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Mathematical Programming Algorithms for
Regression-Based Nonlinear Filtering f&”"

Nicholas D. SidiropoulosMember, IEEE and Rasmus Bro

Abstract—This paper is concerned with regression under a The Laplacian is a much longer tailed distribution than the
“sum” of partial order constraints. Examples include locally Gaussian; therefore, it is better suited to model impulsive
monotonic, piecewise monotonic, runlength constrained, and uni- noise. Constant LAE regression fo¥ = 2v +1 (v > 1)

modal and oligomodal regression. These are of interest not only in | iect 0 i | i al f
nonlinear filtering but also in density estimation and chromato- samples can reject up te impulses (outliers), regardless o

graphic analysis. It is shown that under a least absolute error Strength; constant LS regression may be significantly affected
criterion, these problems can be transformed into appropriate by such impulses. Refer to [3] for a discussion on the statistical
finite problems, which can then be efficiently solved via dynamic optimality of regression under a semimetric.

programming techniques. Although the result does not carry — pqowing [1], given anyx € IRY, we define its associated
over to least squares regression, hybrid programming algorithms . ! Ne1 -
sign skeletors,, € {-1,0,1} as

can be developed to solve least squares counterparts of certain

problems in the class. -1, if z(n+1) <z(n)

Index Terms—Dynamic programming, locally monotonic, sx(n) =< +1, if z(n+1) > z(n)
monotone regression, nonlinear filtering, oligomodal, piecewise 0 if #(n+1) = z(n)
monotonic, regression under order constraints, runlength ’ )

constrained, unimodal. Definition 1: A skeletonizableonstraint set is any such

that membership ok in ¢ can be determined by sole knowl-
|. INTRODUCTION edge of its sign skeletos,.
OR THE purposes of this paper, a (nonparametric) regre?-T.his paper deals with _regression unde_r skfeletonizable con-
sion problem is an optimization problem of the foIIowingS raint _sets. Note that since membe_rshlpxo n ¢ can be
form: Given a vectory — {y(n)}\_, € RY find x — de.termmed by sole knowledgtir_(if its sign skeleton,.there
(=)}, to : : exists sor_ne@(@) - {'—1,0,.1} such thatx € ¢ if
n=t and only if s, € ©(®), in which casemin.eq d(y — x) =
minimize: d(y — x) ming, co(e)[mins, d(y — x)]. The inner minimization is a
subject to: x € regression under a partial order constraint. LS regression under
1l partial order constraints is the subject of [4]. The overall
minimization is a regression over a union (“sum”) of partial
order constraints.
Another issue is whether or ndt allows the elements of
o take on continuous or only discrete (and finitely many)
ues. Although the latter is often the case of interest in digital
ering applications [5]-[7], in many other applications (e.qg.,
romatography), we are interested in regressiofRih [8].

whered(-) is typically some metric or semi-metric [1], a
is some set of feasible (oadmissibl¢ solutions known as the
characteristic sef the regression.

A commond(-) is the £; norm (Euclidean distance to the
origin), leading to least squares (LS) regression. LS regressf&rﬁ
is optimal (in the maximum likelihood sense) when measur a
ment errors are additive, i.i.d. Gaussian. Gaussianity is
often-made assumption, for both practical (tractability) an . . . r
theoretical (central limit theorem [2]) considerations. Another This paper _deals with LAE and LS regression ii"
commond(-) is the #; norm, leading to least absolute erroPnder skeletonizable constraint sétsWe focus on a selected

(LAE) regression. The use of the norm instead of thée, sybset_of problems_ in this class, namgly, locally ”_‘O”O“’”'C’
gcewise monotonic, runlength constrained, and unimodal and

norm may add a certain measure of robustness to the reg% dal ion. Th £ int fi tati
sion: LAE regression is optimal (in the maximum likelinood'90oModal regression. these are ot interest in segmentation

PR and nonlinear filtering [1], [3], [5], [6], [7], [9] density
sense) when measurement errors are additive, i.i.d. Laplac%st’imation [4], psychology [10], databases [11], biology [12],
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least squares regression, hybrid programming algorithms azn

be developed to solve least squares counterparts of certain minimize: d(y — x)

problems in the class. subject to: x € ®

A Oraanization such that for alln = 1,2,..., N, there exists ann €
L’ {1,2,..., N} such thatz,(n) = y(m).
The rest of this paper is structured as follows. Section Il pProof: Constant regression undér amounts to picking

presents a result that sets the stage for efficient DP solutignmedian of the elements involved (e.g., [1]). If the number
of LAE regression under skeletonizalste Sec;ion lllis con- of elementsL is odd, then the median is th(e%)-order
cerned with locally monotonic regression " and includes  statistic of the given elements; & is even, then the closed
background and motivation, a review of previous approachegterval delimited by the{%)-order statistic and the% +1)-

and some pertinent material on monotone regression afider statistic is the set of all medians of the given elements
Kruskal's algorithm. Section IV is concerned with piecewisgl]. Either way, one may always select a median from the
monotonic regression idk”. Section V presents simulationgiven elements. n
results for locally monotonic and piecewise monotonic re- Corollary 1: Suppose thatl(-) is £, norm. Define A =
gression. Section VI discusses an algorithm for runlength ¢ IR | 3n € {1,2,...,N} : y(n) = v}. Furthermore,

constrained regression, whereas Section VIl discusses alg@ppose thad is skeletonizable. Then, there exists a solution
rithms for unimodal and oligomodal regression. Conclusiossg, of

are drawn in Section VIII. e e .
minimize: d(y — x)

subject to: x € ¢
Il. A QUANTIZATION RESULT FOR
SKELETONIZABLE LAE REGRESSIONS

which is also a solution of
minimize: d(y — x
fV[\ie Eave the4]following Lemma, which is a generalization subject to: x e(}ib A JL)‘J\
of [1, Lemma 4].
Lemma 1: Suppose thad(-) is an/, norm, andp € [1, ), All other solutions of the former problem are equivalent to
e dy—x) = (N ly(n)—a(n)[P)+ for somep € [1,00). o in thPj sense f[hat they all achieve the sadig — x).
Furthermore, suppbse thatis skeletonizable. i is a solution ANy Multiple solutions of the latter problem solve the former

of problem as well.
This is important becausereduces regression over a subset
minimize: d(y — x) of R" to a finite problemIn all cases of interest to u$, does
subject to: x € not have the algebraic structure of a subspace, nor is it convex;

thus, the original problem is difficult. The finite problem, on
then x is a piecewise-constant sequence whose pieces g other hand, often admits an efficient algorithmic solution.
constant regressions of the corresponding segmentsiofier |y the sequel, we explore several regression problems that
the given distance metric. satisfy the conditions of this result. As we will see, the
Proof: Lemma 4 of [1] makes the same claim for theorresponding LS versions do not admit such a “universal”

special case of locally monotonic regression. The proof follovgg|ytion and have to be addressed on a one-by-one basis using
along the lines of the proof in [1]. In particular, recall that sincgjfferent meang.

membership ok in & can be determined by sole knowledge of

its sign skeletors,, there exists som&(®) C {—1,0,1}V~1 "
such thatx € @ if and only if s, € ©(®), in which case,
minycq d(y — X) = ming ceoe)[mins, d(y — x)]. FiX sy,
and consider the inner minimization. An optimatan always
be thought of as a piecewise constant sequence (some or all dfocally monotonic regression is the optimal counterpart
its pieces may contain just one element). If any given constdiititerated median filtering. In [1], Restrepo and Bovik de-
piece ofx is not a constant regression of the correspondirygloped an elegant mathematical framework in which they
elements ofy, then its fit (and, thus, the fit of) may always Studied locally monotonic regressions IR". They proved

be improved by perturbing its level by an infinitesimal amour@Xistence of such regressions and provided algorithms for their
to bring it closer to the said regressisithout changing the computation. However, the complexity of their algorithms is
sign skeletors,. This is true because strict inequality allowgXxponential inN, which is the size of the input sample.
for an open ball of free movement of level in either directiodn addition to existence, Restrepo and Bovik showed that
This contradicts conditional optimality af conditioned on locally monotonic regression admits a maximum likelihood
sx. Thus, an optimak for any givens, is a piecewise- interpretation [3].

constant sequence whose pieces are constant regressions of librﬁe {1 norm is “special” in a particular sense. Other such strong results

corresponding segments gfunder the given distance metric.exist for the¢; norm but do not extend to the case of ihenorm. A recent
This holds for alls,, and the result follows. [] example appears in [15], where it is shown that a similar property holds for
) . . N the solution of a particularegularizationproblem defined vi#; norms. Note
Lemma 2: If d() is £1 norm, I.e.,d(y—x) = En:l |y(”)_ that here, we instead haveckassof regressionproblems for which our result
x(n)|, and® is skeletonizable, then there exists a solutign is valid.

. LOCALLY MONOTONIC REGRESSION INIR™

A. Background on Locally Monotonic Regression
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In [6], the first author consideredigital locally monotonic B. Previous Approaches

regressions in which the output symbols are drawn from apyeyious algorithms for lomo regression include the follow-
finite alphabet and, by making a connection to Viterbi decogly,

ing, provided a fast (linear i) algorithm that computes any The TubeandBlotchingalgorithms of Restrepo and Bovik
such regression, be it under a metric, semi-metric, or arbitrary [1]: These are of exponential complexity

bounded per-letter cost measure. - -
- . . e The work of Sidiropoulos on fast digital locally mono-
A few definitions are in order. Ik is a real-valued sequence . . g . -
tonic regression [6]: This algorithm has complexity linear

Stwgzhgfnlzggthri\;r?gg ; (I)? Iirr:y twte?se;LeSzJS;Tmor sf(:ual in the number of samples but solves a discretized problem.
’ 9 gy y g e The recent work of de la Vega and Restrepo [24], in

. ity—1 r y

consecut!ve components 8f Letx; = {z(0),. ;;r’f_(f + which the authors show that, in computing a LS lomo-

vy—1} i>0,i++v < N be any such segment; is .

monotonic if eitherz(s) < z(i + 1) < < ol "1 or regression, we do not need flat segments of length greater
() > a(i+1) > x(L); JESL: )_—1)' cselity—1) than or equal t@(c — 1): This result can be utilized to

Ty = 2 = = ;e ’ cut down search complexity and construct more efficient

IocDaﬁﬁnrlrt:gzozt(:)rﬁcg?i:_evarlgeed ie?\lfje(r;crxlogolengrthsﬁ 'IS LS lomo regression algorithms. The authors note that
y greea = o Py complexity is polynomial in the size of the sample.

lomo in case« is understood) if each and every one of its . )
segments of lengtlx is monotonic In the sequel, we present an efficient exact algorithm for
: others !ﬂé:_ally monotonic LAE regression iR and a fast algorithm

Notice that some segments may be increasing, ocall . d o T
creasing, and the sequence may still pass the test of Io@;{l ocally monotonic LS pseudo-regression '

monotonicity. In general, monotonicity implies local mono- .

tonicity, but not vice versa. Any sequence is locally monotonfé- Locally Monotonic LAE Regression it"

of degreea = 2; therefore, the interesting degrees are 3 Consider the locally monotonic LAE regression problem
through V. Throughout the following, we assume thHat< L.

o < N.If « <8< N, then a sequence of lengfi that is minimize: ||y — XJ|\|,1

lomo-3 is lomo- as well; thus, théomotonicityof a sequence subject to: x € A, .

is defined as the highest degree of local monotonicity thatl{tis easy to see that? satisfies the condition of Corollary 1.
possesses [1]. @

A sequencex is said to exhibit an increasing (resp. deI_DefmeA as in Corollary 1, and consider the resulting digital

creasing) transition at coordinateif x(i) < x(: + 1) (resp. problem

() > z(i + 1)). The following (cf. [1], [16], [17]) is a minimize: ||y — x||;

key property of locally monotonic signals: k& is locally subject to: x € AY N AN,

monotonic of degreey, thenx has a constant segment (run

of identical elements) of length at least— 1 in between an This is an instance of digital locally monotonic regression,

increasing and a decreasing transition. The reverse is also tifgich has been solved in [6] by means of DP. The complexity
The study of local monotonicity (which led to the idea off the digital algorithm isO(|.A]?aN). A has, at mostN

locally monotonic regression) has a relatively long history ialements. It follows that the computational complexity of

the field of nonlinear filtering. Local monotonicity appearedcally monotonic LAE regression ifk" is O(N3a). This

in the study of the set of root signals of the median filteyolution isexactandefficient although it may be quite tedious

[16]-[23]. The median is arguably the most widely known antpr long observation sequences.

used nonlinear filter. Locally monotonic signals of degree We may improve on complexity by capitalizing on the

are roots of th¢2(a_1)_]_]_po|nt 1-D median filter (meaning fO”OWing observation. Since, at any given pOint, the value

that they are not affected by filtering using2{c — 1) — 1]-  Of the optimum solution is the median of a small number of

point median filter). Not all median roots are locally monotonitPut samples in the neighborhood of the given point, we may

[23]; however, locally monotonic signals can be thought dgstrict the alphabet at time to be the set of input values

as the class of “well-behaved” median roots, at least frolfi @ suitable neighborhood about The longest streaks in a

a nonlinear filtering perspective. In practice, iterations d@cally monotonic regression of degreeare usually bounded

the median usually (but not always) converge to a locallp length byk x o, wherek is a small integer constant; we may

monotonic approximation of the input signal. It is then naturénerefore pick docal alphabetfor z(n) that consists of, say,

to ask for thebestpossible locally monotonic approximationat mostdca elements and run DP under this restriction. This

of the input at hand, rather than settle for the arbitrarily choséh beneficial fore small relative to/V' and has complexity

locally monotonic approximation provided by iterated mediaf(a*N).

filtering. This gives rise to locally monotonitofmo) regression

[1], [3] D. Monotone Regression
minimize: d(y — x) Monotone (say, increasing) LS regression has the following
subject to: x € AY problem: Giveny, find x to

whereAY is the set of all sequences f elements offk that minimize: ||y — x|[3

are locally monotonic of lomo-degree. subject to: x is monotone increasing
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or, to be more precise, monotone nondecreasifig < --- < to Corollary 1: The set of all partial averages over a given set
xz(N). This is a special case @fotonicregression (with respect of reals can be very large.

to a simple order) [4]. In 1964, Kruskal [10] came up with A suboptimum but efficient way to proceed is as follows. By
what appears to be the best way of solving this problemroper discretization, digital locally monotonic regression can
which he studied in the context of his pioneering work iprovide an approximate solution to the underlying regression
multidimensional scalingsee also Leeuw [25], Barlovet in R". This interim solution can be improved by applying the
al. [4], Cran [26], and Brilet al. [27]. The computational suffix-constrained monotone regression algorithm in between
algorithm is often referred to as tlp and down blocks (UDB) adjacent breakpoints of the interim solution. If the resulting
algorithm [4]. Kruskal's approach isterative and makes use regression respects local endpoint consistency constraints (e.g.,
of a simple but clever observation to reduce the problem tifat the first element of an increasing segment following a
monotone LS regression to a finite sequence of averaging stdpsreasing segment should be greater than the last element
(this can be understood within the framework of Lemma 19f the decreasing segment), then inserting it in place of the
The theoretical complexity of Kruskal’'s algorithm is (rathecorresponding piece of the interim solution will improve the
loosely) upper bounded b@(N?); in practice, it is almost fit without violating local monotonicity constraints.

O(N). Since the digital algorithm is linear itV (but quadratic in
For our purposes, as we will soon see, we will need a faste size of the digital alphabet—meaning that very fine dis-
algorithm for a slightly different problem. In particular, we willcretization can be costly) and the suffix-constrained monotone

need an algorithm for theuffix-constrained nondecreasingregression algorithm is better than quadraticNin it follows
regressionproblem that the complexity of this suboptimum two-step process is
minimize: ||y — x| I(_)osely_ boundgd above b@(N2) and much better_than this
subject to: (1) < -+ < (N — a4+ 2) = - - = () figure in practl_ce. In Section V,_We show that_th|_s two-_step
approach provides measurable improvements in fit relative to

i.e., the lasta — 1 elements of the regression should_ behe digital algorithm, at a small extra complexity cost.
equal, for some3 < « < N, as well as the corresponding

nonincreasing problem N
IV. PIECEWISE MONOTONIC LS REGRESSION INIR
minimize: ||y — x||3 . . . . fd h
subject to: #(1) > --- > «(N — a+2) = --- = «(N). Piecewise monotonig(mo) LS regression of degree has

. ~ the following problem:
Suppose that we have an algorithm that solves phefix-

constrained nondecreasing regressiproblem minimize: ||y — x||;

e 2 subject to: x € 117
minimize: ||y — x||5

subject to: x(1) = #(2) = 2(a—1)<z(a)<--- < z(N).  wherell? is the set of all sequences df elements ofIR
Then, it is easy to see that the first of the two problenigat can be constructed by concatenating monotone pieces,
of interest can be solved by feedingrev(y) (where the €ach one of which can be either igcreasing or decre&niyug
rev(-) operation simply reverses the order of elements of i length at leastx — 1. If x € IIY, then we say thak is
argument) as input to the said algorithm and then computiRiCewise monotonic of pimo-degree Note thaty > o =
—rev(x), whereas the second problem of interest can be solvdd < I1Y; the minimum is a nondecreasing function caf
by feeding regy) to the said algorithm and then computing There are several reasons for introducing piecewise mono-
rev(x). These statements can be verified using only thi&NIC regression. From an optimization viewpoint, piecewise
lly — x[2 = |[rev(y) — rev(x)||2, and [|x]|2 = [|—x|13. monotonic regression relieves some of the constraints asso-
It will be beneficial to be able to compute all subregression@ated with local monotonicity. In particular, it relieves the
i.e., in the context of the prefix-constrained nondecreasig§§gment endpoint consistency constraints (e.g., that the first
regression algorithm predicated above, it will be useful ®/ement of an increasing segment following a decreasing seg-
be able to obtain as byproducts all prefix-constrained suBent should be greater than the last element of the decreasing
regressions on the first elements ofy for k& > o — 1. segment) as well as the constraint that individual monotone
Given Kruskal's basic monotone regression algorithm [103€gments should terminate with a suffix string of at leastl
the construction of an algorithm that incorporates the desirétgntical samples. The latter generates undesiratiaking
additional features is a simple exercise. The details are left &itects that are similar to median filtering [28]. The idea is
due to space considerations, but MATLAB code is availabfgat by relaxing the suffix constraint, we may be able to

at http://www.people.virginia.edu-nds5;. reducé streaking without sacrificing noise suppression and
edge-preservation capabilities of the regression. This is indeed
E. Locally Monotonic LS Regression IRY the case, as we will soon see in Section V by means of sim-

ulation. The fact that relaxing some of the local monotonicity
constraints effectivelydecouplesthe problem in a particular

minimize: ||y — x||3 sense and allows us to develop a fast hybrid DP-Kruskal
subject to: x € A} algorithm for piecewise monotonic LS regression is also

This problem tums' out to be more difficult than its LAE 2Streaking can be also attributed in part to the use of,anormp = 1,2
counterpart. In particular, we cannot resort to a result similatid cannot be avoided altogether. This is implicit in Lemma 1.

Let us now consider locally monotonic LS regression



SIDIROPOULOS AND BRO: MATHEMATICAL PROGRAMMING ALGORITHMS FOR REGRESSION-BASED NONLINEAR FILTERING IR 775

important. Note thatl’ satisfies the condition of Corollary 1
and that the digital counterpart of this problem admits efficient
solution via DP in a way similar to [6]. Therefore, LAE pimo
regression inlR" can be performed at a complexity cost of
O(N3a).

A. Hybrid Programming Algorithm for
Piecewise Monotonic LS Regression

Givenx € IIY, we define its associatetend switching set
T(x) to be the set of indice§ , t2, . .., tx }, wherex exhibits
a trend transition (increasing to decreasing or vice vertay. stage-(i-1)

me, with I f generali rts with an
_us aSSl.'l €, tdOUt oss of generality, thatstarts with a Fig. 1. Nodes (states) at stagand predecessors at stage- 1). At stage
Increasing _tren . _ i, the bottom node has just one predecessor that fimdes apart. The next

Convention 1: By convention, we allow the elements ofnode going upwards has just two predecessors, the furthest of whick is

T(x) to take on the valueV (which serves as a “gate” nodes apart. A generic nodeat stagel hasn — i(« — 1) 4+ 1 predecessors,

. . . the furthest of which is: — (i — 1)(ov — 1) + 1 apart. The top nodéN) is
for unused trend S‘{V'tChes)’ this allows us to # := N _(;_1)(a—1)+ 1 apart from its furthest predecessor. Note that node
cardT(x)] = floor(%). N is special in the sense that it is possible to move from nddat stage
It is straightforward to verify the following proposition. (i — 1) to nodeXN" at stage: at zero cost.

Proposition 1: Under Convention 1x € I17 if and only if

I'(x) satisfies the following three properties: wheret, = 0 by convention, an&*(¢;,_y,t;) is the cost of
Property 1: a =1 <#; <ty <--- <tg < N. monotone (specifically, nondecreasing foodd; nonincreas-
Property 2: If ¢, # N, thent,ys — 4 > a — 1,4 = jng for i: even) least squares regression on the elemengs of

L,2,....K -1 between indices;_; + 1 and¢; inclusive.

Property 3: If t; = N, thent; = N, VK > j > . The above derivation is related in spirit to an algorithm

Remark 1:In between(t; , + 1,#], x is constrained to be of Blake for a nonlinear regularization problem [29] and an
monotonic (specifically, nondecreasing folodd; nonincreas- gigorithm of Bellman for a piecewise linear approximation

ing for i: even); otherwise, it is unrestricted. problem subject to a budget on the number of pieces [30].
Let us denote by/_(f“ the set of all positive integeﬂ(-tuples_ “The key to all is dynamic programming over “breakpoint”
that satisfy Properties 1, 2, and 3. By the above propositiqpyriaples, The Viterbi algorithm (VA) is the most familiar
x € 1LY if and only if T'(x) € V. Therefore, the PIECEWIS€ eyxample of dynamic programming. In a nutshell, the VA
monotonic least squares regression problem is nothing but a clever method to search for Ahtuple
minimize: ||y — x||2 {sg\@)]l»ﬁ:ol of finite-alphabet “state” variables that minimizes
subject to: x € 11 2 n—o cn(s(n),s(n — 1)), wheres(—1) is given, andc, (-, )
is some arbitrary “one-step transition” cost. The VA avoids
is equivalent to exhaustive search and makes it possible to find an optimum
solution in time linear inN (the proportionality constant
depends on the cardinality of the finite alphabet and the
specific cost structure) [31]-[34]. The problem at hand is
in a form suitable for dynamic programming over the trend
switching variables.

minimize: |ly — x||3
subject to: T(x) € V.V,

Define 7 (x) = |ly—x||%; then,miny | r(x)cvy J(x)is equal to

min {min J(x | T(x) = {t1,t2, ..., tx })} Consider Fig. 1, which depicts nodes (states) at stagyel
{ti,to, . tx }JEVN their respective potential predecessors at stagé ). At stage
. Koo 1, the node tags correspond to all the possible valugs afid
= Z min €(¢;—1,t;) similarly for stage(i — 1). At stagei, the bottom node has just
o=l one predecessor that is nodes apart. The next node going
. - . upwards has just two predecessors, the furthest of which is
T eV ;g (tiz1,t) « + 1 nodes apart. Node at stagei hasn — i(a — 1) + 1

predecessors, the furthest of whichnis- (i — 1)(av — 1) + 1

SWe may determine the trend switching set by knowledge of the sig%part' The top nOdéN) ISV — (Z o 1)(a o 1) + 1 apart from
skeleton but not vice versa. In the case of piecewise monotonic regressiés, furthest predecessor.

feasibility of a candidate solution may be determined either from its sign Each node at stages visited in turn, and a decision is made

skeleton or its trend switching set. The latter leads to a more comp : : : :
parameterization of the feasible set. % to which of the associated potential predecessors is best for

40therwise, we simply run the process twice—one time starting with ame node at _h_and' To do thIS., we need to Ca|Cu:ﬁ’:\“[(€7;_1,t7;)
increasing trend and the other with a decreasing trend—and pick the best offi@e the specific value of; assigned to the node at hand aid
two. This doubles the amount of computation but does not affect complexipg|yes oft;_, assigned to its potential predecessor nodes; add

order. Alternatively, we may allow the first monotone regression (@migt ti Its to th di lati t
the first) to be of zero length; this accomplishes the same goal at a smam!fe respective results to the corresponding cumulative Costs

computational cost. of the potential predecessor nodes; pick the one that gives
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minimum error; update the cumulative cost of the node atro . : .
hand; set up a pointer to its best predecessor, and then move
on to the next node, the next stage, and so on. 60

The important observation is that a “generic” node, say, the
one that has been assigned the value- n, only needs to &
make one call to Kruskal’'s monotone regression algorithm,
and this call suffices to compute the node transition costs,
E*(t;—1,n) for all potential predecessors. Indeed, according to
our earlier discussion, nodeonly needs to call the algorithm |
once with the longest input, and all required subregressions
will be computed along the way for free. The length of this |
longest input isn — (i — 1)(a — 1) + 1.

Since Kruskal's algorithm is better than quadratic, it follows

that the computational cost for all required computations for |

the worst (top) node at stagés bounded above b@ ([N —(i— . ‘ . ) '

1)(a—1)+1]?). Stagei has a total of N —i(a—1)+1] nodes; % 50 100 150 200 250 300

thus, the computational cost for all required computations fpjy. 2. Input (dashed) versus two-step real-valued (solid) regression
stagei is (quite loosely) bounded above by |A] = 40, a = 20.

O([N —i(a— 1)+ 1] x [N — (i — D)(a— 1) + 1]?).

There exist at most® stages, and the worst stageiis- 1; 70 . . - - .
therefore, the total computational cost for the entire regression
is bounded above by 6of
N 2
0 1[N—(a—1)+1](N+1) . 50
o —

This bound is rather conservative, but it seems hard to improveé®;
for arbitrary o (more sophisticated counting arguments result
in a bound of the same order). 80

20
V. SIMULATION

The purpose of this section is to enhance the reader’s,;
intuition by providing and discussing the results of several A h
simulation experiments on locally monotonic and piecewise | . . . .
monotonic LS regression iR . 0 50 100 150 200 250 300

Fig. 3. Input (dashed) versus digital (solid) regresdidh = 40, o = 20.

A. Locally Monotonic LS Regression iR

We now investigate the fit versus speed tradeoff between
the two-step algorithm and the digital algorithm for locally 7o . . . . ;
monotonic LS pseudo-regression. We shall see that for a
small additional complexity cost, the two-step algorithm cang|
significantly improve fit.

The two efficient algorithms have been implemented in !
C and MATLAB Figs. 2-13 present the results of several
experiments. Numerical results are summarized in Table I,
The inputy is a 300-point(N = 300) sample of a noisy
version of an ECG signal taken from the signal processing, |
information base (http://www.spib.rice.edu). In all figures, the
spike train at the bottom depicts trend switches, as detected |
by the digital algorithm. In the captionk4| is the size of the
digital alphabet, andy is the lomo-degree.

Figs. 2-4 present the results fod| = 40, « = 20. In o _
particular, Fig. 2 presents the input versus the two-step real-
valued regression fotA| = 40, « = 20. Fig. 3 presents % 50 100 150 200 250 300

th_e input versus the digital regression for the Sal[li‘lﬁ . Fig. 4. Two-step real-valued (solid) versus digital (dashed) regression
Fig. 4 compares the two-step real-valued regression and fhe = 40, a = 20.
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Fig. 9. Input (dashed) versus digital (solid) regressjot], = 20, a = 20.
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Fig. 7. Two-step real-valued (solid) versus digital (dashed) regressibig. 10. Two-step real-valued (solid) versus digital (dashed) regression,

|A] = 40, o = 5.

Al = 20, o = 20.
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TABLE |
Fit anp CPU TiME (IN MINUTES'SECONDS-C AND MATLABoN SUN
SPARC10,N = 300) ForR Lomo LS ReEGRESSION fp (f2s): FIT,
DigitaL (Two-Ster); T (Tzs): CPU TivE, DiGITAL (Two-STEP)

A, o | fo | fos | Tp Tzs
40, 50 | 6946 | 6910 | 145" | 1’47”
40,20 | 1593 | 1518 | 40” 41”
40, 5 447 358 15” 15.5”
20, 50 | 6998 | 6912 30” 32”
20,20 | 1775 | 1518 15” 16”
20,5 640 417 5" 5.7"

corresponding digital regression. Subsequent triples of figures
(through Fig. 13) do the same for various valueg.4f, «.

Let us consider the numerical results summarized in Table I.
An important general observation is that the difference in run
time between the digital and the two-step real-valued algorithm

regressiéﬁ negligible. In absolute terms, both run in the order of a few

seconds, or a couple of minutes, at worst. In terms of fit, the
two-step algorithm always improves on the fit of the digital
algorithm, sometimes by as much as 30%. This improvement
becomes more pronounced|ay is reduced (which also leads
to a rapid decrease in complexity since the digital algorithm is
quadratic in|.A|). Furthermore, the percent improvement in fit
afforded by the two-step algorithm increases with decreasing
«. This may be intuitively explained as follows. Whenis
small, the digital algorithm is forced to closely track the input,
thereby exhibiting tracking oscillations in a manner similar
to a phenomenon known adope over/under loadn delta
modulation [35].

From Table I, we may also observe that the second step of
the two-step algorithm is able to compensate for inaccuracies
caused by using a small alphabet in the first (digital) step.
Note that the fit of the two-step algorithm remains essentially
the same, regardless of whethet| is 40 or 20, at least for
a = 50, a = 20, with a small degradation whem = 5.

Fig. 14(a) plots the percent improvement in LS fit afforded
by the two-step algorithm versus the digital algorithm, whereas
Fig. 14(b) plots CPU time for the two-step algorithm as a
function of « and |-A.

B. Piecewise Monotonic LS Regressionfii’

The results of experiments on piecewise monotonic LS re-
gression are presented in Fig. 15 and Table Il. Fig. 15 presents
the result of piecewise monotonic regression of pimo-degree
a = 50,20, respectively, for the same noisy ECG signal.
In the figure, the spike train at the bottom of both (a) and
(b) depicts optimal trend switches, as detected by the exact
hybrid algorithm. Table Il summarizes LS fit and CPU time
for « = 75,50, 20.

A couple of important remarks are in order. First, one may
verify that streaking is much less pronounced compared with
locally monotonic regression, e.g., compare the corresponding
regressions fory = 20: The first pulse is blotched by locally
monotonic regression, yet it is well preserved by piecewise
monotonic regression. Second, this reduction in streaking is
not at the expense of noise smoothing and/or the ability to

of . The drawback is that for very small, piecewise



SIDIROPOULOS AND BRO: MATHEMATICAL PROGRAMMING ALGORITHMS FOR REGRESSION-BASED NONLINEAR FILTERING IR 779

5 10 i5 20 25 30 35 40 45 50 0 50 100 150 200 250 300
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300
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Fig. 15. Input (dashed) versus pimo regressionsafee 50, 20.

() TABLE I
Fig. 14. (a) Percent improvement in LS fit curves as a functiom.ofb) Fit anD CPU TiME (IN MINUTES'SECONDS- MATLABON
CPU time required by the two-step algorithm as a function 0§olid curves: SUN SPARC10,N = 300) For PiMO LS REGRESSION
| A| = 40. Dashed curveslA| = 20. ft | cputime

a=75]3539 | 1220
a=>50| 2206 | 17°11”
a=20] 570 352"

monotonic regression is more susceptible to outliers than
locally monotonic regression.

The choice of ECG signal data was not arbitrary; aside
from it exhibiting sharp level transitions (thus being a naturaixact hybrid algorithm. Notice that P, Q, R, S, and T can be
candidate for application of nonlinear smoothing techniques)ccurately localized by looking at the detected optimal trend
it was meant to hint on an interesting potential applicatioswitches.
of piecewise monotonic regression. In the interpretation of
ECG signals, the relative timing of the P-wave, QRS-complex, VI. RUNLENGTH CONSTRAINED
and T-wave is important. These features are relatively easily LEAST SQUARES REGRESSION INIRY
picked up by a trained eye, even when the data is noisy, et ys now consider the runlength constrained least squares
yet automatic detection and segmentation is difficult due {opiem
changes in heart rate, noise, and other considerations [36].
Consider Fig. 16. It depicts another portion of the same ECG
and the result of piecewise monotonic regression of degree
a = 20. The P-wave, QRS-complex, and T-wave have beevhere P} is the set of all sequences df elements ofR that
manually annotated, and the spike train at the bottom depiat® piecewise constant, and the length of constituent pieces is
the locations of optimal trend switches, as detected by theunded below byA/.

minimize: ||y — x||3
subject to: x € Piy
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VIl. OLIGOMODAL REGRESSION INIR™

1500

Oligomodal regression is the following problem:
1000+
minimize: d(y — x)

s00f . subject to: n(x) = P

500}
_1000/\ N

-1300|

wheren(x) is the number of peaks i®, and P is a positive
integer (note that plateauis counted as a single peak). This
problem is of interest in e.g., chromatography [8], and special
problems in density estimation [4].

A. Oligomodal LAE Regression if®"

Q
Observe that we may determine whether ormnpt) = P by
h ﬂ l h “ ‘l I H ﬂ A l “ sole knowledge of the sign skeletonxfln addition, we may
' ' ' ' construct a DP program to solve a discretized finite-alphabet
version of a given oligomodal regression problem. This can be
Yone along the lines of [5] and [6] or, as explained in [8], for
an alternative approach to unimodal regression. We may show

that the complexity of this program @(|.4|>PN), where
This problem appears in the context of segmentation and|A| size of the finite alphabet:
edge detection. Its digital (finite-alphabet) version has beenp ' . mber of peaks: '
considered in [5], where an efficient DP algorithm was devel- n; (4t length of the; regression.
oped for its solution, and the properties of the associated I{p
. : : . therefore follows from Corollary 1 that we may construct a
operator were investigated. Here, we are interested in the sam% " o
o COON surtable DP program to solve oligomodal LAE regression in
problem but this time inR" .

N i 3
We may mimic the development presented for the cagg at a complexity cost oD(NP).

of piecewise monotonic regression and associate with each L

elementx of PJ} its correspondindevel switching sef(x). B. Unimodal LS Regression ik

M plays the role ofa — 1, and the rest of the derivation Unimodal regression is the following problem. Givene
remains the same. A major simplification is that in runlengthRN, find x € RY to

constrained regression, the monotone regression subroutine
is replaced by simple averaging. We may precompute all
required averages and associated costs in-between any two
indices at a cost 0O(/N?) beforerunning the DP program. i.e., 7(x) = 1, x has only one peak. We are particularly
These precomputed data can be stored in a table for e#ygrested in non-negative unimodal regression (note that a
access during runtime. Now, replace— 1 with A/ in the bounded problem can be transformed into a non-negative
complexity analysis of the proposed algorithm for piecewiggroblem), in which case, the unimodality constraint can be
monotonic regression. Since all averages and associated cexpessed agN = sizgx))

are stored in the tableg™*(¢;_1,¢;) is readily available for .
anyt; andt;_y; thus, the éomput;tional cos}i[ for all required 2(0)20; 2(N)20; a(n)22(n-1), n=2....j
computations for the worst (top) node at stagis bounded z(n)<a(n—-1), n=j+1,...,N

above byO(N — (i —1)M + 1).' A straightforward cglculatmn for some mode locatiosi, which is itself subject to optimiza-
shows that the total computational cost for the entire regression.

is bounded above b@(£-[N — M + 1] x [N + 1]). Observe '
that whenM = N, this bound predicts complexit@(N),
which is exactly what is needed for computing the average
N elements.

~20005 50 100 150 200 250 300 350

Fig. 16. Piecewise monotonic regression may aid in the detection of sig
icant events in ECG signals. Here, = 20.

minimize: ||y — x||3
subject to: x : unimodal

If we fix the mode location, the constrained problem is an
infstance of quadratic programming (QP). Exhaustive search
t%rough all N possible mode locations, each time solving a
QP program, gives a first naive way of solving it. Improved
algorithms that are more efficient than generic QP for the
A. The LAE Case fixed mode problem, coupled with exhaustive search for the

We can invoke Corollary 1 to obtain an exa@{N3M) mode location, are discussed in [4]. This problem is of interest
algorithm for runlength constrained LAE regressioniil'. in, among other things, chromatographic analysis and flow
In addition, the LS algorithm above can be modified to handiejection analysis [8]. An interesting result of [8] is a proof
runlength-constrained LAE regressioniR" by replacing the that unimodal least squares regression (including optimization
averaging operation in-between level switches by a mediahmode location) is no more difficult than two simple Kruskal
calculation. Computational savings may be realized by usingonotone regressions. This is well und&iN?) and, in prac-
an efficient running median algorithm (e.g., the one of Huarge, almostO(V): a measurable improvement over exhaustive
et al. [37] based on histogram updates) for computing adlearch for the optimal mode location [4], which is an order of
required constant subregressions. magnitude more complex.
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C. Oligomodal LS Regression Y

Along the lines of the previously presented hybrid algorithm
for piecewise monotonic LS regression, we may envisior?]
the construction of a similar algorithm for oligomodal LS g
regression, consisting of a master DP module and a Kruskal
monotone regression (or unimodal regression) module. Ho
ever, it turns out that even after fixing peak and valle
locations, the resulting problemi®tdecomposable in a series [7]
of either monotone or unimodal independent subregressions
in between these locations, as shown by means of countgy
example in [8]. Thus, DP will not help solve this LS problem
exactly. The point we would like to make is that it may help[9]

solve the problem approximately.

An alternativeapproximateapproach would be as follows. [10]
First, we may construct a DP program to solve a discretized
finite-alphabet version of a given oligomodal LS regression
problem. This program is a straightforward extension of t
unimodal program given in [8]. Note that the resulting D
program provides an exact solution of the discretized prob-
lem, which is also an approximate solution of the originaﬁlg]
problem. As mentioned earlier, the complexity of this programa]
is O(JA]?PN). This pseudoregression can be improved by
solving a QP problem to compute the optimum regression

conditioned on the detected peaks and valleys.

VIII. CONCLUSION

This paper has focused on the development of efficie

algorithms for a class of regression problems that are

interest in nonlinear filtering but in other diverse areas as
well. A key result is that under a least absolute error criterioh-]
these problems can be transformed into appropriate finite
problems, which can then be efficiently solved via dynamic
programming techniques. Although the result does not ca

over to least squares regression, hybrid programming algo-

[3] A.Restrepo and A. C. Bovik, “Statistical optimality of locally monotonic

regression,”|IEEE Trans. Signal Processingol. 42, pp. 1548-1550,
June. 1994.

R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk,
Statistical Inference under Order RestrictiondNew York: Wiley, 1972.

N. D. Sidiropoulos, “The Viterbi optimal runlength-constrained approx-
imation nonlinear filter,”IEEE Trans. Signal Processingol. 44, pp.
586-598, Mar. 1996.
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Processing vol. 45, pp. 389-395, Feb. 1997.
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C. Faloutsos and K.-I. Lin, “FastMap: A fast algorithm for indexing,
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D. Sankoff and J. B. Kruskallime Warps, String Edits and Macro-
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B. Marcus, P. Siegel, and J. Wolf, “Finite-state modulation codes for
data storage,JEEE J. Select. Areas Commungol. 10, pp. 5-37, 1992.

S. Alliney, “A property of the minimum vectors of a regularizing
functional defined by means of the absolute norfBEE Trans. Signal
Processing vol. 45, pp. 913-917, Apr. 1997.

S. G. Tyan, “Median filtering: Deterministic properties,” ifiwo-
Dimensional Digital Signal Processing Il: Transforms and Median
Filters, T. S. Huang, Ed.. Berlin, Germany: Springer-Verlag, 1981,
pp. 197-217.

1 N. C. Gallagher, Jr. and G. W. Wise, “A theoretical analysis of

the properties of median filtersJEEE Trans. Acoust., Speech, Signal
Processingvol. ASSP-29, pp. 1136-1141, Dec. 1981.

B. I. Justusson, “Median filtering: Statistical properties,” Two-
Dimensional Digital Signal Processing Il: Transforms and Median
Filters, T. S. Huang, Ed. Berlin, Germany: Springer-Verlag, 1981,
pp. 161-196.
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vol. ASSP-30, pp. 739-746, 1982.

rithms can be developed to solve least squares counterpart&@f N- C. Gallagher, Jr., "Median filters: A wtorial,” iProc. IEEE Int.

certain problems in the class. As an example, a master/slgyg
DP/monotone regression algorithm has been developed for

piecewise monotonic regression.

; 2

Future work includes the study of convergence of multll—
objective algorithms incorporating some of the present algo-
rithms as subroutines and extensions to handle additional pr%%r]

knowledge, e.g., smoothness or equality constraints.

Related MATLAB and C programs can be found at[24]
http://www.people.virginia.edu/"nds5j and at http://newton.

foodsci.kvl.dk/rasmus.html.
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