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Abstract— The multihop spatial reuse Aloha (MSR-Aloha)
protocol was recently introduced by Baccelliet al., where each
transmitter selects the receiver among its feasible next hops
that maximizes the forward progress of the head of line packet
towards its final destination. They identify the optimal medium
access probability (MAP) that maximizes the spatial density
of progress, defined as the product of the spatial intensity of
attempted transmissions times the average per-hop progress of
each packet towards its destination. We propose a variant called
longest edge routing where each transmitter selects its longest
feasible edge, and then identifies a packet in its backlog whose
next hop is the associated receiver. The main contribution of this
work (and of Baccelli et al.) is the use of stochastic geometry to
identify the optimal MAP and the corresponding optimal spatial
density of progress.

I. I NTRODUCTION

A recent paper by Baccelli, Błaszczyszyn, and Mühlethaler
[1] introduced the multihop spatial reuse Aloha (MSR-Aloha)
protocol in the context of an ad hoc network. The main
idea is to combine an Aloha medium access control (MAC)
protocol with a routing protocol that moves packets along
hops that maximize the progress of each packet towards its
final destination. Baccelliet al. derive the optimal medium
access probability (MAP) that maximizes the spatial density
of progress, defined as the number of transmissions per square
meter times the average progress towards the destination of
each transmitted packet. A key contribution of their paper is
the use of stochastic geometry to explicitly incorporate the
effect of node locations on network performance.

In this paper we analyze two related but distinct protocols
termed random edge routing and longest edge routing. A key
assumption in [1] is that each transmitter (Tx) selects the
next hop receiver (Rx) as the node that carries thehead of
line packetat the Tx furthest towards its eventual destination,
selected over all Rx such that the received signal to interfer-
ence plus noise ratio (SINR) is sufficiently high to ensure a
successful reception. In contrast, we consider a regime where
each Tx has a sufficient backlog of packets to ensure it has
at least one packet in queue for each potential next hop Rx.
Under random edge routing, each Tx selects one of its feasible
next hop Rx at random, and selects a packet from its queue
appropriate for that Rx. Under longest edge routing, each Tx
selects the Rx furthest away. Both protocols are measured
under the same spatial density of progress employed in [1].
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Our motivation for introducing these two protocols is both
practical and mathematical. Practically, the performance of
MSR-Aloha, which restricts attention to the head of line packet
will by construction be inferior to the performance of longest
edge routing, which exploits “buffer diversity” to allow the
MAC protocol to move the packets the furthest distance.
Mathematically, it is perhaps intuitive to see that analysis of
random edge and longest edge routing is simpler than analysis
of MSR-Aloha, on account of the fact that progress in the
former is measured by the average and maximum edge length,
while progress in the latter involves a projection of that length
onto the line connecting each packet with its final destination.

There are many practical challenges that can be raised
against both MSR-Aloha and our proposed edge routing
protocols. Mobility, for example, must be slow enough so that
the network topology is sufficiently static to allow a routing
protocol to inform all packets of the locations of their final
destinations, and by extension their next hop. Our random and
longest edge protocols assume a packet backlog covering all
possible next hops, but this assumption raises questions about
the stability of the queues in the network, and the effect of
the protocol on delay. Timing and synchronization are also
ignored. While these are valid criticisms, the focus of this
paper is on obtaining closed form expressions for the optimal
MAP for random edge and longest edge routing, as well as ex-
pressions for the spatial intensity of progress under the optimal
MAP. The tractability of the model is necessarily reduced if
it is extended to incorporate the drawbacks mentioned above.

The rest of this paper is organized as follows.§II introduces
the mathematical model.§III presents analytical results on the
optimal MAP and corresponding optimal spatial density of
progress under random edge and longest edge routing.§IV
presents simulation results and shows a good match with the
analytical results. A brief conclusion is given in§V. The proofs
are placed in the Appendix.

II. M ATHEMATICAL MODEL

Consider an infinitely large ad hoc network where the node
locations at some snapshot in time form a stationary Poisson
point process (PPP)Π = {xi} on the plane of intensityλ.
During each time slot each node elects to transmit (Tx) with
probabilityp or receive (Rx) with probability1−p; it follows
that the set of Tx’s (ΠTx) and Rx’s (ΠRx) are themselves
stationary PPPs of intensitiesλp andλ(1−p) respectively, with
ΠTx∪ΠRx = Π. The success of an attempted communication
from a Tx to a Rx depends upon the signal to interference
plus noise ratio (SINR), measured at the Rx.
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Definition 1: The SINR from each Txi to each Rxj is

SINRij =
hijd

−α
ij∑

k∈ΠTx\{i} hkjd
−α
kj + η

, i ∈ ΠTx, j ∈ ΠRx, (1)

whereα > 2 is the pathloss exponent,dij = d(xi, xj) is the
distance fromi to j, {hkj} ∼ Exp(1) are the iid Rayleigh
fading channel gains, andη is the noise power.

A. MAC: the spatial Aloha graph

We assume a Tx-Rx pair are successful iff the SINR at
the receiver exceeds the SINR threshold,β. The spatial Aloha
graph was introduced by Ganti and Haenggi in [2].

Definition 2: The spatial Aloha graph is an infinite random
geometric directed bipartite graphG = (ΠTx,ΠRx, E), where
edges indicate a sufficiently high SINR:

(i, j) ∈ E ⇔ SINRij ≥ β, i ∈ ΠTx, j ∈ ΠRx. (2)
A new realization of this graph is created in each time slot,
when each node independently decides to Tx or Rx.

Assumption 1: The SINR threshold,β, required for success-
ful reception, is assumed to equal or exceed unity:β ≥ 1. This
ensures each Rx has an in-degree of either zero or one.

The in-degree bound follows from the assumption because
reception forβ > 1 requires one node have a signal con-
tribution exceeding the sum interference contribution of all
other Tx’s, and there can necessarily be at most one such
node. A realization of this graph is shown in Fig. 1 for
p ∈ {0.05, 0.20, 0.50}. Qualitative properties ofG include:
• Small p: There are few Tx’s and many Rx’s. There is low
interference, and hence longer edges. The Tx’s each have
high out-degree, many Rx’s have an in-degree of one.
• Large p: More Tx’s and fewer Rx’s. There is higher
interference, and hence only shorter edges are possible. The
Tx’s each have low out-degree, many Tx in fact have zero
out-degree and many Rx have zero in-degree.

The key tradeoff is that although there are many long edges
for low p, each Tx can make use of only one of them, hence
we wish to have more Tx’s (higherp), but the additional Tx’s
cause more interference, which reduces the number of edges
and the average length per edge.

B. Routing: selecting an outgoing edge from each Tx

Coordination is assumed so that in each time slot each Tx
knows those Rx’s for which the SINR is sufficiently large, and
hence knows the set of potential Rx’s for that time slot. Given
that a Tx may have multiple Rx’s, we specify below some
possible rules for each Tx to select among the various Rx’s.
• MSR-Aloha [1]: each Tx selects the Rx maximizing the
progress of the head of line packet towards its destination.
The spatial density of progress is the intensity of successful
Tx times the average packet progress towards its destination.
• Random / longest edge routing: each Tx selects a Rx at
random (random edge routing), or selects the Rx that is fur-
thest away (longest edge routing), and then selects a packet
whose assigned next hop is that Rx. The spatial density of
progress is the product of the intensity of successful Tx
times the average (or average maximum) edge length.

A “fair” comparison of random/longest edge routing with
MSR-Aloha requires selecting a destination for each packet
in the buffer, then selecting the packet and Rx pair with
the longest progress towards destination, and then using this
projected length in evaluating the spatial density of progress.
This would spoil the model tractability while gaining little
in insight, and so we simply focus on computing the aver-
age/maximum edge length. That is, we don’t consider the
effect of finite buffers, nor do we project the edge lengths
onto the line towards each packet’s destination. Alternately,
note the unprojected edge length is an increasingly accurate
measure of progress as the buffer length grows large.

III. O PTIMAL MAP AND SPATIAL DENSITY OF PROGRESS

Assumption 2: Throughout§III we assume that there is no
noise,η = 0, and indicate this by writing SIR instead of SINR.

This assumption is realistic in the interference-limited case.
In the present case of Rayleigh fading, a noise term contributes
an independent exponential term to the probability of trans-
mission success [1]. The no-noise assumption is unrealistic for
very smallp, since edges of unbounded length are possible.

A. Preliminary results

We first summarize key results from [1], [2], [3]. First,
Baccelli et al. [1] established the probability of an edge
between a Tx and a Rx separated by distanced.

Proposition 1: (from [1]). The probability that a Tx-Rx pair
(i, j) separated by distancedij has sufficiently high SIR, and
hence has an edge inE is

P((i, j) ∈ E) = P(SIRij ≥ β) = exp
{
−πd2

ijλpκ
}

, (3)

where
κ = (πδ) csc(πδ)βδ, δ = 2/α. (4)

It is worth noting that the proof of the above result relies
critically on the assumed Rayleigh fading; for a general fading
distribution (including no fading) one must resort to bounds
on the above probability, seee.g., [4]. We next define the
neighbors and degrees for each node.

Definition 3: The random set of Rx for each Tx, and the
random set (of maximum cardinality one) of Tx for each Rx:

Mout
i = {j ∈ ΠRx : (i, j) ∈ E}, i ∈ ΠTx

Min
j = {i ∈ ΠTx : (i, j) ∈ E}, j ∈ ΠRx. (5)

The random Tx out-degree and random Rx in-degree:

Mout
i = |Mout

i |, i ∈ ΠTx, M in
j = |Min

j |, j ∈ ΠRx. (6)

The mean out-degree and in-degree

mout = E[Mout], min = E[M in] (7)

are the expected out (in) degree obtained by selecting a Tx
(Rx) uniformly at random over the setΠTx (ΠRx).
The mean degrees are given by Ganti and Haenggi [2],
reproduced below.

Proposition 2: (from [2]). The mean degrees are:

mout =
1− p

p

1
κ

, min =
1
κ

. (8)
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It is noteworthy that the mean in-degree is independent ofλ
andp. The number of edge heads and tails must match; this is
seen by weighing the average out (in) degree with the spatial
intensity of Tx (Rx):λpmout = λ(1 − p)min. Further, since
M in

j is Bernoulli, we in fact know the distribution is

P(M in
j = 1) = 1− P(M in

j = 0) = min, j ∈ ΠRx. (9)

A lower bound (via Jensen’s inequality) on the probability
of no outgoing edges is given by Ganti and Haenggi [3],
reproduced below. Note the bound is independent ofλ.

Proposition 3: (from [3]). The probability of no outgoing
edges is lower bounded by:

P(Mout = 0) ≥ e−mout . (10)
These three propositions are used in the proofs of our main
results: Theorem 1 (2) on random (longest) edge routing.

B. Random edge routing (RER)

Define the rvL = dij as the length of an edge(i, j) selected
uniformly at random from the setE in G.

Theorem 1: The average edge length under RER is

E[L] =
1
2

√
min

λp
. (11)

The spatial density of progress is upper bounded by

h(λ, p) ≡ λpP(Mout > 0)E[L] ≤ 1
2

√
λpmin

(
1− e−mout

)
.

(12)
The bound–optimum MAP is

p∗ = 2min

(
−1− 2W−1

(
−1

2
e−( 1

2+min)
))−1

, (13)

where Wk(x) is the kth branch of the Lambert function,
defined as the solution ofW(x)eW(x) = x.
The proof is found in the Appendix. Note that the optimal
MAP depends only onκ and not onλ.

C. Longest edge routing (LER)

Define the rvLmax as the maximum edge length emanating
from a Tx selected uniformly at random from those Tx with
one or more Rx inG, i.e., over the set{i ∈ ΠTx : Mout

i > 0}.
Theorem 2: The complementary cumulative distribution

function (CCDF) of the maximum edge length under LER is
approximately

P(Lmax > l) ≈
1− exp

{
−moute

−πl2λp
min

}
1− e−mout

. (14)

The average maximum edge length is approximately

E[Lmax] ≈

∫∞
0

(
1− exp

{
−moute

−πl2λp
min

})
dl

1− e−mout
. (15)

The spatial density of progress is approximately

h(λ, p) ≈ λp

∫ ∞

0

(
1− exp

{
−moute

−πl2λp
min

})
dl. (16)

The proof is found in the Appendix. The approximation in
(14) is not necessarily a lower or upper bound since both the
numerator and denominator in (26) are upper bounded.

IV. N UMERICAL AND SIMULATION RESULTS

Figures 2, 3, and 4 present numerical and simulation results
from Theorems 1 and 2. Simulation results were obtained by
taking a Monte-Carlo average over5 independent realizations
of a network arenaA of size400 × 400 square meters, with
an intensityλ = 0.02. The average number of nodes was
thereforeE[N ] = λ|A| = 3200. Figures 2 and 3 were obtained
usingα = 3, β = 1, η = 10−6, yielding κ ≈ 2.4184 (4).

Fig. 2 shows simulation and numerical results for spatial
density of progress,h(λ, p), for RER (12) and LER (16),
versus the MAPp. The approximateh(λ, p) is seen to be quite
accurate over allp. The optimal LER achieves25% higher
progress than optimal RER, with33% fewer attempted Tx.

Fig. 3 shows simulation and numerical results for expected
edge length,E[L], E[Lmax], for RER (11) and LER (15),
versus the MAPp. The approximations are quite accurate over
all p aside fromp near 0. The numerical edge lengths are
unbounded asp → 0 due to the no noise assumption.

Fig. 4 shows numerical results for the optimal medium
access probability,p∗, for RER (13) and LER, versusκ (4).
The p∗ for LER is found by numerically maximizing (16):

pLER,∗ = arg max
p∈[0,1]

λp

∫ ∞

0

(
1− exp

{
−moute

−πl2λp
min

})
dl.

(17)
The inset shows a plot ofκ versus the SINR requirementβ
for pathloss exponentsα = {2.5, 3, 4, 5}. The inset showsκ is
increasing inβ and decreasing inα, and thatκ ≥ 1. They-axis
for the inset,[1, 20], is used as thex-axis for the main figure.
For α = 3 andβ = 1 (κ ≈ 2.4184), we havepLER,∗ ≈ 0.14
andpRER,∗ ≈ 0.21, a 50% increase in the optimal MAP.

V. CONCLUSION

Theorems 1 and 2 give approximate (yet very accurate)
explicit expressions for the average edge length, the spatial
density of progress, and the optimal MAP for RER and LER.
The MSR-Aloha protocol proposed in [1] is equivalent to our
proposed RER protocol if we ignore projections of link edges
onto the final destination line,i.e., if the whole edge length
is counted as progress. Our results quantify the improvement
of LER over RER both in terms of increased spatial density
of progress and in terms of reduced optimal medium access
probability. This improvement can be thought of as the Aloha-
MAC benefit of exploiting buffer diversity instead of only
considering the head of line packet.
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Fig. 1. A realization of the spatial Aloha graph forp = 0.05 (top),p = 0.20
(middle), andp = 0.50 (bottom). Transmitters are denoted by•, receivers
by ◦, and an edge indicates an SINR aboveβ = 1. The square arena has a
side length of200

√
2 meters and there are approximately1600 nodes. The

pathloss exponent isα = 3 and the noise power isη = 10−6. Zooming in
on the bottom plot reveals many very short edges.
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APPENDIX

PROOF OFTHEOREM 1

Proof of (11). Let L0 be the length of an edge found by
selecting a Rx at random. Precisely,L0 is the length of the
edge associated with the Rx, if any is present, or is zero else.
Let L be the length of an edge found by selecting an edge at
random. We relateE[L0] andE[L] by conditioning:E[L0] =

E[L0|Min = 0]P(Min = 0) + E[L0|Min = 1]P(Min = 1),
(18)

so that

E[L] = E[L0|Min = 1] =
1

min
E[L0] = κE[L0]. (19)

Consider a typical Rx located at the origin. Define amark
on each TxMi = SIRi0

|xi|−α , let {Mi} be the dependent but
identically distributed marks for eachi ∈ ΠTx, and defineFM

as the marginal CDF for a typical markM . Write L0 in terms
of the marked point processΠ′

Tx = {(xi,Mi), i ∈ ΠTx}:

L0 =
∑

i∈Π′
Tx

|xi|1E(i, 0) =
∑

i∈Π′
Tx

|xi|1Mi|xi|−α>β , (20)

where 1E(i, 0) is the indicator that edge(i, 0) ∈ E. Now
apply Campbell’s Theorem [5]:

E[L0] = λp

∫
R2

∫ ∞

0

|x|1m|x|−α>βdFM (m)dx

= λp

∫
R2
|x|P(M |x|−α > β)dx

= λp

∫
R2
|x|P(SIR0,x > β)dx

= λp

∫
R2
|x|e−π|x|2λpκdx =

1
2
√

λpκ
3
2
. (21)

Proof of (12). The upper bound on the spatial density of
progress is obtained by multiplying the intensity of attempted
transmissions,λp, times the upper bound on the probability
that each transmitter has at least one edge,P(Mout > 0) ≤
1−exp{−mout}, times the average length of an edge,E[L] =
1/(2

√
λpκ).

Proof of (13). Maximization of (12) wrtp is equivalent to
maximization of

h(p) = 2
√

κ

λ
h(λ, p) =

√
p

(
1− e−

1−p
κp

)
. (22)

This function has derivative:

√
ph′(p) =

1
2
−

(
1
2

+
1
κp

)
e−

1−p
κp . (23)

Solving h′(p) = 0 for p yields (13).

PROOF OFTHEOREM 2

Let Lmax
0 ≥ 0 be the maximum edge length of those edges

(if any) emanating from a Tx selected at random over allΠTx.
Let this Tx be labeled0, and wlog, located at the origin,o.
LettingMout

0 be the set of Rx for this Tx, we have:

Lmax
0 = max

i∈Mout
0

|xi|, (24)

with the convention thatLmax
0 = 0 if the setMout

0 is empty.
Let Lmax > 0 be the maximum edge length of those edges
emanating from a Tx selected at random over the set of Tx
with one or more edges:{i ∈ ΠTx : Mout

i > 0}. We relate
the CCDFs ofLmax

0 andLmax by conditioning on the random
out-degree,Mout

0 ≥ 0 of the Tx selected uniformly overΠTx:

P(Lmax
0 > l) = P(Lmax

0 > l|Mout
0 > 0)P(Mout

0 > 0), (25)

sinceP(Lmax
0 > l|Mout

0 = 0) = 0 for all l > 0. Then:

P(Lmax > l) = P(Lmax
0 > l|Mout

0 > 0) =
P(Lmax

0 > l)
P(Mout

0 > 0)
.

(26)
Define themarked PPP Π′

Rx = {(xj ,SIR0j), j ∈ ΠRx},
where the marks are the SIRs from Tx0 to each Rxj. The
marks determine whether each pair(0, j) is an edge inE:
(0, j) ∈ E ⇔ SIR0j > β. Note the event equivalence:

{Lmax
0 ≤ l} = {x ∈ B(o, l), ∀x ∈Mout

0 } (27)

=
{
1E(0, j)1Bc(o,l)(xj) = 0, ∀j ∈ Π′

Rx

}
=

 ∏
j∈Π′

Rx

(
1− 1E(0, j)1Bc(o,l)(xj)

)
= 1


for B(o, l) = {x ∈ R2 : do,x ≤ l} the ball of radiusl centered
at the origin, andBc(o, l) its complement. In words, the event
that the maximum edge length for the Tx at the origin is less
than l is the same as the event that there are no edges inE
from o to receivers outsideB(o, l), which is the same as the
event that for each receiverj either the pair(0, j) is not inE,
or the receiver is inB(o, l). The CDF,F0(l) = P(Lmax

0 ≤ l)
can be expressed as an expectation:

F0(l) = P

 ∏
j∈Π′

Rx

(
1− 1E(0, j)1Bc(o,l)(xj)

)
= 1


= E

 ∏
j∈Π′

Rx

(
1− 1E(0, j)1Bc(o,l)(xj)

) . (28)

This latter expression matches the form required to apply
the probability generating function (pgfl) for a (bounded)
functional of a PPP ([5]):

F0(l) = E
[
exp

{
−λ(1− p)

∫
R2

1E(0, x)1Bc(o,l)(x)dx

}]
,

(29)
where the expectation is wrt the marks{SIR0j , j ∈ ΠRx}.
Jensen’s inequality yields a lower bound on the CDF:

F0(l) ≥ exp
{
−λ(1− p)

∫
R2

P(SIR0,x > β)1Bc(o,l)(x)dx

}
.

(30)
Applying (3) and simplifying yields

F0(l) ≥ exp
{
−moute

−πl2λp
min

}
. (31)

Substituting (31) and (10) into (26) yields (14). One finds the
approximation for the average maximum edge length (15) by
integrating the CCDF (14). Finally, the approximation for the
spatial density of progress (16) is obtained by multiplying the
same three quantities as in (12); see the Proof of Theorem 1.


