors note that
complexity is polynomial in the size of the sample.

In the sequel, we present an efficient exact algorithm for
locally monotonic LAE regression in and a fast algorithm
for locally monotonic LS pseudo-regression in .

C. Locally Monotonic LAE Regression in

Consider the locally monotonic LAE regression problem

It is easy to see that satisfies the condition of Corollary 1.
Define as in Corollary 1, and consider the resulting digital
problem

This is an instance of digital locally monotonic regression,
which has been solved in [6] by means of DP. The complexity
of the digital algorithm is . has, at most,
elements. It follows that the computational complexity of
locally monotonic LAE regression in is . This
solution isexactandefficient, although it may be quite tedious
for long observation sequences.

We may improve on complexity by capitalizing on the
following observation. Since, at any given point, the value
of the optimum solution is the median of a small number of
input samples in the neighborhood of the given point, we may
restrict the alphabet at time to be the set of input values
in a suitable neighborhood about. The longest streaks in a
locally monotonic regression of degreeare usually bounded
in length by , where is a small integer constant; we may
therefore pick alocal alphabetfor that consists of, say,
at most elements and run DP under this restriction. This
is beneficial for small relative to and has complexity

.

D. Monotone Regression

Monotone (say, increasing) LS regression has the following
problem: Given , find to

is monotone increasing
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or, to be more precise, monotone nondecreasing
. This is a special case ofisotonicregression (with respect

to a simple order) [4]. In 1964, Kruskal [10] came up with
what appears to be the best way of solving this problem,
which he studied in the context of his pioneering work in
multidimensional scaling; see also Leeuw [25], Barlowet
al. [4], Cran [26], and Bril et al. [27]. The computational
algorithm is often referred to as theup and down blocks (UDB)
algorithm [4]. Kruskal’s approach isiterative and makes use
of a simple but clever observation to reduce the problem of
monotone LS regression to a finite sequence of averaging steps
(this can be understood within the framework of Lemma 1).
The theoretical complexity of Kruskal’s algorithm is (rather
loosely) upper bounded by ; in practice, it is almost

.
For our purposes, as we will soon see, we will need a fast

algorithm for a slightly different problem. In particular, we will
need an algorithm for thesuffix-constrained nondecreasing
regressionproblem

i.e., the last elements of the regression should be
equal, for some , as well as the corresponding
nonincreasing problem

Suppose that we have an algorithm that solves theprefix-
constrained nondecreasing regressionproblem

Then, it is easy to see that the first of the two problems
of interest can be solved by feedingrev (where the
rev operation simply reverses the order of elements of its
argument) as input to the said algorithm and then computing

rev , whereas the second problem of interest can be solved
by feeding rev to the said algorithm and then computing
rev . These statements can be verified using only that

rev rev , and .
It will be beneficial to be able to compute all subregressions,

i.e., in the context of the prefix-constrained nondecreasing
regression algorithm predicated above, it will be useful to
be able to obtain as byproducts all prefix-constrained sub-
regressions on the first elements of for .
Given Kruskal’s basic monotone regression algorithm [10],
the construction of an algorithm that incorporates the desired
additional features is a simple exercise. The details are left out
due to space considerations, but MATLAB code is available
at http://www.people.virginia.edu-nds5j.

E. Locally Monotonic LS Regression in

Let us now consider locally monotonic LS regression

This problem turns out to be more difficult than its LAE
counterpart. In particular, we cannot resort to a result similar

to Corollary 1: The set of all partial averages over a given set
of reals can be very large.

A suboptimum but efficient way to proceed is as follows. By
proper discretization, digital locally monotonic regression can
provide an approximate solution to the underlying regression
in . This interim solution can be improved by applying the
suffix-constrained monotone regression algorithm in between
adjacent breakpoints of the interim solution. If the resulting
regression respects local endpoint consistency constraints (e.g.,
that the first element of an increasing segment following a
decreasing segment should be greater than the last element
of the decreasing segment), then inserting it in place of the
corresponding piece of the interim solution will improve the
fit without violating local monotonicity constraints.

Since the digital algorithm is linear in (but quadratic in
the size of the digital alphabet—meaning that very fine dis-
cretization can be costly) and the suffix-constrained monotone
regression algorithm is better than quadratic in, it follows
that the complexity of this suboptimum two-step process is
loosely bounded above by and much better than this
figure in practice. In Section V, we show that this two-step
approach provides measurable improvements in fit relative to
the digital algorithm, at a small extra complexity cost.

IV. PIECEWISE MONOTONIC LS REGRESSION IN

Piecewise monotonic (pimo) LS regression of degree has
the following problem:

where is the set of all sequences of elements of
that can be constructed by concatenating monotone pieces,
each one of which can be either increasing or decreasingand
of length at least . If , then we say that is
piecewise monotonic of pimo-degree. Note that

; the minimum is a nondecreasing function of.
There are several reasons for introducing piecewise mono-

tonic regression. From an optimization viewpoint, piecewise
monotonic regression relieves some of the constraints asso-
ciated with local monotonicity. In particular, it relieves the
segment endpoint consistency constraints (e.g., that the first
element of an increasing segment following a decreasing seg-
ment should be greater than the last element of the decreasing
segment) as well as the constraint that individual monotone
segments should terminate with a suffix string of at least
identical samples. The latter generates undesirablestreaking
effects that are similar to median filtering [28]. The idea is
that by relaxing the suffix constraint, we may be able to
reduce2 streaking without sacrificing noise suppression and
edge-preservation capabilities of the regression. This is indeed
the case, as we will soon see in Section V by means of sim-
ulation. The fact that relaxing some of the local monotonicity
constraints effectivelydecouplesthe problem in a particular
sense and allows us to develop a fast hybrid DP-Kruskal
algorithm for piecewise monotonic LS regression is also

2Streaking can be also attributed in part to the use of an`p normp = 1; 2

and cannot be avoided altogether. This is implicit in Lemma 1.
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important. Note that satisfies the condition of Corollary 1
and that the digital counterpart of this problem admits efficient
solution via DP in a way similar to [6]. Therefore, LAE pimo
regression in can be performed at a complexity cost of

.

A. Hybrid Programming Algorithm for
Piecewise Monotonic LS Regression

Given , we define its associatedtrend switching set
to be the set of indices , where exhibits

a trend transition (increasing to decreasing or vice versa).3 Let
us assume, without loss of generality, thatstarts with an
increasing trend.4

Convention 1: By convention, we allow the elements of
to take on the value (which serves as a “gate”

for unused trend switches); this allows us to fix
card floor .

It is straightforward to verify the following proposition.
Proposition 1: Under Convention 1, if and only if

satisfies the following three properties:
Property 1: .
Property 2: If , then

.
Property 3: If , then .
Remark 1: In between is constrained to be

monotonic (specifically, nondecreasing for: odd; nonincreas-
ing for : even); otherwise, it is unrestricted.

Let us denote by the set of all positive integer -tuples
that satisfy Properties 1, 2, and 3. By the above proposition,

if and only if . Therefore, the piecewise
monotonic least squares regression problem

is equivalent to

Define ; then, is equal to

3We may determine the trend switching set by knowledge of the sign
skeleton but not vice versa. In the case of piecewise monotonic regression,
feasibility of a candidate solution may be determined either from its sign
skeleton or its trend switching set. The latter leads to a more compact
parameterization of the feasible set.

4Otherwise, we simply run the process twice—one time starting with an
increasing trend and the other with a decreasing trend—and pick the best of the
two. This doubles the amount of computation but does not affect complexity
order. Alternatively, we may allow the first monotone regression (andonly
the first) to be of zero length; this accomplishes the same goal at a smaller
computational cost.

Fig. 1. Nodes (states) at stagei and predecessors at stage(i� 1). At stage
i, the bottom node has just one predecessor that is� nodes apart. The next
node going upwards has just two predecessors, the furthest of which is�+1
nodes apart. A generic noden at stagei hasn� i(�� 1)+ 1 predecessors,
the furthest of which isn� (i� 1)(�� 1) + 1 apart. The top node(N) is
N � (i� 1)(�� 1) + 1 apart from its furthest predecessor. Note that node
N is special in the sense that it is possible to move from nodeN at stage
(i � 1) to nodeN at stagei at zero cost.

where by convention, and is the cost of
monotone (specifically, nondecreasing for: odd; nonincreas-
ing for : even) least squares regression on the elements of
between indices and inclusive.

The above derivation is related in spirit to an algorithm
of Blake for a nonlinear regularization problem [29] and an
algorithm of Bellman for a piecewise linear approximation
problem subject to a budget on the number of pieces [30].
The key to all is dynamic programming over “breakpoint”
variables. The Viterbi algorithm (VA) is the most familiar
example of dynamic programming. In a nutshell, the VA
is nothing but a clever method to search for an-tuple

of finite-alphabet “state” variables that minimizes
, where is given, and

is some arbitrary “one-step transition” cost. The VA avoids
exhaustive search and makes it possible to find an optimum
solution in time linear in (the proportionality constant
depends on the cardinality of the finite alphabet and the
specific cost structure) [31]–[34]. The problem at hand is
in a form suitable for dynamic programming over the trend
switching variables.

Consider Fig. 1, which depicts nodes (states) at stageand
their respective potential predecessors at stage . At stage
, the node tags correspond to all the possible values ofand

similarly for stage . At stage , the bottom node has just
one predecessor that is nodes apart. The next node going
upwards has just two predecessors, the furthest of which is

nodes apart. Node at stage has
predecessors, the furthest of which is
apart. The top node is apart from
its furthest predecessor.

Each node at stageis visited in turn, and a decision is made
as to which of the associated potential predecessors is best for
the node at hand. To do this, we need to calculate
for the specific value of assigned to the node at hand andall
values of assigned to its potential predecessor nodes; add
the respective results to the corresponding cumulative costs
of the potential predecessor nodes; pick the one that gives
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minimum error; update the cumulative cost of the node at
hand; set up a pointer to its best predecessor, and then move
on to the next node, the next stage, and so on.

The important observation is that a “generic” node, say, the
one that has been assigned the value , only needs to
make one call to Kruskal’s monotone regression algorithm,
and this call suffices to compute the node transition costs

for all potential predecessors. Indeed, according to
our earlier discussion, nodeonly needs to call the algorithm
once with the longest input, and all required subregressions
will be computed along the way for free. The length of this
longest input is .

Since Kruskal’s algorithm is better than quadratic, it follows
that the computational cost for all required computations for
the worst (top) node at stageis bounded above by

. Stage has a total of nodes;
thus, the computational cost for all required computations for
stage is (quite loosely) bounded above by

There exist at most stages, and the worst stage is ;
therefore, the total computational cost for the entire regression
is bounded above by

This bound is rather conservative, but it seems hard to improve
for arbitrary (more sophisticated counting arguments result
in a bound of the same order).

V. SIMULATION

The purpose of this section is to enhance the reader’s
intuition by providing and discussing the results of several
simulation experiments on locally monotonic and piecewise
monotonic LS regression in .

A. Locally Monotonic LS Regression in

We now investigate the fit versus speed tradeoff between
the two-step algorithm and the digital algorithm for locally
monotonic LS pseudo-regression. We shall see that for a
small additional complexity cost, the two-step algorithm can
significantly improve fit.

The two efficient algorithms have been implemented in
C and MATLAB. Figs. 2–13 present the results of several
experiments. Numerical results are summarized in Table I.
The input is a 300-point sample of a noisy
version of an ECG signal taken from the signal processing
information base (http://www.spib.rice.edu). In all figures, the
spike train at the bottom depicts trend switches, as detected
by the digital algorithm. In the captions, is the size of the
digital alphabet, and is the lomo-degree.

Figs. 2–4 present the results for . In
particular, Fig. 2 presents the input versus the two-step real-
valued regression for . Fig. 3 presents
the input versus the digital regression for the same .
Fig. 4 compares the two-step real-valued regression and the

Fig. 2. Input (dashed) versus two-step real-valued (solid) regression
jAj = 40; � = 20.

Fig. 3. Input (dashed) versus digital (solid) regressionjAj = 40; � = 20.

Fig. 4. Two-step real-valued (solid) versus digital (dashed) regression
jAj = 40; � = 20.
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Fig. 5. Input (dashed) versus two-step real-valued (solid) regression
jAj = 40; � = 5.

Fig. 6. Input (dashed) versus digital (solid) regression,jAj = 40; � = 5.

Fig. 7. Two-step real-valued (solid) versus digital (dashed) regression
jAj = 40; � = 5.

Fig. 8. Input (dashed) versus two-step real-valued (solid) regression
jAj = 20; � = 20.

Fig. 9. Input (dashed) versus digital (solid) regression,jAj = 20; � = 20.

Fig. 10. Two-step real-valued (solid) versus digital (dashed) regression,
jAj = 20; � = 20.
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Fig. 11. Input (dashed) versus two-step real-valued (solid) regression,
jAj = 20; � = 5.

Fig. 12. Input (dashed) versus digital (solid) regression,jAj = 20; � = 5.

Fig. 13. Two-step real-valued (solid) versus digital (dashed) regression,
jAj = 20; � = 5.

TABLE I
FIT AND CPU TIME (IN MINUTES’SECONDS”-C AND MATLABON SUN
SPARC10,N = 300) FOR LOMO LS REGRESSION. fD (f2S): FIT,
DIGITAL (TWO-STEP); TD (T2S): CPU TIME, DIGITAL (TWO-STEP)

corresponding digital regression. Subsequent triples of figures
(through Fig. 13) do the same for various values of .

Let us consider the numerical results summarized in Table I.
An important general observation is that the difference in run
time between the digital and the two-step real-valued algorithm
is negligible. In absolute terms, both run in the order of a few
seconds, or a couple of minutes, at worst. In terms of fit, the
two-step algorithm always improves on the fit of the digital
algorithm, sometimes by as much as 30%. This improvement
becomes more pronounced as is reduced (which also leads
to a rapid decrease in complexity since the digital algorithm is
quadratic in ). Furthermore, the percent improvement in fit
afforded by the two-step algorithm increases with decreasing

. This may be intuitively explained as follows. Whenis
small, the digital algorithm is forced to closely track the input,
thereby exhibiting tracking oscillations in a manner similar
to a phenomenon known asslope over/under loadin delta
modulation [35].

From Table I, we may also observe that the second step of
the two-step algorithm is able to compensate for inaccuracies
caused by using a small alphabet in the first (digital) step.
Note that the fit of the two-step algorithm remains essentially
the same, regardless of whether is 40 or 20, at least for

, with a small degradation when .
Fig. 14(a) plots the percent improvement in LS fit afforded

by the two-step algorithm versus the digital algorithm, whereas
Fig. 14(b) plots CPU time for the two-step algorithm as a
function of and .

B. Piecewise Monotonic LS Regression in

The results of experiments on piecewise monotonic LS re-
gression are presented in Fig. 15 and Table II. Fig. 15 presents
the result of piecewise monotonic regression of pimo-degree

, respectively, for the same noisy ECG signal.
In the figure, the spike train at the bottom of both (a) and
(b) depicts optimal trend switches, as detected by the exact
hybrid algorithm. Table II summarizes LS fit and CPU time
for .

A couple of important remarks are in order. First, one may
verify that streaking is much less pronounced compared with
locally monotonic regression, e.g., compare the corresponding
regressions for : The first pulse is blotched by locally
monotonic regression, yet it is well preserved by piecewise
monotonic regression. Second, this reduction in streaking is
not at the expense of noise smoothing and/or the ability to
follow signal edges in the data, at least for moderate values
of . The drawback is that for very small , piecewise
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(a)

(b)

Fig. 14. (a) Percent improvement in LS fit curves as a function of�. (b)
CPU time required by the two-step algorithm as a function of�. Solid curves:
jAj = 40. Dashed curves:jAj = 20.

monotonic regression is more susceptible to outliers than
locally monotonic regression.

The choice of ECG signal data was not arbitrary; aside
from it exhibiting sharp level transitions (thus being a natural
candidate for application of nonlinear smoothing techniques),
it was meant to hint on an interesting potential application
of piecewise monotonic regression. In the interpretation of
ECG signals, the relative timing of the P-wave, QRS-complex,
and T-wave is important. These features are relatively easily
picked up by a trained eye, even when the data is noisy,
yet automatic detection and segmentation is difficult due to
changes in heart rate, noise, and other considerations [36].
Consider Fig. 16. It depicts another portion of the same ECG
and the result of piecewise monotonic regression of degree

. The P-wave, QRS-complex, and T-wave have been
manually annotated, and the spike train at the bottom depicts
the locations of optimal trend switches, as detected by the

(a)

(b)

Fig. 15. Input (dashed) versus pimo regressions for� = 50; 20.

TABLE II
FIT AND CPU TIME (IN MINUTES’SECONDS”-MATLABON

SUN SPARC10,N = 300) FOR PIMO LS REGRESSION

exact hybrid algorithm. Notice that P, Q, R, S, and T can be
accurately localized by looking at the detected optimal trend
switches.

VI. RUNLENGTH CONSTRAINED

LEAST SQUARES REGRESSION IN

Let us now consider the runlength constrained least squares
problem

where is the set of all sequences of elements of that
are piecewise constant, and the length of constituent pieces is
bounded below by .
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Fig. 16. Piecewise monotonic regression may aid in the detection of signif-
icant events in ECG signals. Here,� = 20.

This problem appears in the context of segmentation and
edge detection. Its digital (finite-alphabet) version has been
considered in [5], where an efficient DP algorithm was devel-
oped for its solution, and the properties of the associated I/O
operator were investigated. Here, we are interested in the same
problem but this time in .

We may mimic the development presented for the case
of piecewise monotonic regression and associate with each
element of its correspondinglevel switching set .

plays the role of , and the rest of the derivation
remains the same. A major simplification is that in runlength
constrained regression, the monotone regression subroutine
is replaced by simple averaging. We may precompute all
required averages and associated costs in-between any two
indices at a cost of before running the DP program.
These precomputed data can be stored in a table for easy
access during runtime. Now, replace with in the
complexity analysis of the proposed algorithm for piecewise
monotonic regression. Since all averages and associated costs
are stored in the table, is readily available for
any and ; thus, the computational cost for all required
computations for the worst (top) node at stageis bounded
above by . A straightforward calculation
shows that the total computational cost for the entire regression
is bounded above by . Observe
that when , this bound predicts complexity ,
which is exactly what is needed for computing the average of

elements.

A. The LAE Case

We can invoke Corollary 1 to obtain an exact
algorithm for runlength constrained LAE regression in .
In addition, the LS algorithm above can be modified to handle
runlength-constrained LAE regression in by replacing the
averaging operation in-between level switches by a median
calculation. Computational savings may be realized by using
an efficient running median algorithm (e.g., the one of Huang
et al. [37] based on histogram updates) for computing all
required constant subregressions.

VII. OLIGOMODAL REGRESSION IN

Oligomodal regression is the following problem:

where is the number of peaks in, and is a positive
integer (note that aplateauis counted as a single peak). This
problem is of interest in e.g., chromatography [8], and special
problems in density estimation [4].

A. Oligomodal LAE Regression in

Observe that we may determine whether or not by
sole knowledge of the sign skeleton of. In addition, we may
construct a DP program to solve a discretized finite-alphabet
version of a given oligomodal regression problem. This can be
done along the lines of [5] and [6] or, as explained in [8], for
an alternative approach to unimodal regression. We may show
that the complexity of this program is , where

size of the finite alphabet;
number of peaks;
total length of the regression.

It therefore follows from Corollary 1 that we may construct a
suitable DP program to solve oligomodal LAE regression in

at a complexity cost of .

B. Unimodal LS Regression in

Unimodal regression is the following problem. Given
, find to

unimodal

i.e., has only one peak. We are particularly
interested in non-negative unimodal regression (note that a
bounded problem can be transformed into a non-negative
problem), in which case, the unimodality constraint can be
expressed as size

for some mode location, which is itself subject to optimiza-
tion.

If we fix the mode location, the constrained problem is an
instance of quadratic programming (QP). Exhaustive search
through all possible mode locations, each time solving a
QP program, gives a first naive way of solving it. Improved
algorithms that are more efficient than generic QP for the
fixed mode problem, coupled with exhaustive search for the
mode location, are discussed in [4]. This problem is of interest
in, among other things, chromatographic analysis and flow
injection analysis [8]. An interesting result of [8] is a proof
that unimodal least squares regression (including optimization
of mode location) is no more difficult than two simple Kruskal
monotone regressions. This is well under and, in prac-
tice, almost : a measurable improvement over exhaustive
search for the optimal mode location [4], which is an order of
magnitude more complex.
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C. Oligomodal LS Regression in

Along the lines of the previously presented hybrid algorithm
for piecewise monotonic LS regression, we may envision
the construction of a similar algorithm for oligomodal LS
regression, consisting of a master DP module and a Kruskal
monotone regression (or unimodal regression) module. How-
ever, it turns out that even after fixing peak and valley
locations, the resulting problem isnotdecomposable in a series
of either monotone or unimodal independent subregressions
in between these locations, as shown by means of counter
example in [8]. Thus, DP will not help solve this LS problem
exactly. The point we would like to make is that it may help
solve the problem approximately.

An alternativeapproximateapproach would be as follows.
First, we may construct a DP program to solve a discretized
finite-alphabet version of a given oligomodal LS regression
problem. This program is a straightforward extension of the
unimodal program given in [8]. Note that the resulting DP
program provides an exact solution of the discretized prob-
lem, which is also an approximate solution of the original
problem. As mentioned earlier, the complexity of this program
is . This pseudoregression can be improved by
solving a QP problem to compute the optimum regression
conditioned on the detected peaks and valleys.

VIII. C ONCLUSION

This paper has focused on the development of efficient
algorithms for a class of regression problems that are of
interest in nonlinear filtering but in other diverse areas as
well. A key result is that under a least absolute error criterion,
these problems can be transformed into appropriate finite
problems, which can then be efficiently solved via dynamic
programming techniques. Although the result does not carry
over to least squares regression, hybrid programming algo-
rithms can be developed to solve least squares counterparts of
certain problems in the class. As an example, a master/slave
DP/monotone regression algorithm has been developed for
piecewise monotonic regression.

Future work includes the study of convergence of multi-
objective algorithms incorporating some of the present algo-
rithms as subroutines and extensions to handle additional prior
knowledge, e.g., smoothness or equality constraints.

Related MATLAB and C programs can be found at
http://www.people.virginia.edu/˜nds5j and at http://newton.
foodsci.kvl.dk/rasmus.html.
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