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Abstract— The performance of spatial multiplexing systems
with linear minimum-mean-squared-error receivers is inves-
tigated in ad hoc networks. It is shown that single-stream
transmission is preferable over multi-stream transmission, due
to the weaker interference powers from the strongest interferers
remaining after interference-cancelation. This result isobtained
by new exact closed-form expressions we derive for the outage
probability and transmission capacity.

I. I NTRODUCTION

Multiple antennas can offer significant performance im-
provements in wireless communication systems by providing
higher data rates and more reliable links. A practical method
which can achieve high data rates is to employ spatial multi-
plexing transmission in conjunction with low complexity linear
receivers, such as the minimum-mean-squared-error (MMSE)
receiver. The MMSE receiver is particularly important as it
uses its receive degrees of freedom (DOF) to optimally trade
off strengthening the energy of the desired signal of interest
and canceling unwanted interference, such that the signal-to-
interference-and-noise ratio (SINR) is maximized.

In this paper, we investigate spatial multiplexing systems
with MMSE receivers in ad hoc networks. The transmitting
nodes are spatially distributed according to a homogeneous
Poisson point process (PPP) on a 2-D plane with density�
(transmitting nodes per unit area), and send multiple data
streamsNt to their corresponding receiver. Besides corre-
sponding to realistic network scenarios, modeling the nodes
according to a PPP has the benefit of allowing network
performance measures, such as the transmission capacity, to be
obtained. The transmission capacity measures the maximum
number of successful transmissions per unit area, assuming
transmission at a fixed data rate, such that a target outage
probability � is attained.

To maintain a desired performance level for a fixed number
of data streams per unit areaNt�, a natural question arises
whether it is preferable to have a high density of single-
stream transmissions, or a low density of multi-stream trans-
missions. The main finding of this paper is that single-stream
transmission is preferable when the optimal linear processing
strategy, i.e. the MMSE receiver, is employed. This is due
to the weaker interference powers from the strongest interfer-
ers remaining after interference-cancelation in single-stream

transmission networks, compared to multi-stream transmission
networks. This key result is facilitated by new exact closed-
form expressions we derive for the outage probability and
transmission capacity for arbitrary numbers of receive and
transmit antennas.

Prior work on single-stream transmission with multiple
receive antennas in ad hoc networks and Poisson distributed
transmitting nodes include [1–6], where spectral efficiency and
transmission capacity scaling laws were presented for different
receiver structures. In [1], receive antennas are used for spatial
diversity to increase the desired signal power, while in [2],
receive antennas are used to cancel interference from the
strongest interferer nodes. In [3], MMSE receivers are used
and the average spectral efficiency, a per-link performance
measure, was obtained in the large antenna regime. In [4–
6], by using sub-optimal and MMSE linear receivers, the
transmission capacity was shown to scale linearly with the
number of receive antennas. In this paper, we extend these
prior works to derive new outage probability and transmission
capacity scaling laws for arbitrary number of data streams
using MMSE receivers.

Multi-stream transmission with multiple receive antennas
have been considered in [7–9]. In [7, 8], spatial multiplexing
systems were considered where receive antennas are used to
cancel interference from the corresponding transmitter, but not
the interferers. For these papers, the transmission capacity
was shown to scale as1 o(�). A better scaling ofo

(

�
1
L

)

was obtained in [9] by using sub-optimal receivers to cancel
interference from the strongestL− 1 interferers. This scaling
result was used to show that single-stream transmission was
preferable over multi-stream transmission when sub-optimal
receivers are used [9]; in this paper we use a similar scaling
result to show this is also true using optimal MMSE receivers.

II. SYSTEM MODEL

We consider an ad hoc network comprising of transmitter-
receiver pairs, where each transmitter communicates to its
corresponding receiver in a point-to-point manner, treating all
other transmissions as interference. The transmitting nodes
are distributed spatially according to a homogeneous PPP of

1f(x) = o(g(x)) meanslimx→0
f(x)
g(x)

= 0.



intensity� in R
2, and each receiving node is randomly placed

at a distanced0 away from its corresponding transmitter.
In this paper, we investigate network-wide performance.

To characterize this performance, it is sufficient to focus on
a typical transmitter-receiver pair, denoted by index 0, with
the typical receiver located at the origin. The transmitting
nodes, with the exception of the typical transmitter, constitute
a marked PPP, which by Slivnyak’s theorem, has the same
distribution as the original PPP [10] (i.e., removing the typical
transmitter from the transmit process has no effect). This is
denoted byΦ = {(Dℓ,Hℓ), ℓ ∈ N}, where Dℓ and Hℓ

model the location and channel matrix respectively of theℓth
transmitting node with respect to (w.r.t.) the typical receiver.
The transmitted signals are attenuated by a factor1/r� with
distancer where� > 2 is the path loss exponent.

We consider a spatial multiplexing system where each
transmitting node sendsNt independent data streams through
Nt different antennas to its corresponding receiver, which is
equipped withNr antennas. Focusing on thekth stream, the
receivedNr × 1 signal vector at the typical receiver can be
written as

y0,k =

(a)
︷ ︸︸ ︷
√

1

d�0
h0,kx0,k +

(b)
︷ ︸︸ ︷
√

1

d�0

Nt∑

q=1,q ∕=k

h0,qx0,q

+
∑

Dℓ∈Φ

√

1

∣Dℓ∣�

Nt∑

q=1

hℓ,qxℓ,q

︸ ︷︷ ︸

(c)

+n0,k (1)

wherexℓ,q is the symbol sent from theqth transmit antenna
of the ℓth transmitting node satisfyingE[∣xℓ,q∣2] = P , hℓ,q

is the qth column of2 Hℓ
d
∼ CNNr,Nt

(0Nr×Nt
, INr

) and

n0,k
d
∼ CNNr,1 (0Nr×1, N0INr

) is the complex additive white
Gaussian noise vector. We see in (1) that the received vector
includes: (a) the desired data to be decoded, (b) the self in-
terference from the typical transmitter and (c) the interference
from the other transmitting nodes.

To obtain an estimate forx0,k, we consider the use of
MMSE linear receivers. The data estimate is thus given by
x̂0,k = h

†
0,kR

−1
0,ky0,k, from which the SINR can be written as

SINR0,k =


d�0
h
†
0,kR

−1
0,kh0,k (2)

where

R0,k =


d�0

Nt∑

q=1,q ∕=k

h0,qh
†
0,q + 

∑

Dℓ∈Φ

∣Dℓ∣
−�HℓH

†
ℓ + INr

(3)

and = P
N0

is the transmit signal-to-noise ratio. We assume
that each receiving node has knowledge of the corresponding
transmitter channelH0 and the interference (plus noise) co-
variance matrixR0,k. The practicalities of this assumption are
discussed in [5].

2The notationX
d
∼ Y means thatX is distributed as Y .

III. O UTAGE PROBABILITY

We consider the per-stream outage probability, defined for
the kth stream as the probability that the mutual information
for thekth stream lies below the data rate thresholdRk. At the
receiver, the MMSE filter outputs are decoded independently.
We assume the data rate thresholds for all streams are the same
and equal toR. The outage probability for each stream can
thus be written as

FZ(z, �) = Pr (SINR ≤ z) (4)

wherez = 2R − 1 is the SINR threshold. Note that we have
dropped the subscriptk and 0 from theSINR term as the per-
stream outage probability is the same for each stream at each
receiving node.

Before presenting the outage probability, we first introduce
some notation and concepts from number theory. The integer
partitions of positive integerk are defined as the different
ways of writing k as a sum of positive integers [11]. For
example, the integer partitions of 4 are given by: i) 4, ii) 3+1,
iii) 2+2, iv) 2+1+1 and v) 1+1+1+1. We denoteℎ(i, j, k) as
the ith summand of thejth integer partition ofk, ∣ℎ(⋅, j, k)∣
as the number of summands in thejth integer partition ofk
and ∣ℎ(⋅, ⋅, k)∣ as the number of integer partitions ofk. For
example, whenk = 4, we haveℎ(2, 3, 4) = 2, ℎ(2, 4, 4) = 1,
∣ℎ(⋅, 3, 4)∣ = 2 and ∣ℎ(⋅, ⋅, 4)∣ = 5.

We introduce non-repeatable integer partitions, which we
define as integer partitions without any repeated summands.
For example, the non-repeatable partitions of 4 are given byi)
4, ii) 3+1, iii) 2, iv) 2+1 and v) 1. We denoteg(i, j, k) as the
number of times theith summand of thejth non-repeatable
integer partition ofk is repeated in thejth integer partition of
k and ∣g(⋅, j, k)∣ as the number of summands in thejth non-
repeatable partition ofk. For example, whenk = 4, we have
g(1, 3, 4) = 2, g(1, 5, 4) = 4 and ∣g(⋅, 3, 4)∣ = 1. Using these
notations, we present a theorem for the outage probability3.

Theorem 1: The per-stream outage probability of spatial
multiplexing systems with MMSE receivers is given by

FZ(z, �) = 1−
e−

zd�0
 e−ΘNt�

(1 + z)Nt−1

Nr−1∑

p=0

⎛

⎜
⎝

Nr−p
∑

�=1

(
zd�

0



)�−1

(� − 1)!

⎞

⎟
⎠×

min(p,Nt−1)
∑

q=0

(
Nt − 1

q

)

zq
∣ℎ(⋅,⋅,p−q)∣
∑

j=1

Ξj,p−q(−ΘNt
�)∣ℎ(⋅,j,p−q)∣

(5)

where

Ξj,w =

∏∣ℎ(⋅,j,w)∣
i=1

∏ℎ(i,j,w)
k=1

(Nt−k+1)(k−1− 2
� )

k(Nt+
2
�
−k)

∏∣g(⋅,j,w)∣
�=1 g(�, j, w)!

(6)

and

ΘNt
=

� (d�0 z)
2
� Γ
(
Nt +

2
�

)
Γ
(
1− 2

�

)

Γ (Nt)
. (7)

3We note that the outage probability for the specific case where Nt = 1
was recently independently derived in [6].



Proof: See the appendix.
For a fixed number of data streams per unit area, we can de-

termine the optimal number of data streams used for transmis-
sion by considering the outage probabilityFZ

(

z, �
Nt

)

. Fig. 1
plots this outage probability vs. density for different numbers
of transmit antennas. The ‘Analytical’ curves are based on (5),
and clearly match the ‘Monte-Carlo’ simulated curves. We see
that single-stream transmission always performs better then
multi-stream transmission. In the next section, we analytically
prove this is true using the transmission capacity framework
for low outage probability operating values.
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Fig. 1. Outage probability vs. density for spatial multiplexing systems with
MMSE receivers, and withNr = 4, � = 4.6, z = 0 dB,  = 20 dB and
d0 = 1.

IV. T RANSMISSION CAPACITY

We consider the transmission capacity, a measure of the
number of successful transmissions per unit area, defined as

c(�)
Δ
= Nt�(�)(1 − �)R (8)

where� is the desired outage probability operating value and
�(�) is the contention density, defined as the inverse of� =
FZ(z, �) taken w.r.t.�. The transmission capacity is given in
the following lemma.

Corollary 1: In the high SNR regime, the transmission
capacity of spatial multiplexing systems with MMSE receivers,
subject to a low outage probability operating value, is given
by

c(�) =
NtR

ΘNt
Ωℓ

�
1
ℓ + o

(

�
1
ℓ

)

(9)

where

ℓ =

⌊
Nr

Nt

⌋

, (10)

Ω =
1

ℓ!
−

(−1)ℓ
∑Nt−1

q=0

(
Nt−1

q

)
zq
∑Nr−1−q

p=ℓ

∑

j∈Ψp,ℓ
Ξj,p

(1 + z)Nt−1
,

(11)

Ψp,ℓ is the set of all integer partitions ofp with ℓ summands
and⌊⋅⌋ denotes the floor function.

Proof: The result is proven by taking a first order
expansion of the outage probability in (5) at high SNR around
� = 0, followed by substituting the resultant expression into
(8). The full proof is omitted due to space limitations.

By observing that the exponent of� in (9) is a decreasing
function of the number of data streams, we see that for
low outage probability operating values, the transmission
capacity is maximized when only one data stream is used
for transmission. This can be explained by considering the
interference-cancelation properties of the MMSE receiver. As
the MMSE receiver is the optimal linear processing strategy,
the receive DOF is used to optimally trade off canceling the
interference from the strongest interferers and strengthening
the desired signals from the corresponding transmitter, such
that the received SINR is maximized. The MMSE receiver
is capable of completely canceling interference from both the
corresponding transmitter and the strongestk interferers if and
only if Nr > Nt − 1+ kNt [12], or equivalentlyNt <

Nr+1
k+1 .

The receiver can thus cancel interference from thek − 1
strongest interferers if

Nr

k + 1
+

1

k + 1
≤ Nt <

Nr

k
+

1

k
. (12)

It can be shown that the value ofk satisfying the condition
in (12) corresponds tok = ℓ =

⌊
Nr

Nt

⌋

. The MMSE receiver is
thus capable of canceling interference from theℓ−1 strongest
interferers.

As the transmission capacity increases with the number
of strongest interferers whose interference is canceled, this
implies the MMSE receiver will utilize the maximum possible
DOF to cancel interference from the strongest interferers.By
noting that the receiver will require a minimumNt DOF to
ensure the desired signals are received interference-free, the
maximumNr − Nt DOF will be used to cancel interference
from the strongest interferers. For single-stream transmission,
the maximum (over all possibleNt) Nr − 1 DOF are used to
cancel interference. Thus single-stream transmission is prefer-
able over multi-stream transmission as there are more strongest
interferers whose interference are canceled. This impliesthat
the interference powers originating from the strongest active
interferers (whose interference is not canceled) are weaker for
single-stream transmission than multi-stream transmission.

Figs. 2 and 3 plot the transmission capacity vs. outage prob-
ability and path loss exponent respectively. We observe in both
figures that the transmission capacity is a decreasing function
of the number of transmit antennas for all outage probabilities
and path loss exponents. In Fig. 2, the ‘Analytical’ curves are
plotted using (9), and closely match the ‘Numerical’ curvesfor
outage probabilities as high as� = 0.1, which are obtained
by numerically taking the inverse ofFZ(z, �) w.r.t. �, and
substituting the resulting expression into (8). Fig. 2 indicates
that the optimality of single-stream transmission is not just
applicable to small outage probability operating values, but the
whole range of outage probabilities considered, i.e.0.0001 ≤



� ≤ 0.8. Fig. 3 indicates that the transmission capacity is an
increasing function of the path loss exponent. This implies
that for increasing path loss exponents, the positive effects of
the reduction in interference outweigh the negative effects of
the reduction in desired signal strength between transmitter-
receiver pairs.
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Fig. 2. Transmission capacity vs. outage probability for spatial multiplexing
systems with MMSE receivers, and withNr = 4, � = 4.5, z = 10 dB, and
d0 = 1.
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Fig. 3. Transmission capacity vs. path loss exponent for spatial multiplexing
systems with MMSE receivers, and withNr = 4, z = 15 dB, d0 = 1 and
� = 0.001.

V. CONCLUSION

The main takeaway message is that it is preferable to
have a high density of single-stream transmissions than a
low density of multi-stream transmissions using the optimal
MMSE receiver in ad hoc networks. This is because the
interference powers originating from the strongest interferers
remaining after interference-cancelation are weaker for single-
stream transmission than multi-stream transmission. Thiskey

result was obtained by new closed-form outage probability
and transmission capacity expressions which we derived for
arbitrary numbers of transmit and receive antennas.

APPENDIX

The outage probability conditioned onxi = ∣Di∣� < a,
wherexi are independent and identically uniformly distributed
with i = 1, . . . L, is given by [12]

FZ∣x1,...,xL
(z, �) = 1− e−

zd�0


Nr−1∑

p=0

⎛

⎜
⎝

∑Nr−p

�=1

(
zd�

0



)�−1

(� − 1)!

⎞

⎟
⎠

× zpd�p0 Ip(x1, . . . , xL, �) (13)

where

Ip(x1, . . . , xL, �) =
Cp(x1, . . . , xL, �)

(1 + z)Nt−1
∏L

i=1(1 + d�0 x
−1
i z)Nt

(14)

and Cp(x1, . . . , xL, �) is the coefficient of zp in (1 +

d−�
0 z)Nt−1

∏L

i=1(1 + x−1
i z)Nt .

To proceed, we average out the number of nodes, which
follows a Poisson distribution, inℐp(x1, . . . , xL, �). This is
given by

E [Ip(x1, . . . , xL, �)] =
e−��a

2
�

(1 + z)Nt−1

∞∑

L=0

(
2��
�

)L

L!
(15)

×

∫ a

0

. . .

∫ a

0

Cp(x1, . . . , xL, �)
L∏

i=1

x
Nt+

2
�
−1

i

(xi + d�0 z)
Nt

dx1 . . . dxL .

To solve the integral in (15), we are required to obtain an
expression forCp(x1, . . . , xL, �). To this end, it is convenient
to first use the binomial series expansion to express(1 +
d−�
0 z)Nt−1

∏L

i=1(1 + x−1
i z)Nt as

(1 + d−�
0 z)Nt−1

L∏

i=1

(1 + x−1
i z)Nt = (16)

Nt−1∑

q=0

Nt∑

q1=0

. . .

Nt∑

qL=0

(
L∏

i=1

(
Nt

qi

)

x−qi
i

)(
Nt − 1

q

)
zq+

∑L
i=1 qi

d�q0
.

We observe that the coefficient ofzp in (16) can be writ-
ten as a sum ofmin(p + 1, Nt) symmetric polynomials in
x−1
1 , . . . , x−1

L , corresponding to each term in the outer summa-
tion

∑Nt−1
q=0 . These symmetric polynomials can be written as a

sum of monomial polynomials, where the number of monomial
polynomials is equal to the number of integer partitions of
p − q, denoted by∣ℎ(⋅, ⋅, p − q)∣. As such, we can write the
integral in (15) as

E [Ip(x1, . . . , xL, �)] =
e−��a

2
�

(1 + z)Nt−1

min(p,Nt−1)
∑

q=0

(
Nt − 1

q

)

×
1

d�q0

∞∑

L=0

(
2��
�

)L

L!

∣ℎ(⋅,⋅,p−q)∣
∑

j=1

∫ a

0

. . .

∫ a

0

ℳj,p−q(x1, . . . , xL)

×
L∏

i=1

x
Nt+

2
�
−1

i

(xi + d�0 z)
Nt

dx1 . . . dxL (17)



whereℳj,p−q(x1, . . . , xL) is a monomial symmetric poly-
nomial corresponding to thejth integer partition ofp − q.
We see that since the integral in (17) corresponding to the
jth integer partition is symmetric w.r.t.x1, . . . , xL, it is
sufficient to solve this integral using only one monomial in
ℳj,p−q(x1, . . . , xL) and multiply the resulting expression
by the number of monomials inℳj,p−q(x1, . . . , xL). We
see in (16) that the number ofxi terms in each monomial
comprisingℳj,p−q(x1, . . . , xL) is equal to the number of
summands in thejth integer partition ofp − q, denoted by
∣ℎ(⋅, j, p − q)∣. Without loss of generality, we thus focus on
evaluating the integral of the monomial inx1, . . . , x∣ℎ(⋅,j,p−q)∣.
By observing (16), we finally make note that the coefficient
of each monomial term is given by

∏∣ℎ(⋅,j,p−q)∣
i=1

(
Nt

ℎ(i,j,p−q)

)
,

and that the number of monomials inℳj,p−q(x1, . . . , xL)
is given byΛL = L!

(L−∣ℎ(⋅,j,p)∣)!
∏∣g(⋅,j,p)∣

ℓ=1 g(ℓ,j,p)!
. Combining

these facts, we can express (17) as

E [Ip(x1, . . . , xL, �)] =
e−��a

2
�

(1 + z)Nt−1

min(p,Nt−1)
∑

q=0

(
Nt − 1

q

)

×
1

d�q0

∞∑

L=0

(
2��
�

)L

L!

∫ a

0

. . .

∫ a

0

Tp,q(x1, . . . , xL)

×
L∏

i=1

x
Nt+

2
�
−1

i

(xi + d�0 z)
Nt

dx1 . . . dxL (18)

where

Tp,q(x1, . . . , xL) (19)

=

∣ℎ(⋅,⋅,p−q)∣
∑

j=1

ΛL

∣ℎ(⋅,j,p−q)∣
∏

i=1

x
−ℎ(i,j,p−q)
i

ℎ(i,j,p−q)
∏

k=1

Nt − k + 1

k
.

To solve the integral in (18), it is convenient to define the
following function:

J& =

∫ a

0

xNt+
2
�
−&−1

(x+ d�0 z)
Nt

dx (20)

= aNt+
2
�
−&(d�0 z)

−NtΓ

(

Nt +
2

�
− &

)

× 2F̃1

(

Nt, Nt +
2

�
− & ;Nt +

2

�
− & + 1;−

a

d�0 z

)

where2F̃1(⋅; ⋅; ⋅) is the regularized generalized Gauss hyper-
geometric function [13]. Now substituting (19) into (18), we
obtain

E [Ip(x1, . . . , xL, �)] =
e−��a

2
�

(1 + z)Nt−1

min(p,Nt−1)
∑

q=0

(
Nt − 1

q

)
1

d�q0

×

∣ℎ(⋅,⋅,p−q)∣
∑

j=1

∏∣ℎ(⋅,j,p−q)∣
i=1 Jℎ(i,j,p−q)

∏ℎ(i,j,p−q)
k=1

Nt−k+1
k

∏∣g(⋅,j,p)∣
�=1 g(�, j, p)!J

∣ℎ(⋅,j,p−q)∣
0

ΔL

(21)

where

ΔL =

∞∑

L=∣ℎ(⋅,j,p−q)∣

(
2��J0

�

)L

(L − ∣ℎ(⋅, j, p− q)∣)!

=

(
2��J0

�

)∣ℎ(⋅,j,p−q)∣

e
2��J0

� . (22)

To proceed, we take the limit asa → ∞ in (21), since we are
considering an infinite plane. It is thus convenient to note the
following two limit functions,

lim
a→∞

exp

(
2��

�
J0

)

e−��a
2
�

= exp

(

−
�� (d�0 z)

2
� Γ

(
Nt +

2
�

)
Γ
(
1− 2

�

)

Γ (Nt)

)

(23)

and

lim
a→∞

2��

�
J& = − (d�0 z)

−&
ΘNt

�

&∏

k=1

k − 1− 2
�

Nt +
2
�
− k

. (24)

Substituting (23) and (24) into (21), and substituting the
resultant expression into (13), we obtain the desired result.
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