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Bandwidth Partitioning in
Decentralized Wireless Networks
Nihar Jindal, Member, IEEE, Jeffrey G. Andrews, Senior Member, IEEE,

and Steven Weber, Member, IEEE

Abstract—This paper addresses the following question, which
is of interest in the design of a multiuser decentralized network.
Given a total system bandwidth of W Hz and a fixed data rate
constraint of R bps for each transmission, how many frequency
slots N of size W/N should the band be partitioned into in order
to maximize the number of simultaneous links in the network?
Dividing the available spectrum results in two competing effects.
On the positive side, a larger N allows for more parallel, non-
interfering communications to take place in the same area. On
the negative side, a larger N increases the SINR requirement for
each link because the same information rate must be achieved
over less bandwidth. Exploring this tradeoff and determining the
optimum value of N in terms of the system parameters is the
focus of the paper. Using stochastic geometry, the optimal SINR
threshold – which directly corresponds to the optimal spectral
efficiency – is derived for both the low SNR (power-limited)
and high SNR (interference-limited) regimes. This leads to the
optimum choice of the number of frequency bands N in terms of
the path loss exponent, power and noise spectral density, desired
rate, and total bandwidth.

Index Terms—Ad-hoc networks, multimedia, networks and
systems.

I. INTRODUCTION

FOR purposes of wireless communication, the electro-
magnetic spectrum is typically first divided into a large

number of bands by regulatory agencies such as the FCC or
the European Commission. These bands are typically allocated
by executive fiat or auction, and for particular purposes. Once
allocated, these bands are usually further divided into many
smaller bands that individual users have access to. This entire
process has a major impact on the efficiency with which
spectral resources are used, but historically appears to have
been done in a mostly ad hoc manner. This paper attempts
to develop a theoretical basis for bandwidth partitioning, in
particular the second partitioning of an allocated band into
subbands.

To be more specific, consider a spatially distributed wireless
network, representing either an ad hoc network or an unli-
censed (and uncoordinated) spectrum system, e.g., 802.11. In
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such systems it is common to have a fixed total bandwidth,
a large number of potential users, and a limit on acceptable
packet loss rates. It is also typical to have a target data rate
for each user, either to support a certain application or due
to user expectations. This gives rise to the following basic
question: given bandwidth W and a fixed rate requirement R
for each transmitter-receiver link in the network, how many
slots N of size W/N should this band be partitioned into in
order to maximize the number of links (i.e., spatial density
of transmissions) that can achieve this rate R at a specified
outage probability (i.e., packet error rate)?

For example, given 1 MHz of bandwidth and a desired
rate of 1 Mbps, should (a) each transmitter utilize the entire
spectrum and thus require an SINR of 1 (utilizing R =
W log2(1+SINR) bits/sec), (b) the band be split into two 0.5
MHz sub-bands where each transmitter utilizes one of the sub-
bands with a required SINR of 3, or (c) the band be split into
N > 2 orthogonal 1

N MHz sub-bands where each transmitter
utilizes one of the sub-bands with a required SINR of 2N −1?

Increasing the number of sub-bands N has two competing
effects. On the positive side, it allows for parallel, non-
interfering communications on different sub-bands. On the
negative side, transmitting at the same data rate over less
bandwidth requires each transmission to be performed at a
higher spectral efficiency (R bps over W

N Hz corresponds to
a spectral efficiency of R

W/N bps/Hz), which translates to a
higher SINR requirement and thus a larger interference-free
area. The objective of this paper is understanding this tradeoff
and characterizing the optimum value of N in terms of the
system parameters.

A. Technical Approach

To allow for analytical tractability, we optimize the num-
ber of sub-bands for a network consisting of transmitter-
receiver pairs distributed on the two-dimensional plane. More
specifically, the network we consider has the following key
characteristics:

• Transmitter locations are a realization of a homogeneous
spatial Poisson process.

• Each transmitter communicates with a single receiver that
is a distance d meters away.

• All transmissions occur at power ρ and rate R bits/sec,
the noise spectral density is N0, and attenuation follows
path-loss exponent α.

• The system bandwidth of W Hz is divided into N equal
sub-bands of W

N Hz, and each transmission occurs on a
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randomly chosen sub-band.
• Each receiver treats multi-user interference as noise, and

thus a transmission is successful if and only if the
received SINR is larger than a threshold determined by
R, W , and N .

The second to last assumption should make it clear that we
are considering only an off-line optimization of the frequency
band structure, and that no on-line (e.g., channel- and queue-
based) transmission or sub-band decisions are considered.

By considering such a network, tools from stochastic geom-
etry can be used to characterize the distribution of received
interference and thus to quantify the success probability of
each transmission as a function of the transmitter density
and the SINR threshold. In this context, the question at
hand is determining the value of N that maximizes success
probability for a given spatial density of transmitters. Rather
than considering the optimization in terms of N , it is conve-
nient to pose the problem in terms of the spectral efficiency
of each communication R

W/N . Our main result is an exact
characterization of the optimal spectral efficiency in the form
of a simple fixed point equation.1 Furthermore, the optimal
spectral efficiency is seen to be a function only of the path-
loss exponent and the energy per information bit Eb

N0
= P

N0R
(where P is the received power, N0 is the noise spectral
density, and R is the rate [3]), and thus is independent of the
transmitter density. In order for a network to operate optimally,
N should be increased until the spectral efficiency

(
NR
W

)
is

equal to its optimal value.
When thermal noise is negligible relative to the received sig-

nal power (i.e., Eb

N0
→ ∞), the network is purely interference-

limited and the optimal spectral efficiency is a function of
the path loss exponent (α) alone. For reasonable path loss
exponents the optimal spectral efficiency lies between the low-
SNR and high-SNR regimes. For example, the optimal is 1.3
bps/Hz (SINR threshold of 1.6 dB) and 2.3 bps/Hz (SINR
threshold of 5.9 dB) for α = 3 and α = 4, respectively.
When thermal noise is not negligible (i.e., Eb

N0
is small), the

optimal spectral efficiency is shown to be the fraction
(
1 − 2

α

)
of the maximum spectral efficiency achievable in the absence
of interference.

Increasing N , which corresponds to decreasing the band-
width and increasing the area consumed by each transmission,
is seen to be beneficial as long as area (i.e., the SINR thresh-
old) increases at a reasonable rate with N . For interference-
limited networks this is true until the high-SNR regime is
reached, at which point a huge SINR increase is required
for any additional bandwidth reduction. For power-limited
networks this is true until the SINR threshold approaches the
interference-free SNR, at which point the system becomes
overly sensitive to interference.

B. Related Work

The problem studied in this work is essentially the opti-
mization of frequency reuse in uncoordinated decentralized
networks, which is a well studied problem in the context of
centrally-planned cellular and other hierarchical networks; see

1Because SINR is a function of spectral efficiency, this is equivalent to a
derivation of the optimal SINR threshold.

for example [4], [5], [6] and references therein. In both settings
the tradeoff is between the bandwidth utilized per cell or
transmission – which is inversely proportional to the frequency
reuse factor – and the achieved SINR/spectral efficiency per
transmission. A key difference is that regular frequency reuse
patterns can be used in cellular networks, whereas in an ad
hoc or unlicensed network this is impossible. Another crucial
difference is in terms of analytical tractability. Although there
has been a tremendous amount of work on frequency reuse
optimization for cellular networks, these efforts generally do
not lead to clean analytical results. On the contrary, in this
work we are able to derive simple analytical results for
decentralized networks that cleanly show the dependence of
the optimal reuse factor on basic system parameters.

A number of works have considered related problems in
the context of decentralized networks, although none appear
to have investigated the optimization considered here. In
[7] the time-bandwidth-area product achieved by different
codes are evaluated. This metric is essentially equivalent to
the inverse of transmission density in our network model,
but the authors do not pursue optimization of this metric,
which is the essence of our work. In [8], the authors jointly
optimize rate, transmitter-receiver distance (d), and density
in order to maximize the transport capacity (i.e., product of
rate and distance) of a random-access network. This setting
is very different from our framework in which we assume
a fixed rate and transmitter-receive distance, and as a result
conclusions differ significantly. For example, the optimum
SINR threshold in [8] for some networks is found to be orders
of magnitude smaller than 0 dB, whereas we find optimal
values around 0 dB. In [9] a network consisting of a large
number of interfering transmitter-receiver pairs is analyzed,
but no spatial model is used and only fading is considered.
In [10] the issue of frequency reuse is considered in a one-
dimensional, evenly spaced, multi-hop wireless network. Some
similar general insights are derived, but the regular spacing
of interferers seems to prevent derivation of clean analytical
results as is possible for the 2-D network considered here. In a
recent contribution the interactions between multiple random-
access networks have been considered from a game-theoretic
perspective [11], and portions of the analysis of a single
network in [11] coincide with our initial findings reported
earlier in [1]. There has also been a good deal of work
on multi-channel wireless networks, but this body of work
generally deals with scheduled networks as opposed to our
treatment of unscheduled networks (see [12] and references
therein). Perhaps most relevant is [13], in which algorithms for
dynamic allocation of bandwidth-area resources are proposed.

II. PRELIMINARIES

A. Network Model

We consider a set of transmitting nodes at an arbitrary
snapshot in time with locations specified by a homogeneous
Poisson point process (PPP) of intensity λ on the infinite 2-
D plane. All nodes are assumed to simultaneously transmit
with power ρ. By the stationarity of the PPP it is sufficient to
analyze the behavior of a single reference TX-RX pair (TX 0,
RX 0), separated by assumption by a distance d. Note that the
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receivers are not a part of the transmitter process. From the
perspective of RX 0, the interferers follow the distribution of
the PPP conditioned on the location of TX 0 (referred to as
the Palm distribution). However, by Slivnyak’s theorem [14]
this distribution is the same as the unconditional distribution
and therefore the locations of the interfering nodes form a
homogeneous PPP of intensity λ. Received power is modeled
by path loss with exponent α > 2. If Xi denotes the distance
of the i-th transmitting node to the reference receiver and the
transmit signal of the i-th transmitter is denoted as Ui, the
reference received signal is:

Y0 = U0d
−α/2 +

∑
i∈Π(λ)

UiX
−α/2
i + Zi

where Zi is additive Gaussian noise with power η. The
resulting SINR therefore is:

SINR0 =
ρd−α

η +
∑

i∈Π(λ) ρX−α
i

,

where Π(λ) indicates the point process describing the (ran-
dom) interferer locations. If Gaussian signaling is used, the
received mutual information (conditioned on interferer loca-
tions) is I(U0; Y0|Π(λ)) = log2(1 + SINR0) bits/symbol.
In the fixed rate setting considered here, the probability the
received mutual information is smaller than the transmission
rate is known to be a good approximation to packet error rate
if strong channel coding is used [15], and thus is the primary
metric in this work.

A few comments in justification of our model are in order.
Although the model contains many simplifications to allow
for tractability, it contains many of the critical elements
of a real decentralized network. First, the spatial Poisson
distribution means that transmitting nodes are randomly and
independently located; this is reasonable in a network with
indiscriminate node placement or substantial mobility assum-
ing that no intelligent transmission scheduling is performed
Scheduling generally attempts to ensure that simultaneous
transmissions are sufficiently separated in space, and thus can
significantly change the spatial distribution of simultaneous
transmissions. However, even simple scheduling protocols can
incur considerable overhead and latency and thus unscheduled
systems (or systems using ALOHA-like protocols that make
transmission decisions independent of interference conditions)
as considered here are of interest. This is particularly true
when scheduling overhead begins to overtake the advantage
of scheduling, as may be the case with high mobility or
very bursty traffic. The assumptions of fixed TX-RX distances
and no fading are often not reasonable, but as we discuss in
Section VI-B our results also apply to networks with fading
and/or variable distances in the interference-limited regime
(no thermal noise). Furthermore, our results are reasonably
accurate in the presence of non-negligible thermal noise when
the fading and distance variation is not too large. Finally,
we note that fixed- rather than variable-rate communication
is appropriate for some, but not necessarily all, settings,
e.g., single-hop communication with very stringent delay con-
straints. In other settings (e.g., when delay constraints are less
stringent) variable rate communication is more appropriate;

optimizing bandwidth partitioning in this context is of interest
but is outside the scope of this work.

B. Outage Probability/Maximum Density Characterization

An outage occurs whenever the SINR falls below threshold
β, or equivalently whenever the received mutual information
is smaller than log2(1+β). Therefore, the system-wide outage
probability is:

Pout(λ, β, η) � P

(
ρd−α

η +
∑

i∈Π(λ) ρX−α
i

≤ β

)
.

This quantity is computed over the distribution of transmitter
positions and is an increasing function of the intensity λ.
The SINR threshold β and the noise power η are treated
as constants here, but are related to R, W , and N in the
following section. Random variable X is defined as the
received interference raised to the power − 2

α :

X �

⎛
⎝ ∑

i∈Π(λ)

X−α
i

⎞
⎠− 2

α

,

which allows the outage probability to be written in terms of
X as:

Pout(λ, β, η) = P

(
ρd−α

η + ρX−α
2
≤ β

)

= P

(
X ≤ d2

(
1
β
− η

ρd−α

)− 2
α

)
.

It is useful to write this expression in terms of a normalized
interferer process. If we define Z as the received interference
for a process with intensity 1

π :

Z �

⎛
⎝ ∑

i∈Π(1/π)

Z−α
i

⎞
⎠− 2

α

,

and note that a PPP with intensity λ is equivalent to a PPP
with intensity 1

π scaled by 1√
πλ

, it follows that X and 1
πλZ

have the same distribution. Therefore

Pout(λ, β, η) = FZ

(
λπd2

(
1
β
− η

ρd−α

)− 2
α

)
(1)

where FZ(·) denotes the CDF of random variable Z . Although
a closed form expression for FZ(·) is not known except for
the special case of α = 4 [16], this characterization of the
outage probability allows us to derive an exact solution to the
bandwidth partition problem.

In many scenarios, the network is subject to an outage
constraint and the quantity of interest is the maximum intensity
of attempted transmissions λε such that the outage probability
(for a fixed β) is no larger than ε. Because outage probability
increases monotonically with density, an expression for λε is
reached by inverting (1):

λε =
F−1

Z (ε)
πd2

(
1
β
− η

ρd−α

) 2
α

(2)
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TABLE I
SUMMARY OF SYSTEM PARAMETERS

Parameter Description
R Transmission Rate (bits/sec)
W Total System Bandwidth (Hz)
ρ Transmission Power
N0 Noise Spectral Density
d Transmitter-Receiver Distance
Eb
N0

= ρd−α

N0R
Energy per Information Bit

ε Outage Constraint
N Number of Sub-Bands
β SINR Threshold

where F−1
Z (·) is the inverse of FZ(·).2

Because the SINR is upper bounded by only considering
the contribution of the nearest interferer, a necessary (but not
sufficient) condition for successful communication is that a

circle centered about the receiver of area πd2
(

1
β − η

ρd−α

)− 2
α

be free of interferers [17]. On the other hand, the effective
area consumed by each transmission when an outage level of
ε is required is the inverse of the density λε:

1
λε

=
1

F−1
Z (ε)

πd2

(
1
β
− η

ρd−α

)− 2
α

, (3)

which is the interferer-free area from the necessary condition
above multiplied by the constant 1

F−1
Z (ε)

. This constant factor,
which increases without bound as ε → 0 and which is larger
than one for all but the largest values of ε, accounts for
the fact that transmitters are randomly located and can be
intuitively thought of as a back-off parameter that ensures the
outage constraint is met. This interpretation turns out to be
useful when interpreting bandwidth partitioning in terms of
bandwidth and area.

III. PROBLEM FORMULATION AND GENERAL SOLUTION

We are now able to address the problem of interest, which
is determining the number of sub-bands that maximize the
density of transmissions such that the outage probability is
no larger than ε. As made explicit at the end of this section,
finding the value of N that minimizes outage probability for
a fixed total density of transmitters is the dual of this problem
and has precisely the same solution. For the reader’s reference,
the relevant system parameters are summarized in Table I.

If the system bandwidth is not split (N = 1), each node
utilizes the entire bandwidth of W Hz. The SINR required
(β) to achieve a rate of R bps is determined by inverting the
AWGN capacity expression R = W log2(1 + β), which gives
β = 2

R
W − 1. The maximum intensity of transmissions can

be determined by evaluating (2) with this value of β and η =
N0W . If the system bandwidth is split into N > 1 orthogonal
sub-bands each of width W

N , and each transmitter-receiver pair
uses one randomly selected sub-band, the required SINR β(N)
is determined by inverting the rate expression:

R =
W

N
log2(1 + β(N)) → β(N) = 2

NR
W − 1.(4)

2Random variable Z is stable; therefore FZ(·) is strictly increasing and
its inverse is well-defined.

Because each transmitter randomly chooses a sub-band, the
users on each sub-band are still a PPP and are independent
across bands. As a result, the maximum intensity of trans-
missions per sub-band is λε as defined in (2) with SINR
threshold β(N) and noise power η = N0

W
N . Since the N sub-

bands are statistically identical, the maximum total intensity
of transmissions, denoted λT

ε , is the per sub-band intensity λε

multiplied by N . Therefore, from (2) we have:

λT
ε (N) = N

(
F−1

Z (ε)
πd2

)(
1

β(N)
− N0

(
W
N

)
ρd−α

) 2
α

. (5)

The optimal number of sub-bands N∗ is that which maximizes
total transmission density:

N∗ = argmax
N

λT
ε (N). (6)

It is useful to interpret this optimization in terms of bandwidth
and area. Dividing (5) by W and then inverting yields:

W

λT
ε (N)

=
1

F−1
Z (ε)

(
W

N

)
︸ ︷︷ ︸
Bandwidth

πd2

(
1

β(N)
− N0W

Nρd−α

)− 2
α

︸ ︷︷ ︸
Interferer-Free Area

. (7)

which is the product of the constant 1
F−1

Z (ε)
, sub-band band-

width W
N , and the required interferer-free area. Total density

is maximized by minimizing this quantity, i.e., by minimizing
the bandwidth-area product of each transmission. It is easily
checked that the interferer-free area is a strictly increas-
ing function of N . Thus, as the number of sub-bands N
is increased the bandwidth consumed by each transmission
decreases while the area increases, leading to a non-trivial
tradeoff.

Rather than solving the maximization in (6) with respect to
N , it is more convenient to maximize with respect to the op-
erating spectral efficiency, which is equal to the transmission
rate divided by the bandwidth of each sub-band:

b � R

W/N
bps/Hz. (8)

It is important to note that the operating spectral efficiency b
is a design parameter even though the per-transmission rate R
and system bandwidth W are fixed.3

With this substitution the transmission density can be writ-
ten as a function of b:

λT
ε (b) =

(
F−1

Z (ε)
πd2

)(
W

R

)
b

(
1

2b − 1
− 1

b

N0R

ρd−α

) 2
α

(9)

Noting that the constant ρd−α

N0R � Eb

N0
is the received en-

ergy per information bit [3] and defining the constant κ �(
F−1

Z (ε)

πd2

) (
W
R

)
, this can be further simplified as:

λT
ε (b) = κb

(
1

2b − 1
− 1

b Eb

N0

) 2
α

. (10)

3If only bandwidth optimization is considered, b should be limited to integer
multiples of R

W
; in this case N∗ is either the integer floor or ceiling of

b∗
(

R
W

)
due to the nature of the objective function. However, if a more

general scenario is considered where the sub-band structure as well as the
length of transmission is being designed (e.g., in a packetized system), these
two parameters allow for operation at any desired b. Therefore, arbitrary b > 0
are considered for the remainder of the paper.

Authorized licensed use limited to: University of Minnesota. Downloaded on May 8, 2009 at 15:04 from IEEE Xplore.  Restrictions apply.



5412 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 12, DECEMBER 2008

The optimal spectral efficiency b∗ is therefore the solution to
the following optimization:

b∗ = argmax
b>0

b

(
1

2b − 1
− 1

b Eb

N0

) 2
α

. (11)

Note that the optimal b∗ depends only on the path loss
exponent α and Eb

N0
, and thus any dependence on power and

rate is completely captured by Eb

N0
. By posing the problem in

terms of spectral efficiency, any direct dependence on W is
removed. Furthermore, the problem is completely independent
of the outage constraint ε.

The problem in (11) is only feasible for b satisfying
1

2b−1
− 1

b
Eb
N0

≥ 0, which corresponds to the SINR threshold

β = 2b − 1 being no larger than the interference-free SNR
Nρd−α

N0W . Some simple manipulation shows that this condition

is equivalent to b ≤ C
(

Eb

N0

)
, where C

(
Eb

N0

)
is the maximum

spectral efficiency of an AWGN channel and thus is the
solution to [3, Equation 23]:

2C
(

Eb
N0

)
− 1 =

Eb

N0
C

(
Eb

N0

)
. (12)

The domain of the maximization is thus 0 ≤ b ≤ C
(

Eb

N0

)
. If

Eb

N0
≤ loge 2 = −1.59 dB the problem is infeasible for any b

because this corresponds to operating beyond interference-free
capacity4.

By taking the derivative of λT
ε (b) and setting it equal to

zero, the optimal spectral efficiency b∗ can be characterized
in terms of a fixed point equation parameterized by α and Eb

N0
:

Theorem 1: The optimum operating spectral efficiency b∗

is the unique positive solution of the following equation:

Eb

N0
b
(
2b − 1

)− Eb

N0

2
α

b22b loge 2 −
(

1 − 2
α

)(
2b − 1

)2
= 0

(13)
Furthermore, b∗ is an increasing function of Eb

N0
and of α.

Proof: See Appendix A.
Although we are not able to find a general closed-form

expression for (13), this expression is easily solved numeri-
cally and we can find closed form solutions in the asymptotic
regimes ( Eb

N0
→ ∞ and Eb

N0
→ −1.59 dB). In Fig. 1 the

numerically computed optimum spectral efficiency b∗ and the
corresponding density constant λT

ε (b∗)
κ are plotted versus Eb

N0
for α = 4, along with the spectral efficiency of an interference-
free AWGN channel C

(
Eb

N0

)
. From this figure, two asymptotic

regimes of interest can be identified:

• Interference-Limited Networks: When Eb

N0
is suffi-

ciently large, the effect of thermal noise vanishes and

4For readers less familiar with the power-limited regime, note that fixing
power P and noise spectral density N0 and using less bandwidth leads to
a decreasing rate, i.e., the function w log2

(
1 + P

N0w

)
↓ 0 as w → 0.

Thus, there is a minimum bandwidth needed to achieve a particular rate R
even in the absence of multi-user interference; this is the solution to R =

w log2

(
1 + P

N0w

)
and is precisely the quantity R

C
(

Eb
N0

) . Furthermore, note

that w log2

(
1 + P

N0w

)
↑
(

P
N0

)
loge 2 as w → ∞; therefore the minimum

energy per information bit Eb
N0 min

= P
N0R

= loge 2 = −1.59 dB and
C(loge 2) = 0.

0 5 10 15 20 25
0

0.5

1
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b
/N

0
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(bps/Hz)

Optimal Spectral Efficiency b*

(bps/Hz)

Optimal Density Constant

Fig. 1. Optimal Spectral Efficiency b∗ and Optimal Density Constant
λT

ε (b∗)
κ

vs. Eb
N0

for α = 4.

performance depends only on multi-user interference. As
a result, the optimal b∗ and density λT

ε (b∗) both converge
to constants as Eb

N0
→ ∞.

• Power-Limited Networks: When Eb

N0
is close to its min-

imum value of −1.59 dB, b∗ and λT
ε (b∗) scale linearly

with Eb

N0
(dB) and show characteristics very similar to

AWGN spectral efficiency [3].

In Section IV the interference-limited regime is explored
and a closed form expression for the optimal value of b∗

in terms of only the path-loss exponent is derived. Once a
system is in this regime, performance is virtually unaffected
by further increasing transmission power. In Section V the
power-limited regime is explored and simple expressions for
b∗ and λT

ε (b∗) in terms of α and Eb

N0
are given that are accurate

for Eb

N0
near −1.59 dB. Although intuition might suggest

that noise is dominant and thus interference is negligible
in this regime, this is not the case as evidenced by the
fact that the optimum spectral efficiency b∗ is considerably
smaller than the interference-free spectral efficiency C

(
Eb

N0

)
.

Furthermore, increasing transmission power does significantly
increase density in this regime. Between these two regimes
(approximately from 2-3 dB to 15-20 dB), b∗ increases sub-
linearly with Eb

N0
(dB) and the intuition is a combination of

the insights derived for the interference- and power-limited
regimes.

In Fig. 2 numerically computed values of b∗ are plotted
versus Eb

N0
for α = 2.5, 3, 3.5 and 4, and the interference-

limited regime is seen to begin around 15 dB for each value
of α. Although not visible here, it is interesting to note that
λT

ε (b∗)
κ is not monotonic with respect to α; on the other hand,

it is easily verified that λT
ε (b∗) monotonically increases with

Eb

N0
.

Remark 3.1: The dual problem of density maximization
subject to an outage constraint is outage minimization for a
given density. In this case the overall outage probability is the
same as the outage probability on each of the N sub-bands,
each of which has density λ

N . Substituting appropriate values
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for the SINR threshold and the noise power in (1) yields:

Pout(b) = FZ

⎛
⎝λπd2

(
R

W

)(
1
b

)(
1

2b − 1
− 1

b Eb

N0

)− 2
α

⎞
⎠ .

(14)

Outage probability is minimized by minimizing the argument
of the CDF (due to the non-decreasing nature of any CDF).
Because the argument is inversely proportional to the argument
of the maximization in (11), the problems of outage minimiza-
tion and density maximization are equivalent. To understand
the impact of partitioning, it is useful to note that FZ(z) is
approximately linear for small z [17]. ♦

Remark 3.2: If the available transmission rates are at
a gap to capacity, i.e., R = W log2(1 + Γ−1 · SINR) for
some Γ > 1, the required SINR increases by a factor of
Γ to β(N) = Γ

(
2NR/W − 1

)
and the density is given by

λT
ε (b) = Γ− 2

α κb

(
1

2b−1
− 1

b
Eb
N0

) 2
α

where Eb

N0
= ρd−α

ΓN0R . Thus,

the optimal spectral efficiency is given by evaluating Theorem
1 with Eb

N0
= ρd−α

ΓN0R . ♦

IV. PARTITIONING FOR INTERFERENCE-LIMITED

NETWORKS

In systems with sufficiently powered devices (i.e., large Eb

N0
),

thermal noise is essentially negligible. In the limiting case
where N0 = 0 (i.e., Eb

N0
→ ∞) the density is given by:

λT
ε (b) = κb

(
2b − 1

)− 2
α . (15)

In this limiting regime, a closed-form solution for b∗ can be
reached.

Theorem 2: The optimum operating spectral efficiency b∗

in the absence of thermal noise (N0 = 0 ↔ Eb

N0
= ∞) is the

unique solution to:

b∗ = (log2 e)
α

2
(1 − 2−b∗), (16)

which can be written in closed form as:

b∗ = log2 e
[α
2

+ W
(
−α

2
e−

α
2

)]
(17)
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Fig. 3. Optimal Spectral Efficiency b∗ and Optimal Density Constant
λT

ε (b∗)
κ

vs. Path Loss Exponent α for Interference-Limited Networks.

where W(z) is the principle branch of the Lambert W function
and thus solves W(z)eW(z) = z.

Proof: The result can be shown by directly maximizing
(15) or by solving the fixed point equation given in Theorem 1
while keeping only the Eb

N0
terms. The latter approach yields:

2
α

b22b loge 2 − b
(
2b − 1

)
= 0,

which is easily manipulated into the form of (16).
To get (17) we manipulate (16) into the form(
b∗ loge 2 − α

2

)
eb∗ loge 2 = −α

2 . Multiplying both sides
by e−

α
2 yields

(
b∗ loge 2 − α

2

)
eb∗ loge 2−α

2 = −α
2 e−

α
2 , from

which we have W (−α
2 e−

α
2
)

= b∗ loge 2 − α
2 and thus the

result.
The optimum depends only on the path loss exponent α, and

it is straightforward to show that b∗ is an increasing function
of α, b∗ is upper bounded by α

2 log2 e, and that b∗/(α
2 log2 e)

converges to 1 as α → ∞. In Fig. 3 the optimal spectral
efficiency b∗ and λT

ε (b∗)
κ are plotted versus path-loss exponent

α. The optimal spectral efficiency is very small for α close to
2 but then increases nearly linearly with α; for example, the
optimal spectral efficiency for α = 3 is 1.26 bps/Hz (β = 1.45
dB). Note the non-monotonic behavior of λT

ε (b∗)
κ with α: the

minimum occurs at α = 2.77, where λT
ε (b∗)

κ = b∗ = 1.
To gain an intuitive understanding of the optimal solution,

let us first consider the behavior of λT
ε (b) when b is small, i.e.

b � 1. Because ex−1 ≈ x for small x, the SINR threshold in-
creasing approximately linearly with b: β = 2b−1 ≈ b loge 2.
Plugging into (15) yields:

λT
ε (b) = κb

(
2b − 1

)− 2
α ≈ κb · b− 2

α = κb(1−
2
α ).

For any path-loss exponent α > 2, the density of transmissions
increases as b(1−

2
α ). Therefore, increasing the number of sub-

bands N , or equivalently increasing the spectral efficiency
b, leads to an increased transmission capacity, as long as
the linear approximation to β remains valid. Recall that the
area consumed by each transmission is proportional to β

2
α

(equation 7): if β ∼ b, then area increases sub-linearly as b
2
α
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and this increase is offset by the linear increase in the number
of parallel transmissions. When b becomes larger, β begins
to grow exponentially rather than linearly with b (i.e., SINR
must be doubled in dB units rather than in linear units in order
to double spectral efficiency) and thus the benefit of further
increasing the number of sub-bands is far outweighed by the
SINR/area increase.

This behavior is illustrated in Fig. 4, where λT
ε (b) =

κb
(
2b − 1

)− 2
α (with κ = 1) is plotted versus b for different

values of α. The function increases rapidly when b is small,
but then decreases rapidly beyond its peak when the SINR
cost becomes prohibitive. A larger path loss exponent makes
the system less sensitive to interference, and thus the peak is
attained at a larger value of b. It is interesting to note that all
of the curves intersect at b = 1 because λT

ε (1) = κ for any
value of α. Although b = 1 is quite sub-optimal when α is
near 2, κ is reasonably close to the optimal κb∗(2b∗ − 1)−

2
α

for exponents between 2.5 and 5 and thus is a rather robust
operating point if the path loss exponent is not known exactly.

A Design Example. Consider wireless LAN parameters that
are conceptually similar to those of an 2.4 GHz 802.11 system,
that uses N = 3 bands of about 20 MHz. Assume the usable
bandwidth is a total of W = 60 MHz, and that the desired
rate is R = 10 Mbps and α = 3. From Theorem 2 we can
determine that

N∗ =
b∗

R/W
=

1.26
R/W

= 7.56, (18)

so the optimum partition is about N∗ = 8, or bands of 7.5
MHz. If however the data rate requirement is higher, like 60
Mbps, then it can quickly be confirmed that N∗ = 1. That is,
the maximum number of users can be accommodated at the
higher data rate if each of them uses the entire band, since
they can accept a lower received SINR with such a large
bandwidth.

V. PARTITIONING FOR POWER-LIMITED NETWORKS

In the power-limited regime where Eb

N0
is close to −1.59 dB,

we can obtain a simple characterization of b∗ that is accurate
up to a quadratic term by solving the fixed point equation
given in Theorem 1:

Theorem 3: The optimum operating spectral efficiency b∗

in the power-limited regime ( Eb

N0
slightly larger than −1.59

dB) is given by:

b∗ =
(

1 − 2
α

)
C

(
Eb

N0

)
+ O

(
b2
)

(19)

where C
(

Eb

N0

)
is the AWGN spectral efficiency at Eb

N0
as

defined in (12).
Furthermore, the density in the wideband regime is charac-

terized as:

λT
ε (b∗)
κ

=
(
(1 − δ)(1−δ)δδ2−δ

)
C

(
Eb

N0

)
+ O

(
b2
)

(20)

where δ � 2
α and (1 − δ)(1−δ)δδ2−δ < 1 for all α > 2.

Proof: See Appendix B.
Fig. 5 contains plots of the numerically computed b∗, the

approximation (1 − 2
α )C

(
Eb

N0

)
, and C

(
Eb

N0

)
versus Eb

N0
for

α = 3 and α = 4. Fig. 6 contains plots of the numerically
computed λT

ε (b∗)
κ , the approximation from (20), and C

(
Eb

N0

)
versus Eb

N0
for α = 2.01 and α = 3 (the curve for α = 4

is nearly indistinguishable from α = 3). Both approximations
are seen to be very accurate.

Although intuition might suggest that interference can be
ignored when thermal noise is so large, this is not the case.
If b is chosen only slightly smaller than C

(
Eb

N0

)
, the SINR

threshold is almost equal to the interference-free SNR and
thus each receiver is extremely sensitive to interference. As
a result each communication consumes a large area, and this
offsets the bandwidth savings of using a large b. On the other
extreme, small b corresponds to a small area because the SINR
threshold is much smaller than the interference-free SNR, but
this is offset by a large bandwidth which causes λT

ε (b) → 0
as b → 0.

This behavior is illustrated in Fig. 7, where λT
ε (b) (with

κ = 1) is plotted versus b for α = 2.2, 3, and 4 at Eb

N0
= −0.82

dB (for which C
(

Eb

N0

)
= 0.5 bps/Hz). Choosing b near either

extreme leads to very poor performance for any α. Notice that
all three curves intersect when b satisfies 1

2b−1 − 1

b
Eb
N0

= 1.

This condition is satisfied when the SINR threshold is equal
to SNR

1+SNR , where SNR is the interference-free SNR, and thus

b = log2

(
1 + SNR

1+SNR

)
. By a simple calculation using tools

from [3], the intersection point corresponds to b = 1
3C
(

Eb

N0

)
.

Although this choice of spectral efficiency is only optimal for
α = 3, it is quite close to optimal for path loss exponents that
are not too near 2 and thus is a robust operating point in the
power-limited regime, analogous to the choice b = 1 in the
interference-limited regime.

Finally, note that multi-user interference decreases the
marginal benefit of increased power (i.e., Eb

N0
) as compared to

an interference-free channel. The analogous quantity for the
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spatial network considered here is the area spectral efficiency
(ASE), which is computed relative to the total bandwidth of W
Hz and is equal to λT

ε (b∗)
(

R
W

)
bps/Hz per m2. In an AWGN

channel, spectral efficiency increases at a slope of 2 bps/Hz per
3 dB in the wideband regime (S0 = 2) [3], while (20) implies
that ASE increases only at a rate of 21−δ

(
(1 − δ)(1−δ)δδ

)
(< 2) bps/Hz per 3 dB.

VI. NUMERICAL RESULTS AND EXTENSIONS

In the following we present numerical results to illustrate
the value of bandwidth partitioning. With system parameters
chosen as ε = 0.1, N0 = 10−6, α = 4, d = 10, R = 1 Mbps,
and W = 10 MHz, the total density λT

ε (N) is computed
via full Monte Carlo simulation (of outage probability at
different densities) and with equation (5) using the numerically
computed value F−1

Z (0.1) = 0.1015. Fig. 8 contains plots
of both quantities for Eb

N0
equal to 30, 20, 5, and 0 dB,

and the curves match almost exactly with any difference due
purely to simulation error. According to the chosen parameters
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Fig. 8. Numerically computed λT
ε (N) versus N for α = 4 and Eb

N0
=

30, 20, 5, and 0 dB (top to bottom). Solid and dotted lines were computed
using (5) and pure Monte Carlo simulation, respectively.

we have N∗ = b∗
R/W = 10b∗ and κ = 0.0032. Note that

the optimizing spectral efficiency b∗ and the value of λT
ε (b∗)

κ
can be read from Fig. 1. The top two set of curves are for
Eb

N0
= 30 dB and Eb

N0
= 20 dB, both of which correspond

to the interference-limited regime where b∗ = 2.3 bps/Hz
(N∗ = 23). The curves are nearly indistinguishable near the
optimal N∗ because performance is essentially independent
of Eb

N0
in the interference-limited regime. The middle set of

curves correspond to ρ = Eb

N0
= 5 dB, which is between the

two extremes. At this point b∗ = 1.5 bps/Hz (N∗ = 15) and
λT

ε (b∗)
k = 0.8; reducing power by 15 dB while keeping all

other parameters fixed reduces density/ASE by approximately
a third. The bottom curves correspond to ρ = Eb

N0
= 0 dB,

which is in the wideband regime. At this point C
(

Eb

N0

)
= 1

and b∗ = (1 − α
2 )C

(
Eb

N0

)
= 0.5 bps/Hz (N∗ = 5), and the

area spectral efficiency is reduced to 0.1.
While Eb

N0
is generally thought to be adjusted by varying
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transmit power, it can also be adjusted by fixing the power
and varying the rate R. The area spectral efficiency λT

ε (b∗) R
W

bps/Hz/m2 is equal to
(

− loge(1−ε)
πd2

)
b∗
(
2b∗ − 1

)− 2
α , and

therefore depends only on Eb

N0
but not on the particular values

of R and ρ. As a result, if a network is operating outside
of the interference-limited regime, ASE can be tremendously
increased by either increasing power or decreasing rate (while
keeping power fixed). However, this is only possible until
the interference-limited regime is reached; once there, ASE
is unaffected by Eb

N0
.

A. Direct Sequence Spread-Spectrum

Direct-sequence (DS) spread spectrum is a well-established
method for spectrum sharing in wireless networks. If DS is
used with a spreading factor of N , a signal with an information
bandwidth (i.e., symbol rate) of W

N Hz can be spread across
the entire system bandwidth of W Hz. This is quite different
than the method investigated so far, which be thought of as
either FDMA or slow frequency-hopping. In [17] it is shown
that DS is significantly inferior to splitting the frequency
band (FDMA) for any particular bandwidth partition because
it is preferable to avoid interference (FDMA) rather than
to suppress it (DS), and this conclusion also holds if the
bandwidth is optimally partitioned.

If direct sequence is used with completely separate de-
spreading and decoding (assuming spreading suppresses in-
terference by a factor of N ), the SINR after despreading is
given by:

SINRDS =
ρd−α

N0(W/N) + 1
N

∑
i∈Π(λ) ρX−α

i

.

With some simple manipulation the outage probability is given
by:

P[SINRDS ≤ β(N)] =

P

[
ρd−α

N0W +
∑

i∈Π(λ) ρX−α
i

≤ β(N)
N

]
(21)

where β(N) is defined in (4). Therefore, the total transmission
density for DS with spreading factor N is equal to λε as
defined in (2) with threshold β(N)

N and η = N0W . How-
ever, β(N)

N is an increasing function of N and thus total
density monotonically decreases with N if DS is used. Direct-
sequence increases SINR by at most a factor of N , but this
gain is offset by the fact that the SINR threshold increases
at least linearly with N . As a result a DS system performs
no better than an FDMA/FH system with N = 1, which
corresponds to λT

ε (1) in (5) and which is generally much
smaller than the optimal λT

ε (N∗). Although DS has strengths
unrelated to spectral efficiency, such as security and MAC
design [18], these benefits come at a significant performance
penalty.

B. Effect of Frequency-Flat Fading and Variable TX-RX Dis-
tances

In the presence of fading and variable distances, the SINR
expression becomes:

SINR0 =
ρd−αh0

η +
∑

i∈Π(λ) ρX−α
i hi

,

where hi denotes the power of the fading coefficient from
TX i to the reference receiver, h0, h1, . . . are chosen iid
according to some distribution FH , and d is a random
variable chosen according to distribution FD . If we define

Z �
(∑

i∈Π(1/π) hiZ
−α
i

)− 2
α

, and G = d−αh0, then simple
manipulation yields:

Pout(λ, β, η) = P

(
Z−α

2 ≥ (πλ)−
α
2

(
G

β
− η

ρ

))
(22)

= P

(
G ≤ βη

ρ

)
(23)

+ P

(
Z ≤ πλ

(
G

β
− η

ρ

)− 2
α
∣∣∣∣G ≥ βη

ρ

)
P

(
G ≥ βη

ρ

)
The first term is the probability of an outage due to insufficient
received signal power, i.e., G is so small that the interference-
free SNR is below the SINR threshold, while the second
is the probability of outage conditioned on sufficient signal
power. Because of the somewhat involved expression for
outage probability, it is more convenient to consider bandwidth
partitioning in terms of outage minimization rather than den-
sity maximization. In the purely interference-limited regime
(N0 = 0), the first term in (23) disappears and the outage
probability (in terms of N ) is given by:

Pout(N) = P

(
ZG

2
α ≤ π

(
λ

N

)(
2

NR
W − 1

) 2
α

)
= P

(
ZG

2
α ≤ πλ

(
R

W

)
1
b

(
2b − 1

) 2
α

)
,

where we have again used b = NR
W . Outage is minimized by

minimizing 1
b

(
2b − 1

) 2
α , which is clearly equivalent to the

problem solved in Section IV. Thus, the interference-limited
solution given in Theorem 2 is also optimal in the presence
of fading and variable distances.

However, the same is not true when there is positive noise
power. By substituting the appropriate values into (23) and
manipulating the second addend, outage is characterized as:

Pout(N) = P (G ≤ g∗)+ (24)∫ ∞

g∗
FZ

(
πλ

R

W
x− 2

α
1
b

(
1

2b − 1
− N0R

bρx

)− 2
α

)
fG(x)dx

where g∗ =
(
2

NR
W − 1

)(
N0W
Nρ

)
=
(

2b−1
b

)(
N0R

ρ

)
. The first

term, which represents outage due to insufficient received
power, increases with N because g∗ is an increasing func-
tion of N . The integrand in the second term is the outage
probability conditioned on G = x, and is precisely of the
form investigated earlier with Eb

N0
= ρx

N0R . Therefore, Theorem
1 characterizes the value of N that minimizes the integrand
for each value of x, but does not generally characterize the
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minimizer of (24). However, the solution from Theorem 1
does become increasingly accurate as transmission power is
increased (i.e., the interference-limited regime is approached)
and as the variation in the fading and TX-RX distances
decreases. Increasing power causes the first term in (24) to
decrease and eventually become negligible, while decreasing
variation in G reduces variation in the effective energy per bit
Eb

N0
= ρx

N0R .
To illustrate this, Fig. 9 displays the outage minimizing

value of N (computed via Monte Carlo) versus Eb

N0
for

four different settings: Rayleigh fading and Nakagami fading
(m = 5) for fixed d = 10, and no fading and variable
distances for d uniform in [8, 12] and [5, 15]. The relevant
parameters are: W = 5 MHz, N0 = 10−6, R = 1 Mbps,
λ = .01

π m−2, α = 4. The jitter in the curves is due to
simulation error. For sufficiently large Eb

N0
, the optimal does

indeed converge to the optimal value for a purely interference-
limited (N0 = 0) network. Furthermore, the optimizing N
tends towards the Theorem 1 solution for more benign fading
(Nakagami) and for smaller distance variation.5 Based on (24),
the truly optimal N seems to depend on the particular fading
and distance distributions and appears somewhat intractable;
further investigation is left for future work.

VII. CONCLUSION

In this work we studied the problem of bandwidth parti-
tioning in a decentralized network and derived the optimal
operating spectral efficiency, assuming multi-user interfer-
ence is treated as noise and no transmission scheduling is
performed. A network can operate at this optimal point by
dividing the total bandwidth into sub-bands sized such that
each transmission occurs on one of the sub-bands at precisely
the optimal spectral efficiency.

The essence of this problem is determining the optimum
balance between the time-frequency resources and area re-

5Our recent work has shown that there can be a substantial benefit to
reducing variation in received signal power by adjusting transmit power
to partially compensate for reduced signal power [19]; thus, systems with
relatively small signal power variation are particularly relevant.

sources consumed by each transmission. Using many time-
frequency resources to transmit a finite number of bits corre-
sponds to operating at a low spectral efficiency. This translates
to a small required SINR, and thus only a small area must
be free of interfering transmissions. On the other hand, using
few time-frequency resources corresponds to a large spectral
efficiency and in turn a large SINR and interferer-free area.
Our analysis shows that the optimal depends only on the
path loss exponent and energy per information bit. If thermal
noise is negligible the optimal spectral efficiency lies between
the low- and high-SNR extremes, while in the power-limited
regime the optimal is a fraction of the maximum possible
spectral efficiency in the absence of interference. Furthermore,
the optimal spectral efficiency is always an increasing function
of the path loss exponent and of the energy per information
bit.

APPENDIX A
PROOF OF THEOREM 1

In order to prove the result it is convenient to work with
natural logarithms:

λT
ε (b) = κb

(
1

2b − 1
− 1

b

1
Eb

N0

) 2
α

=
(

κ

loge 2

)
n

(
1

en − 1
− 1

n

1
Ẽ

) 2
α

= λT
ε (n)

where n � b loge 2 and Ẽ �
Eb
N0

loge 2 . Ignoring constant κ
loge 2

and defining δ = 2
α , the first derivative is:

d

dn

[
λT

ε (n)
]

=
(

1
en − 1

− 1
Ẽn

)δ

+

nδ

(
1

en − 1
− 1

Ẽn

)δ−1
(

−en

(en − 1)2
+

1
Ẽn2

)

=

(
1

en−1 − 1
Ẽn

)δ−1

Ẽn (en − 1)2

×
[
Ẽn (en − 1) − Ẽδn2en − (1 − δ) (en − 1)2

]
.

Because the first term is positive for any n > 0, the derivative
is equal to zero if and only if:

Ẽn (en − 1) − Ẽδn2en − (1 − δ) (en − 1)2 = 0. (25)

Substituting n = b loge 2 and Ẽ =
Eb
N0

loge 2 yields the fixed
point equation in (13). Although λT

ε (n) is neither convex
nor concave, we can show it has a unique maximizer at the
unique positive solution to the above equation. It is easy to
check that λT

ε (0) = λT
ε (nmax) = 0 and λT

ε (n) > 0 for

0 < n < nmax, where nmax = C
(

Eb

N0

)
loge 2. Therefore

the function is maximized at a point where its derivative
is zero. Furthermore, (25) is satisfied at any point where
the derivative is zero and thus (25) must have at least one
positive solution. To show that (25) has a unique positive
solution, define ν(n) = Ẽδn2en + (1 − δ) (en − 1)2 and
ν(n) = Ẽn (en − 1). Equation (25) is satisfied if and only
if μ(n) = ν(n). Note that μ(0) = ν(0) = 0 and μ(n) > 0
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and ν(n) > 0 for all n > 0. Simple calculations show that
each function is strictly convex. Hence μ(n), ν(n) are positive
valued, non-decreasing, strictly convex functions, and based
on this it is straightforward to argue that there is at most one
positive solution of μ(n) = ν(n).

To show n∗(Ẽ , δ) increases with Ẽ , define the LHS of (25)
as f(n, Ẽ , δ). By the properties shown earlier, f(n, Ẽ , δ) > 0
for 0 < n < n∗(Ẽ , δ) and f(n, Ẽ , δ) < 0 for n >
n∗(Ẽ , δ). As a result, n∗(Ẽ , α) increases with Ẽ if for any
Ẽ ′ > Ẽ , f(n, Ẽ ′, δ) > 0 for 0 < n < n∗(Ẽ , δ). To
prove this property, choose any n, Ẽ such that f(n, Ẽ, δ) =
Ẽ (n (en − 1) − δn2en

) − (1 − δ) (en − 1)2 > 0. Since
(1 − δ) (en − 1)2 > 0 for any n, this implies n (en − 1) −
δn2en > 0. Thus, for any Ẽ ′ > Ẽ :

f(n, Ẽ ′, δ) = Ẽ ′ (n (en − 1) − δn2en
)− (1 − δ) (en − 1)2

> f(n, Ẽ , δ)
> 0.

By a similar argument, if f(n, Ẽ , δ) is a decreasing function
of δ then n∗(Ẽ , δ) decreases with δ, i.e., increases with α. To
prove this, note that the partial of f(n, Ẽ , δ) with respect to δ
is (en − 1)2 − Ẽn2en. Recall that n ≤ nmax is equivalent to
Ẽn ≥ en − 1. This allows:

Ẽn2en − (en − 1)2 ≥ (en − 1)nen − (en − 1)2

= (en − 1) (nen − en + 1) ≥ 0.

The last expression is nonnegative on account of the fact that
the function nen − (en − 1) has derivative nen ≥ 0. Thus
f(n, Ẽ , δ) is decreasing in δ, i.e., increasing in α.

APPENDIX B
PROOF OF THEOREM 3

For convenience, we again work with the function in natural
log form (see Appendix A). To prove the result, we expand
the exponential terms (using ex =

∑∞
k=0

xk

k! ) in (25) to give:

Ẽδn2(1 + n + O(n2)) − Ẽn

(
n +

n2

2
+ O(n3)

)
+(1 − δ)

(
n2 + n3 + O(n4)

)2
= 0. (26)

Cancelling a factor of n2 throughout yields

Ẽδ
(
1 + n + O(n2)

)− Ẽ
(

1 +
1
2
n + O(n2)

)
+(1 − δ)

(
1 + n + O(n2)

)
= 0, (27)

which can be solved to yield a solution that is accurate to
within a quadratic term:

n∗ =
Ẽ(1 − δ) + (δ − 1)
Ẽ (δ − 1

2

)
+ (1 − δ)

+ O(n2). (28)

We are interested in the behavior of b∗

C
(

Eb
N0

) as Eb

N0
→ 0

(or equivalently C
(

Eb

N0

)
→ 0). Because n∗ = b∗ loge 2 and

nmax = C
(

Eb

N0

)
loge 2 we can equivalently evaluate n∗

nmax

lim
nmax→0

(
n∗

nmax

)
= lim

nmax→0

1
nmax

(
Ẽ(1 − δ) + (δ − 1)
Ẽ (δ − 1

2

)
+ (1 − δ)

)
.

By plugging in enmax−1
nmax

= Ẽ and using L’Hospital’s rule,
we can show the above limit is 1 − δ, which implies n∗ =
(1 − δ)nmax + O(n2), which in turn gives the final result:

b∗ =
(

1 − 2
α

)
C

(
Eb

N0

)(
Eb

N0

)
+ O

(
b2
)
.

Because our approximation is accurate within a quadratic,
we have the following:

lim
C
(

Eb
N0

)
→0

λT
ε (b∗)

C
(

Eb

N0

) = lim
C
(

Eb
N0

)
→0

λT
ε

(
(1 − δ)C

(
Eb

N0

))
C
(

Eb

N0

) .

By working with the natural log version of this equation and
plugging in enmax−1

nmax
= Ẽ , L’Hospital’s rule can be used to

show that this limit is equal to κ(1 − δ)(1−δ)δδ2−δ, which
yields (20).
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