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Abstract—We define a duality between Gaussian multiple-ac-
cess channels (MACs) and Gaussian broadcast channels (BCs). The
dual channels we consider have the same channel gains and the
same noise power at all receivers. We show that the capacity re-
gion of the BC (both constant and fading) can be written in terms
of the capacity region of the dual MAC, and vice versa. We can use
this result to find the capacity region of the MAC if the capacity
region of only the BC is known, and vice versa. For fading chan-
nels we show duality under ergodic capacity, but duality also holds
for different capacity definitions for fading channels such as outage
capacity and minimum-rate capacity. Using duality, many results
known for only one of the two channels can be extended to the dual
channel as well.

Index Terms—Broadcast channel (BC), channel capacity,
duality, fading channels, multiple-input multiple-output (MIMO)
systems, multiple-access channel (MAC).

I. INTRODUCTION

I N this paper, we show that the scalar Gaussian multiple-ac-
cess channel (MAC) and broadcast channel (BC) are duals

of each other and as a result the capacity regions of the BC and
the MAC with the same channel gains (i.e., the channel gain of
receiver in the BC equals the channel gain of transmitter in
the MAC) and the same noise power at every receiver (i.e., the
receiver in the MAC and each receiver in the BC have the same
noise power) are very closely related.

The Gaussian MAC and the Gaussian BC have two funda-
mental differences. In the MAC, each transmitter has an indi-
vidual power constraint, whereas in the BC there is only a single
power constraint on the transmitter. In addition, signal and in-
terference come from different transmitters in the MAC and are
therefore multiplied by different channel gains (known as the
near–far effect) before being received, whereas in the BC, the
entire received signal comes from the same source and there-
fore has the same channel gain.

Though the channels differ in some fundamental aspects,
there is a striking similarity between the coding/decoding
scheme used to achieve the capacity of the Gaussian MAC
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and BC. In the MAC, each user transmits Gaussian codewords
that are scaled by the channel and then “added” in the air.
Decoding is done using successive decoding with interference
cancellation, in which one user’s codeword is decoded and
then subtracted from the received signal, then the next user is
decoded and subtracted out, and so on. Since the Gaussian BC
is a degraded BC, superposition coding is optimal [1]. In the
Gaussian BC, superposition coding simplifies to transmitting
the sum of independent Gaussian codewords (one codeword per
user). The receivers also perform successive decoding with in-
terference cancellation, with the caveat that each user can only
decode and subtract out the codewords of users with smaller
channel gains than themselves. In both the MAC and BC, the
received signal is a sum of Gaussian codewords and successive
decoding with interference cancellation is performed. The
similarity in the encoding/decoding process for the Gaussian
MAC and BC hints at the relationship between the channels.

We first show that the capacity region of the Gaussian BC is
equal to the capacity region of the dual Gaussian MAC subject
to the same sum power constraint instead of the standard
individual power constraints. Alternatively, the capacity region
of the Gaussian BC is equal to the union of capacity regions
of the dual MAC, where the union is taken over all individual
power constraints that sum up to the BC power constraint.
If we let represent the BC capacity region and

represent the MAC capacity region, this
can be stated as

(1)

This leads to the conclusion that the uplink (MAC) and down-
link (BC) channels differ only due to the fact that power con-
straints are placed on each transmitter in the MAC instead of on
all transmitters jointly.

We then use the equivalence of the BC and sum power con-
straint MAC to find an expression for the capacity region of the
individual power constraint MAC in terms of the capacity re-
gion of the dual BC. We show that the MAC capacity region is
equal to the intersection of dual BC capacity regions. Using the
same notation as above, this can be expressed as

(2)

This result follows from a general theorem characterizing the
individual power constraint MAC in terms of the sum power
constraint MAC capacity region, which is equal to the dual BC
capacity region by (1).
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Fig. 1. System models.

In addition to the constant additive white Gaussian noise
(AWGN) channel, we consider flat-fading channels with
perfect channel state information (CSI) at all transmitters and
receivers. Fading channels can be decomposed into a set of
parallel constant channels, one for each fading state. Using the
duality of constant channels established in (1), we show that
duality holds for the ergodic capacity region of fading channels
as well. We also show that the relationship in (2) holds for
fading channels. Duality also holds for outage capacity and
minimum-rate capacity. Though the ergodic capacity regions
[2], [3] and outage capacity regions [4], [5] of both the MAC
and BC have previously been found, duality ties these results
together. Minimum-rate capacity has only been found for
the BC [6], but using duality we can find the minimum-rate
capacity of the MAC as well.

Duality is an exciting new concept that gives great insight
into the similarities between the Gaussian MAC and BC, as well
as their capacities and optimal transmission strategies. It also
opens up the possibility that a more general information-theo-
retic duality exists between the MAC and BC [7]. Duality has
also been very useful in proving new results, most prominently
for the multiple-antenna BC. In [8], duality is extended to mul-
tiple-antenna Gaussian channels and in [8], [9] this duality has
been used to find the sum capacity of the multiple-antenna BC.
Duality also greatly simplifies numerical computation of the
multiple-antenna BC sum rate capacity and achievable region
[10], [11].

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the dual Gaussian BC and MAC. In Sec-
tion III, we show that the constant Gaussian BC and MAC are
duals. In Section IV, we extend the results on constant channels
to fading channels and show that the fading BC and MAC are
also duals with respect to ergodic capacity. In Sections V and
VI, we show duality also holds for outage and minimum-rate
capacity, respectively. We consider some extensions of this du-
ality in Section VII, followed by our conclusions.

II. SYSTEM MODEL

The notation used in this paper is as follows: Boldface is used
to denote vectors. is used to denote expectation over the
random variable and lower case denotes a realization of

. For vectors and , we use and to refer to compo-
nent-wise multiplication and division. Additionally, inequalities
with respect to vectors are also component-wise.

We consider two different discrete-time systems as shown in
Fig. 1, where denotes the time index. The system to the left
is a BC: a one-to-many system, where the transmitter sends in-
dependent information to each receiver by broadcasting signal

to different receivers simultaneously. Each receiver is
assumed to suffer from flat fading, i.e., the desired signal
is multiplied by a possibly time-varying channel gain1 , and
white Gaussian noise is added to the received signal. We
let denote the vector of channel gains
at time .

The system to the right is a MAC: a many-to-one system,
where independent transmitters each send a signal to a
single receiver. The received signal is the sum of the trans-
mitted signals (each scaled by the channel gain) and additive
Gaussian noise .

Mathematically, the two systems can be described as

BC

MAC

Notice that the noise power of each receiver in the BC and the
single receiver in the MAC is equal to . Also note that the term

is the channel gain of receiver in the BC (downlink) and
of transmitter in the MAC (uplink). We call this BC the dual
of the MAC, and vice versa.

We consider two different models in this paper: constant
and time-varying channel gains. In the constant channel, the
channel gains are constant for all and these values are
assumed to be known at all the transmitters and the receivers
in the MAC and BC. In the fading channel, the channel gains

are a jointly stationary and ergodic random
process. The dual fading channels need only have the same
fading distribution (as opposed to having the same instanta-
neous channel gains) because the realization of the fading
process does not affect the ergodic capacity region. In this

1In general, the channel gain may be complex, but assuming perfect phase
information at the receivers, without loss of generality we consider only real
channel gains.
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paper, we assume perfect CSI at all transmitters and receivers,
i.e., that all transmitters and receivers know perfectly at
time .

The dual channels we consider are not only interesting from a
conceptual standpoint, but in fact they also resemble a time-di-
vision duplexed (TDD) cellular system quite well. In such a
system, the channel gains on the uplink and downlink are iden-
tical, assuming that the channels do not change too rapidly.

III. DUALITY OF THE CONSTANT MAC AND BC

Before establishing the duality of the constant MAC and BC,
we first formally define the capacity regions of both channels.

A. Capacity Region of the MAC

From [1], the capacity region of a Gaussian MAC with
channel gains and power constraints

is

(3)

The capacity region of the constant MAC is a -dimensional
polyhedron, and successive decoding with interference can-
cellation can achieve all corner points of the capacity region
[1]. Every decoding order corresponds to a different corner
point of the capacity region, and, consequently, there are
corner points in the capacity region. Given a decoding order

in which User is decoded first,
User is decoded second, etc., the rates of the corre-
sponding corner point are

(4)
We will use this form of the rates throughout this paper. The
capacity region of the MAC is in fact equal to the convex hull of
these corner points and all other rate vectors that lie below
this convex hull (i.e., are componentwise less than or equal to a
rate vector in the convex hull).

B. Capacity Region of the BC

From [1], the capacity region of a Gaussian BC with channel
gains and power constraint is

(5)

over all power allocations such that . Addition-
ally, any rate vector taking the form of (5) with equality lies on
the boundary of the capacity region.

Any set of rates in the capacity region is achievable by suc-
cessive decoding with interference cancellation, in which users
decode and subtract out signals intended for other users before
decoding their own signal. To achieve the boundary points of
the BC capacity region, the signals are encoded such that the
strongest user can decode all users’ signals, the second strongest
user can decode all users’ signals except for the strongest user’s
signal, etc. The “strongest” user refers to the user with the largest
channel gain .

As seen in [12], the capacity region of the BC is also achiev-
able via “dirty-paper coding,” in which the transmitter “pre-
subtracts” (similar to precoding for equalization) certain users’
codewords instead of receivers decoding and subtracting out
other users’ signals. When users are encoded in order of in-
creasing channel gains, this technique achieves capacity and is
equivalent to successive decoding. Though suboptimal, dirty-
paper coding can be performed using any other encoding order
as well.2 Assuming encoding order in
which the codeword of User is encoded first, the rates
achieved in the BC are

(6)

Clearly, these rates are achievable and thus are in the BC
capacity region. In fact, any rates of the form of (6) for
any encoding order and any power allocation such that

lie in . Note that if is in order
of increasing channel gains, then the rate vector lies on the
boundary of the capacity region.

C. MAC to BC

In this subsection, we show that the capacity region of a
Gaussian BC can be characterized in terms of capacity regions
of the dual MAC.

Theorem 1: The capacity region of a constant Gaussian BC
with power constraint is equal to the union of capacity regions
of the dual MAC with power constraints such that

(7)

Proof: We will show that every point on the boundary of
the BC capacity region is a corner point of the dual MAC for
some set of powers with the same sum power and that every
corner point of the MAC for every set of powers is in the dual
BC capacity region with the same sum power. Since the MAC
and BC capacity regions are convex, this suffices to prove the
result.

Let us consider the successive decoding point of the MAC
with power constraints corresponding to de-
coding order for some permutation of

2Note that with successive decoding, when a suboptimal decoding order is
used it must be ensured that all users who are supposed to decode and sub-
tract out a certain user’s signal have a large enough channel gain to do so. This
limits the rates achievable using successive decoding with a sub-optimal de-
coding order.
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. The rate of User in the MAC at this successive
decoding point is

Assuming that the opposite encoding order is used in the BC
(i.e., User encoded last, etc.), the rate of User in the
dual BC when powers are used is

By defining and as

(8)

we can rewrite the rates in the MAC and BC as

(9)

(10)

Thus, if the powers satisfy

(11)

then the rates in the MAC using powers and
decoding order are the same as the rates
in the BC using powers and encoding order

. In Appendix A, we show that if the powers
satisfy (11), then

We now need only show that given a set of MAC powers and
a MAC decoding order, there exist a set of BC powers satisfying
(11), and vice versa. To compute BC powers from MAC powers,
the relationship in (11) must be evaluated in numerical order,
starting with User

(12)

Notice that depends only on the MAC powers, de-
pends on the MAC powers, and , etc. Therefore, any suc-
cessive decoding point of the MAC region for any set of powers

with is in the dual BC capacity
region.

Fig. 2. Constant BC capacity in terms of the dual MAC.

Similarly, MAC powers can be derived from BC powers
starting with User downwards

(13)

If we consider only permutations corresponding to encoding in
order of increasing channel gain, we see that any point on the
boundary of the BC capacity region is in the dual MAC region
for some set of MAC powers with the same sum power.

Note that we refer to (12) and (13) as the MAC-BC transfor-
mations and BC-MAC transformations, respectively.

Corollary 1: The capacity region of a constant Gaussian
MAC with power constraints is a subset
of the capacity region of the dual BC with power constraint

(14)

Furthermore, the boundaries of the two regions intersect at ex-
actly one point if the channel gains of all users are distinct
( for all ).

Proof: See Appendix B.

Theorem 1 is illustrated in Fig. 2, where
is plotted for different values of . The BC capacity

region boundary is shown in bold in the figure. Notice that each
MAC capacity region boundary touches the BC capacity region
boundary at a different point, as specified by Corollary 1.

If we carefully examine the union expression in the charac-
terization of the BC in terms of the dual MAC in (7), it is easy
to see that the union of MACs is equal to the capacity region of
the MAC with a sum power constraint instead of
individual power constraints . This is the channel
where the transmitters are not allowed to transmit cooperatively
(i.e., each transmitter transmits an independent message) but the
transmitters are allowed to draw from a common power source.
Therefore, Theorem 1 implies that the capacity region of the
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Fig. 3. Scaled dual channels.

MAC with sum power constraint equals the capacity region
of the dual BC with power constraint .

Though the capacity regions of the sum power constraint up-
link (MAC) and downlink (BC) are equivalent, the optimal de-
coding orders on the downlink and uplink are the opposite of
each other. From the BC-MAC transformations and from The-
orem 1, we discover that boundary points of the BC capacity
region are achievable in the MAC using successive decoding in
order of decreasing channel gains. In the BC, it is optimal to
give maximum priority (i.e., encode last) to the strongest user,
whereas in the sum power MAC, it is optimal to give priority
(i.e., decode last) to the weakest user.

D. BC to MAC

In this subsection, we show that the capacity region of the
MAC can be characterized in terms of the capacity region of the
dual BC. In order to derive this relationship, we make use of a
concept called channel scaling. Since and always appear
as a product in the constant MAC capacity expression (3), we
can scale by any positive constant and scale by the
inverse of without affecting the capacity region. Therefore,

for any vector of constants
The scaled dual channels are shown in Fig. 3. The scaling of the
channel and the power constraints clearly negate each other in
the MAC. However, the dual BC is affected by channel scaling
and the capacity region of the scaled BC is a function of
since channel scaling affects the power constraint as well as the
channel gains of each user relative to all other users. By applying
Corollary 1 to the scaled MAC and the scaled BC, we find that

and the boundaries of the MAC capacity region and each
scaled BC capacity region intersect. In fact,
and intersect at the corner point of the MAC
corresponding to decoding in decreasing order of scaled gains

, opposite the optimal decoding order of the scaled BC.
In order to characterize the capacity region of the MAC in

terms of the BC, we first establish a general theorem (The-
orem 2) that characterizes individual transmit power constraint
rate regions of a Gaussian MAC in terms of sum transmit
power constraint rate regions. We could directly establish
a relationship between the MAC and the scaled BC for the
constant channel. However, we present a more general theorem
here that is applicable to fading channels as well. Before stating
the theorem, we first define the notion of a rate region and the

conditions that the rate regions must satisfy in order for the
theorems to hold.

Definition 1: Let a -dimensional rate vector be written as
where is the rate of transmitter . Let

be the vector of transmit power constraints
and let be a vector of scaling constants. We
define a rate region as a mapping from a power constraint
vector to a set in that satisfies the conditions stated in
Definition 2 that follows. The -scaled version of the channel
is the channel in which the channel gain from transmitter to the
receiver is scaled by . We denote the rate region of the scaled
channel as .

Definition 2: We consider -dimensional rate regions
that satisfy the following conditions.

1) .
2) is a convex set.
3) For all , is a closed, convex region.
4) If then .
5) If , then for any

6) If and , then .
7) is unbounded in every direction as increases, or

as .
8) is finite for all .

These conditions on the rate region are very general and
are satisfied by nearly any capacity region or rate region. Finally,
we define the notion of a sum power constraint rate region.

Definition 3: For any scaling , we define the sum power
constraint rate region as

(15)

Having established these definitions, we now state a theorem
about rate regions and channel scaling.

Theorem 2: Any rate region satisfying the conditions
of Definition 2 is equal to the intersection over all strictly pos-
itive scalings of the sum power constraint rate regions for any
strictly positive power constraint vector

(16)

Proof: See Appendix D.

We now apply Theorem 2 to the capacity region of the con-
stant MAC.

Theorem 3: The capacity region of a constant Gaussian
MAC is equal to the intersection of the capacity regions of the
scaled dual BC over all possible channel scalings

(17)
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Fig. 4. Constant MAC capacity in terms of the dual BC.

Proof: In Appendix C, we show that the region
satisfies the conditions of Definition 2. Therefore,

by Theorem 2 we get

(18)

By Theorem 1

for any . Thus, the result follows.

Theorem 3 is illustrated for a two-user channel in Fig. 4.
Although we consider channel scaling of all users in
Theorem 2, scaling users is sufficient because scaling
by is equivalent to scaling by

. We, therefore, let and only let
(denoted by in the figure) vary. In the figure we plot

for a range of values of . Since
the constant MAC region is a pentagon, the BC characterized
by and the limit of the BCs as and
are sufficient to form the pentagon. When , the
channel gains of both users are the same and the BC capacity re-
gion is bounded by a straight line segment because the capacity
region can be achieved by time sharing between single-user
transmission. This line segment corresponds exactly with the
45 line bounding the MAC capacity region. As , the
total transmit power tends to infinity but the channel
gain of User goes to zero. These effects negate each other
and cause and . As ,
the total amount of power converges to and the channel
gain of User becomes infinite. This causes and

. These two limiting capacity regions
bound the vertical and horizontal line segments, respectively,
of the MAC capacity region boundary.

Additionally, by Corollary 1, all scaled BC capacity regions
except the channel corresponding to intersect the
MAC at exactly one of the two corner points of the MAC region.
Scaled BC capacity regions with intersect the
MAC at the point where User is decoded last in the MAC (i.e.,
upper left corner), and all scaled BC capacity regions with

intersect the MAC at the corner point where User is
decoded last (i.e., lower right corner).

A general -user constant MAC capacity region is the inter-
section of hyperplanes (each corresponding to a different

subset of ). Therefore, in general, only dif-
ferent scaled BC capacity regions are needed to get the MAC ca-
pacity region. One of these regions corresponds to such that

for all . The other necessary scalings corre-
spond to limiting capacity regions as one or more of the com-
ponents of are taken to infinity.

IV. DUALITY OF THE FADING MAC AND BC

We now move on to the flat-fading BC and MAC and show
that duality holds for the ergodic capacity regions (subject to
an average power constraint) of the dual flat-fading MAC and
BC, assuming perfect CSI at all transmitters and receivers. Flat-
fading channels can be decomposed into an infinite set of par-
allel, independent channels, one for each joint fading state. The
ergodic capacity for both the MAC and the BC is shown to be the
“average” of the capacities of each of these independent chan-
nels. We can then use the duality of the MAC and BC for each
fading state to show that duality holds for ergodic capacity as
well. We first define the ergodic capacity regions of the fading
MAC and BC, and then explicitly state the duality between the
two regions.

A. Ergodic Capacity Region of the MAC

We define a power policy over all possible fading
states as a function that maps from a joint fading state

to the transmitted power for each user.
Let denote the set of all power policies satisfying the
individual average power constraints

From [3, Theorem 2.1], the ergodic capacity region of
the MAC with perfect CSI and power constraints

is

(19)

By [3, Lemma 3.8]

(20)
where is the rate vector of all users as a function of the
joint fading state and is the constant MAC
capacity region. Therefore, the ergodic capacity is clearly the
average of the instantaneous rate3 vector .

B. Ergodic Capacity Region of the BC

We define a power policy over all possible fading states
as a function over all joint fading states that maps from a joint
fading state to the transmitted power
for each user. Let denote the set of all power policies sat-
isfying the average power constraint

3Note that the notion of an instantaneous rate is used only for mathematical
convenience and the transmitted rate can, in fact, be constant over all states
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Fig. 5. Duality of the fading MAC and BC.

From [2, Theorem 1], the ergodic capacity region of the BC with
perfect CSI and power constraint is the union over all power
policies in

(21)

where

From this definition it follows that a rate vector is in
if and only if there exists and a in

such that with
for all .

C. MAC to BC

We now characterize the ergodic capacity region of the BC in
terms of the dual MAC.

Theorem 4: The ergodic capacity region of a fading
Gaussian BC with power constraint is equal to the union
of ergodic capacity regions of the dual MAC with power
constraints such that

(22)

Proof: We show that any rate vector in the union of MAC
regions is in the dual BC capacity region, and vice versa. By
the definition of , a rate vector is in the ergodic
capacity region of the MAC if and only if where

for all . By Theorem 1

Therefore, .

Similarly, a rate vector is in the ergodic capacity region of
the BC if and only if there exists such that
with

for some in . Applying Theorem 1 to each fading
state, we get that for some
such that

for each . Therefore,

If we let , then

since .

Intuitively, for any MAC power policy, we can use the
MAC-BC transformations in each fading state to find a BC
power policy that achieves the same rates in each fading state,
and therefore the same average rates, using the same sum
power in each state. Alternatively, for any BC power policy, we
can find a dual MAC power policy that achieves the same rates
while using the same sum power.

Fig. 5(a) illustrates Theorem 4. The pentagon-like regions are
the dual MAC ergodic capacity regions, while the region de-
noted with a bold line is the BC ergodic capacity region. As
we saw for constant channels, we find that the ergodic capacity
region of the MAC with a sum power constraint equals the er-
godic capacity region of the dual BC with power constraint .

Corollary 2: The ergodic capacity region of a flat-fading
Gaussian MAC with power constraints is a
subset of the ergodic capacity region of the dual BC with power
constraint

(23)
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Fig. 6. Capacity regions for the dual fading MAC and BC.

Proof: This result is a direct consequence of Theorem 4.
We conjecture that the boundaries of the ergodic capacity region
of the MAC and of the dual BC meet at one point, as they do for
the constant channel case (Corollary 1). We are able to show this
for the case, but not for arbitrary .

Fig. 6 illustrates the subset relationship established in Corol-
lary 2 for the ergodic capacity regions of the dual flat-fading
MAC and BC for a two-user channel. Due to the fading, the er-
godic capacity region of the MAC is bounded by straight-line
segments connected by a curved section as opposed to the pent-
agon-like capacity region of the constant MAC. The BC and
MAC intersect in the curved portion of the MAC boundary.

D. BC to MAC

In order to characterize the ergodic capacity region of the
MAC in terms of the dual BC, we again use channel scaling.
Channel scaling by the factor for fading channels refers to the
ergodic capacity of a channel with power constraints and the
fading distribution defined as . It is easy to see that
channel scaling does not affect the ergodic capacity region of
a fading MAC, or that for all

. Using Theorem 2, we can find an expression for the
ergodic capacity region of the MAC in terms of the dual BC.

Theorem 5: The ergodic capacity region of a fading MAC is
equal to the intersection of the ergodic capacity regions of the
dual BC over all scalings

(24)

Proof: The proof of this is identical to the proof for the
constant channel version of this in Theorem 3. The fact that
the ergodic capacity region of the MAC satisfies the conditions
of Theorem 2 can be verified using the arguments used for the
constant MAC capacity region in Appendix C. See Section IV-E
for a discussion of Theorem 2 as applied to ergodic capacity.

Theorem 5 is illustrated in Fig. 5(b). The MAC ergodic ca-
pacity region cannot be characterized by a finite number of BC
regions as it was for the constant MAC capacity region in Sec-
tion III-D. The BC capacity regions where and

still limit the vertical and horizontal line segments of the
MAC ergodic capacity region. The curved section of the MAC
boundary, however, is intersected by many different scaled BC
ergodic capacity regions.

Fig. 7. MAC capacity region optimization.

E. Convex Optimization Interpretation

If we consider the boundary points of from a
convex optimization viewpoint, we can gain some additional in-
sight into the MAC-BC duality and Theorem 5. Since the region

is closed and convex, we can fully characterize the
region by the following convex maximization:

such that (25)

over all nonnegative priority vectors such
that . This maximization is shown pictorially in Fig. 7.
Since (25) is a convex problem, we know that the solution to
the original optimization also maximizes the Lagrangian func-
tion for the optimal Lagrangian mul-
tipliers . The optimal Lagrange multipliers

can be interpreted as the power prices of the users, or al-
ternatively is the sensitivity of the maximum of to a
change in the power constraint .

For each nonnegative priority vector , there exists an op-
timum Lagrange multiplier . If for some we have ,
then constraint is more restrictive than constraint . In
this scenario, increasing while decreasing by the same
amount would lead to an increase in the maximum-weighted
sum rate . On the other hand, if ,
then each power constraint is equally “hard” and no tradeoff
of power between different users would increase the maximum.
Thus, the solution is sum-power optimal in the sense that having
individual power constraints is no more restric-
tive than having a sum power constraint . Therefore,
the maximum value of in the sum power constraint MAC
capacity region and in the individual power constraint MAC
capacity region are equal for any such that the optimal La-
grangian multipliers are all equal. Since the capacity regions of
the sum power constraint MAC and the dual BC are equivalent
as established in Theorem 4, this implies that the boundaries of
the MAC (with individual power constraints) and the dual BC
touch at any point on the MAC boundary where

.
By scaling the channel gains, we can force the Lagrangians

to be equal. If is the optimal Lagrange multiplier for some
priority vector for the unscaled MAC, then is the optimal
Lagrange multiplier for the MAC scaled by . Therefore, we can
scale the channel appropriately so that are equal for all .
Using this method, every point on the boundary of
can be shown to be on the boundary of the sum power MAC
(and, therefore, of the dual BC) for some scaling vector. The
proof of Theorem 2 in Appendix D is based on this idea.
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If we examine the points where the MAC and BC capacity re-
gion boundaries touch, we find that there is also a fundamental
relationship between the power policies used to achieve these
points. The optimal power policies (i.e., boundary-achieving
power policies) for the fading MAC and BC are established in
[3] and [2], respectively. Given a priority vector , it is possible
to find the optimal power policy that maximizes in both
the MAC and the BC. Due to the duality of these channels, the
optimal power policies derived independently for the BC and
MAC are related by the MAC-BC (12) and BC-MAC (13) trans-
formations at the points where the BC and MAC capacity region
boundaries touch.

F. Optimal MAC/BC Decoding Order

The duality of the flat-fading MAC and BC leads to some
interesting observations about the optimum decoding order in
the BC and MAC. By duality, any point on the boundary of
the BC ergodic capacity region is also on the boundary of the
MAC ergodic capacity region for some set of power constraints
whose sum equals the BC power constraint. Additionally, it is
easy to show from the proof of Theorem 2 that the MAC and BC
ergodic capacity regions are “tangential” at the point where the
boundaries touch in the sense that the weighted rate sum
at the intersection point is equal to the maximum of in

and in for the same .
From results on the ergodic capacity region of the MAC [3],

[13], it is optimal to decode users in order of increasing pri-
ority in all fading states. Therefore, a fixed decoding order in
all fading states is optimal for the MAC. Suppose we consider
a point on the boundary of the BC capacity region that is also
a boundary point of a dual MAC capacity region. The optimal
MAC and BC power policies will be related by the power trans-
formations given earlier. Additionally, the decoding order in the
BC and the MAC are opposite in each fading state. Therefore,
by duality, we see that boundary points can be achieved in the
BC by decoding in order of decreasing priority. From basic re-
sults on the BC, however, users should be decoded in order of in-
creasing channel gain in every fading state. This apparent incon-
sistency is resolved by the fact that a user is allocated power in
the BC only if all users with larger priority have smaller channel
gains. Thus, decoding in order of decreasing priority is equiva-
lent to decoding in order of increasing channel gain for the op-
timal BC power allocation policy.

Using duality in the form of Theorem 3, every boundary point
of the MAC is also a boundary point of a scaled BC. In the

-scaled BC, users are decoded in increasing order of .
Since for the correct scaling (see proof of Theorem 2

for justification), users are decoded in order of increasing
in the BC. By duality, the opposite decoding order should be
used in the MAC. Thus, users should be decoded in order of de-
creasing . Again, the apparent inconsistency with decoding
users in the MAC in order of increasing priority is resolved by
the optimal power allocation policy.

G. Symmetric Channels

If the joint fading distribution is symmetric and all trans-
mitters in the MAC have the same power constraint, then the

optimal Lagrange multipliers corresponding to the sum rate ca-
pacity of the MAC (the maximum of where

) are all equal by symmetry. As discussed in Sec-
tion IV-E, this implies that the unscaled MAC and the unscaled
BC (i.e., ) ergodic capacity regions meet at the maximum
sum rate point of their capacities. In this scenario, the optimal
power policies in the dual channels are identical, since only the
user with the largest fading gain transmits in each fading state
[2], [3]. For asymmetric fading distributions and/or power con-
straints, the uplink sum rate capacity is generally strictly less
than the downlink sum rate capacity.

H. Frequency-Selective Channels

Duality easily extends to frequency-selective (intersymbol in-
terference (ISI)) channels as well. BCs and MACs with time-in-
variant, finite-length impulse responses and additive Gaussian
noise were considered in [14], [15]. The dual channels have
the same impulse response on the uplink and downlink, and the
same noise power at each receiver. Similar to flat-fading chan-
nels, frequency-selective channels can be decomposed into a set
of parallel independent channels, one for each frequency. Using
the duality of each of these independent channels, it is easy to es-
tablish that the capacity region of the BC is equal to the capacity
region of the dual MAC with a sum power constraint. Further-
more, it is also straightforward to verify that the conditions of
Theorem 2 hold, and thus the capacity region of the MAC is
equal to an intersection of scaled BC capacity regions.4

V. DUALITY OF OUTAGE CAPACITY

In this section, we show that duality holds for the outage ca-
pacity of fading channels. The outage capacity region (denoted

and ) is defined as the set
of rates that can be maintained for user for a fraction
of the time, or in all but of the fading states [4], [5]. Outage
capacity is concerned with situations in which each user (in ei-
ther the BC or MAC) desires a constant rate a certain percentage
of the time. The zero-outage capacity5 [4], [16] is a special case
of outage capacity where a constant rate must be maintained in
all fading states, or where .

By definition, a rate vector is in if and
only if there exists a power policy satisfying the power
constraints and a rate function such that

for all and

The BC outage capacity region is defined similarly, except that
the power policy must only satisfy a sum power constraint and

must be in for all . By applying
duality to each fading state, it is clear that every rate vector in
the MAC outage capacity region is achievable in the dual BC,
and vice versa. Thus, the outage capacity region of the BC is

4Interestingly, the authors of [14] used the concept of channel scaling in order
to find the optimal power allocation policy of the frequency-selective MAC. This
turns out to be the same channel scaling that is used to characterize the MAC in
terms of the dual BC.

5Zero-outage capacity is referred to as delay-limited capacity in [16].
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equal to the sum power constraint outage capacity region of the
MAC, with the same outage vector

(26)

Using Theorem 2, it also follows that the MAC outage capacity
region is equal to the intersection of the scaled BC outage ca-
pacity regions

(27)

Though the outage capacity region has been characterized for
both the BC and MAC [4], [5], the MAC region can be quite
difficult to find numerically. Duality, however, allows the region
to easily be found numerically via the dual BC outage capacity
region.

There is also a more stringent notion of outage capacity in
which outages must be declared simultaneously for all users (re-
ferred to as common outage). In this situation, there is only one
outage probability (for all users). It is also straightforward to
show that duality extends to common outage as well.

VI. DUALITY OF MINIMUM-RATE CAPACITY

Minimum-rate capacity was first introduced for the fading
BC in [6]. In this section, we establish the duality of the min-
imum-rate capacity regions of the MAC and BC and use this
duality to find the minimum-rate capacity region of the MAC.

In minimum-rate capacity, long-term average rates are
maximized subject to an average power constraint and an
additional constraint that requires the instantaneous rates of all
users to meet or exceed the defined minimum rates in all fading
states. Minimum-rate capacity is a combination of zero-outage
capacity (minimum rates are maintained in all fading states)
and ergodic capacity (long-term average rates in excess of the
minimum rates are maximized).

The minimum-rate capacity is thus defined as the maximum
ergodic capacity that can be obtained while ensuring that a set of
minimum rates is maintained for all users
in all fading states. From this definition, it follows that a rate
vector is in if and only if there exists
such that with

and for all , for some satisfying the average
sum power constraint. The MAC minimum-rate capacity region
is defined analogously. With this definition, it is easy to see that
the BC minimum-rate capacity region equals the sum power
MAC minimum-rate capacity region

(28)

Since every point on the boundary of the MAC minimum-rate
capacity region is also on the boundary of the scaled BC min-
imum-rate capacity region, we can also find the optimal power
policy and decoding order for the MAC. As always in the BC,
users are decoded in order of increasing channel gain. In the
case of a scaled channel, this corresponds to decoding in order

Fig. 8. MAC minimum-rate (200 kb/s minimum rate), ergodic, and
zero-outage capacity regions.

of increasing . By duality, users in the MAC should be de-

coded in order of decreasing . The optimal MAC power allo-
cation policy can be derived from the optimal power policy of
the scaled BC.

The MAC minimum-rate capacity region for a discrete fading
distribution channel is plotted in Fig. 8. In the figure, the MAC
ergodic, zero-outage, and minimum-rate capacity region bound-
aries are all shown. The corresponding dual BC capacity region
(ergodic, zero-outage, and minimum rate) boundaries are indi-
cated with dotted lines. The minimum-rate capacity region is
shown for symmetric minimum rates of 200 kb/s for each user.
In the figure, all three MAC capacity regions were calculated
using duality, i.e., by taking the intersection of scaled BC ca-
pacity regions. However, we show only the unscaled BC ca-
pacity regions in the plot for simplicity. Note that the MAC min-
imum-rate capacity region lies between the zero-outage and er-
godic capacity regions as it does for the BC minimum-rate ca-
pacity region [6].

VII. EXTENSIONS

The focus of this paper has been to characterize the duality
of the scalar Gaussian MACs and BCs. There are, however,
many possible directions in which duality can be extended. In
this section, we discuss a few possibilities for such extensions.
It appears there are two main directions in which duality
may apply: a more general set of Gaussian channels, and
non-Gaussian channels.

A. Multiple-Antenna MAC and BC

In this paper, we have dealt exclusively with the scalar
Gaussian MAC and BC, but the multiple-antenna (mul-
tiple-input, multiple-output or MIMO) versions of the Gaussian
MAC and BC are also of great interest. In a related paper, we
show that the MIMO Gaussian BC and MAC are duals [8].
The MIMO BC is a nondegraded BC, for which a general
expression for the capacity region remains unknown. However,
an achievable region for the MIMO BC based on dirty-paper
coding [17], [18] is known. In [8], it is shown that the capacity
region of the MIMO MAC and the dirty-paper achievable
region of the BC are duals, or that the MIMO BC achievable
region is equal to the union of the dual MIMO MAC capacity
regions and the MIMO MAC capacity region is equal to the
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Fig. 9. Multiterminal Gaussian network.

intersection of the scaled MIMO BC achievable regions. This
duality is established with matrix versions of the MAC-BC
and BC-MAC power transformations given in Section III-C.
Furthermore, this duality result is used in [8], [9] to show that
dirty-paper coding achieves the sum-rate capacity of the mul-
tiple-antenna BC. The duality between the dirty-paper region
and the MIMO MAC seems to indicate that the dirty-paper
region is actually the capacity region of the MIMO, but the
dirty-paper region is known to be optimal only at the sum
rate point and the optimality of the full region is still an open
question.

B. Gaussian Multiterminal Networks

The Gaussian MAC and BC can be generalized to a model
in which there are multiple transmitters and multiple receivers
subject to additive Gaussian noise. Such networks are referred
to as Gaussian multiterminal networks [1, Sec. 14.10]. In this
subsection, we discuss networks in which nodes can either be
transmitters or receivers, but not both simultaneously.

In Fig. 9, a three-transmitter, two -receiver channel is shown,
if transmission is considered from left to right. We define the
dual channel for this network as the channel associated with
transmission from right to left (i.e., two transmitters, three re-
ceivers) with the same channel gains between all nodes.
As before, we assume that every receiver suffers from Gaussian
noise with the same power.

The dual BCs and MACs can be seen as a specialization of
multiterminal networks in which there is only a single node
on the left. If transmission occurs from left to right, then the
channel is a two-user BC and if the nodes on the right transmit
then the channel is a two-user MAC. Theorem 1 states that the
capacity regions of the BC and the dual sum power-constraint
MAC are the same. This is equivalent to stating that the capacity
regions for left-to-right communication (BC) and right-to-left
communication (MAC) are the same if the same sum transmit
power constraint is applied to both channels.

In the general, multiterminal setting we consider, any
transmitter is allowed to communicate with any receiver. In the
channel shown in Fig. 9, the capacity region is six-dimensional
(because there are six possible receiver–transmitter pairs). It is

then tempting to conjecture that Theorem 1 extends to general
Gaussian multiterminal networks, or that the six-dimensional
capacity region governing transmission from left to right when
sum power constraint is imposed on the three transmitters
on the left is the same as the capacity region for transmission
from right to left when the same sum power constraint is
imposed on the two transmitters on the right. Unfortunately, this
conjecture cannot be confirmed since the capacity region of a
general multiterminal network is not known. Interestingly, The-
orem 2 can easily be extended to multiple-receiver channels.
This allows characterization of a multiple-transmitter/mul-
tiple-receiver rate region (with individual transmitter power
constraints) in terms of the sum transmit power constraint
capacity regions.

If the nodes on the left and right were considered to be mul-
tiple antennas of single users (i.e., a single transmitter with three
antennas communicating to a receiver with two antennas, or vice
versa), then duality holds due to the reciprocity of multiple-an-
tenna Gaussian links [19]. By the reciprocity result we know
that the capacity of a channel with gain matrix is equal to the
capacity of the channel with gain matrix equal to the transpose
(or Hermitian transpose since conjugation of the channel matrix
has no effect) of . This hints that a broader duality may hold
for general Gaussian networks, but this has yet to be confirmed.

C. Duality of Non-Gaussian Channels

Although we have treated only Gaussian channels in this
paper, it would be very interesting to see if duality holds
between general BCs and MACs. Since the capacity region of
the nondegraded BC is unknown, such a duality could perhaps
be helpful in this respect. In [7], a setup for dual discrete
memoryless broadcast and MACs is proposed. Furthermore,
a duality is established between a limited set of deterministic
(i.e., noiseless) BCs and MACs. This appears to be a promising
avenue of research, but there is also indication that this setup
does not allow for the possibility of duality for all BCs.

VIII. CONCLUSION

We have defined a duality between the Gaussian MAC and
BC by establishing fundamental relationships between the ca-
pacity regions of the MAC and BC with the same channel gains
and the same noise power at all receivers. This duality allows us
to express the capacity region of the Gaussian BC in terms of the
Gaussian MAC, and vice versa. We also showed that this duality
extends to fading channels. Though this paper deals with scalar
channels, duality has also been extended to MIMO channels and
has been used to find the sum rate capacity of the MIMO BC.
Furthermore, we conjecture that duality applies to general mul-
titerminal Gaussian networks as well.

Duality provides an insightful connection between the
Gaussian MAC and BC. This relationship is not only concep-
tually powerful, but has also been of great use in establishing
new results for Gaussian channels. A number of other infor-
mation-theoretic dualities (e.g., source/channel coding [20],
channel coding/rate distortion [21], MAC/Slepian–Wolf [1,
Sec. 14.5]) have been established over the decades. It remains
to be seen if the multiple-access/broadcast duality is a result of
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the special structure of Gaussian channels or if it has deeper
information-theoretic implications.

APPENDIX A
PROOF OF TRANSFORMATIONS

We show that if for all , where and
are defined as

then . For notational simplicity we as-
sume in this section. We do this by inductively showing
that

(30)

The base case ( ) holds by definition

Assume (30) holds for . For we get

where follows from the inductive hypothesis. By using (30)
for and the fact that , we get

as desired.

APPENDIX B
PROOF OF COROLLARY 14

The fact that follows trivially
from Theorem 1. Also, the fact that the boundaries of the regions
meet at the point where users are decoded in order of decreasing
channel gains in the MAC follows from the MAC-BC transfor-
mations and the fact that the opposite decoding order is used in

the BC. It only remains to show that the MAC and dual BC ca-
pacity region boundaries meet at only this point if the channel
gains of all users are distinct6 and that all other corner points
of the MAC capacity region lie strictly in the interior of the dual
BC capacity region.

We show this by proving that every successive decoding point
other than the one corresponding to decoding in order of de-
creasing channel gains lies strictly in the interior of the sum
power constraint MAC capacity region (i.e., the dual BC ca-
pacity region). We show that the sum power needed to achieve
any strictly positive rate vector using the decoding order in
which the weakest user is last is strictly less than the sum power
needed to achieve the same rate vector using any other decoding
order at the receiver. This implies that points on the boundary
of the sum power MAC can only be achieved by successive de-
coding in order of decreasing channel gain. Therefore, all corner
points of the individual power constraint MAC other than the
optimal decoding order point are in the interior of the dual BC
capacity region.

Assume there exist and such that but User is
decoded directly before User . This is easily seen to be true if
and only if decoding is not done in order of decreasing channel
gains. We will show that the sum power needed to achieve any
strictly positive rate vector is strictly less if User is decoded
directly after User . Users and do not affect users decoded
after them because their signals are subtracted out, but they do
contribute interference to all users decoded before
them. All users that are decoded after Users and are seen as
interference to both Users and . We denote this interference
by . The rates of Users and then are

if User is decoded before User . The power required by Users
and to achieve their rates are

and the sum of their powers is

If User is decoded directly after User instead of before him,
then the required sum power is

Clearly,

6If all channel gains are not distinct, then the MAC and BC boundaries will
meet along a hyperplane.
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since and by assumption. Therefore, we
have . This fact means that Users and can
achieve the same rates using less sum power by switching the
decoding order of Users and and switching their powers from

and to and . The rates of users decoded after and
are unaffected by such a switch. However, as noted above, Users

and do contribute interference to all users decoded before
them. If we expand the interference contribution of Users and
, we find

so the rates of all users decoded earlier are unaffected. There-
fore, by switching the decoding order of Users and and
changing the powers to and (but not altering the rest of the
decoding order or power allocations), we can achieve the same
set of rates for all users using strictly less sum power. Thus,
the point lies in the interior of the sum power constraint MAC,
so it is not on the boundary of the dual BC capacity region.

APPENDIX C
VERIFICATION OF RATE REGION CONDITIONS

In this appendix, we show that the capacity region of the con-
stant MAC meets the conditions specified in The-
orem 2. All conditions are satisfied by any reasonable definition
of a capacity region, but we explicitly verify them for this case.

1) The scaling property of follows from the
definition of the capacity region in (3).

2) The set is convex if for any and ,
. Let and .

We wish to show that

By time sharing between the schemes used to achieve
and , we use power and achieve rate

, which verifies the convexity of the set.

3) The region is closed by definition and is
convex due to a time-sharing argument.

4) is an increasing function of power because
any rate achievable with a smaller power constraint is
also achievable with a larger power constraint because all
power need not be used.

5) If some set of rates are achievable by transmitters
through while transmitter is also sending informa-
tion, then those same rates are achievable in the absence
of transmitter ’s signal because each user transmits an
independent message.

6) If transmission is halted for some fraction of time, then
any smaller rate vector can be achieved.

7) Additional power allows for additional rate on any link
by transmitting a codeword that can be decoded (and thus
subtracted off) by all receivers, even when treating the
rest of the received signal as noise.

8) is bounded by the individual capacities of
each link (i.e., each transmitter–receiver pair), which are
finite due to the basic properties of Gaussian channels.

APPENDIX D
PROOF OF THEOREM 2

We wish to show that for any strictly positive7 power con-
straint

(31)

where the sum power constraint capacity region is defined as

(32)

Before beginning the proof, we first restate the conditions re-
quired of .

1) .
2) is a convex set.
3) For all , is a closed, convex region.
4) If , then .
5) If , then for any

6) If and , then .
7) is unbounded in every direction as increases, or

as .
8) is finite for all .

From Condition 1 and the definition of the sum power con-
straint capacity region (32), it is clear that

This implies that . To complete the
proof, we must show that this inequality also holds in the oppo-
site direction.

Since is a closed and convex region, it is completely
characterized by the following maximization [22, p. 135]:

(33)

over priorities such that and .
Since at least one component of must be strictly positive for

to hold, without loss of generality we assume .
For every , we show8

(34)

This implies because is com-
pletely characterized by (33). We essentially show
that for every (or roughly every point on the boundary of

7If the power constraint of some transmitter is zero, then we can eliminate the
user and consider the K � 1 user problem.

8We take a sup instead of a max over the sum power constraint capacity
region because we have not verified that it is a closed region.
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) there exists an such that the boundaries of
and meet at the point where is maximized.

The optimization in (33) is equivalent to

s.t. (35)

where the set is defined in Condition 2. Consider the above
maximization for some fixed . Since the objective function is
linear and the set is convex, this is a convex optimization
problem (see [23] for a general reference on convex optimiza-
tion and Lagrangian duality). Furthermore, the maximization
takes on some optimal value by the feasibility of the con-
straint set. The optimal value is finite due to the assumption
that is finite. The Lagrangian is formed by adding the
weighted sum of the constraints to the objective function

where the weights are the Lagrangian multi-
pliers. The Lagrangian dual function is

By the above definition, for any satisfying
and , we have . This implies

for any . Notice that the supremum is taken
over the entire set without taking the power constraints into
effect. Additionally, the dual function is a convex function
of since is the pointwise supremum of affine (and there-
fore convex) functions of .

By minimizing the dual function over all nonnegative La-
grange multipliers, we get an upper bound on the optimal
value . Due to the convexity and feasibility of the problem,
this bound is tight [23], [22]

(36)

where are the optimum Lagrange multi-
pliers that lead to . In what follows, we show that is finite
and strictly positive if and is zero if .

First consider such that . If , then with
we get . Thus, ,

which implies that must be finite. Now assume .
Choose for all and let be arbitrarily large.
Additionally, choose all rates to be zero except for . For this
choice of , we have . Due to the un-
bounded condition on , letting be arbitrarily large im-
plies can be made arbitrarily large while still maintaining

. This, in turn, implies . Since
is finite, we must have .

We now show that implies . Since is the
supremum of the Lagrangian and because , it follows
from Condition 5 that to achieve if .
Thus, for any with and any with ,
we have

where except that . Thus, , which
implies that .

Now consider the scaled MAC with defined as

if

if
(37)

for and where is some positive constant.
Notice that is an implicit function of by this definition. Since

due to the fact that , we have for
all . We will now consider the sum power constraint capacity
region of the scaled MAC with as defined above. Consider the
following optimization on the scaled MAC:

s.t. (38)

By the definition of the sum power constraint capacity region,
is equivalent to for any satis-

fying . The maximization (38) can thus be rewritten
as

s.t. (39)

We denote the solution to this by . Because there is a sum
power constraint, there is only one Lagrange multiplier and the
Lagrangian therefore is

and the corresponding Lagrangian dual function is

Again, the dual function satisfies for all . Due
to the fact that and , we can simplify
the dual function as

where is the Lagrangian dual function of the individual power
constraint unscaled MAC.
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If we evaluate the dual function with , we get

Having established this, there are now two cases to consider: a)
for all ; b) for some .

If for all , then for all . Thus,

Since is an upper bound to , we have . This
implies

where the second inequality follows from

If for some , we must consider -scalings for dif-
ferent values of . Assume, without loss of generality, that

for and for . We estab-
lished earlier that implies . Therefore, we have

Using the fact that , we have

Here is a function of the constant because de-
pends on , as defined in (37). For a fixed (i.e., a fixed ),
the optimum value of the sum power constraint region satisfies

.
We now show the desired result by contradiction. Assume

(40)

Since , this implies
that for some

for all . This implies that for all

However, earlier we established that

for all . Thus, we have that

for all . Since is a convex function,
must lie beneath the line between

and

(which is finite) for . This contradicts

In other words, the convexity of implies that as becomes
large, the value of must

become arbitrarily close to . Thus,
(40) must be false and therefore,

(41)

for all such that for some .
We have now shown that the relationship (41) holds for all

and the proof is complete.
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