EE 5581 - Information Theory and Coding Fall 2005

Course Information

Instructor: Nihar Jindal, 6-119 EE/CS, nihar@umn.edu, 625-6306

Class Time and Location: Mon/Wed/Fri, 12:20 PM - 1:10 PM, MechE 102

Office Hours: Tu/Th, 10:30 AM - 12:00 PM

TA: Hakim Alhussien, 6-158 EE/CS, hakimh@umn.edu, 626-7178

TA Office Hours: Mon/Wed, 4:00 - 5:00 PM

Class Webpage: http://www.ece.umn.edu/class/ee5581/index.html

Required Textbook: Elements of Information Theory, T. Cover and J. Thomas, Wiley-

Interscience, 1991.

Prerequisite: EE 5531, Probability and Stochastic Processes (or equivalent).

Homework: There will be weekly homework assignments.

Exams: There will be two midterm exams (tentatively scheduled for Oct. 14 and Nov. 18) and a final exam (Wed, Dec. 21, 4-6 PM).

Project: A research project is a required portion of this course. The project can either be a literature survey of a few information theory papers, or an original research idea. The project will be due towards the end of the semester.

Grading Policy: Final grade will be 15% project, 15% homework, 20% each midterm, and 30% final.

Tentative Course Outline

1. Information Theory Basics (3 weeks)

Entropy, mutual information, chain rules, inequalities, asymptotic equipartition property (AEP), entropy of random processes.

2. Source Coding (3 weeks)

Unique decodability, prefix-free codes, Kraft inequality, AEP-based compression, Huffman coding, arithmetic coding, universal coding.

3. Channel Capacity (3 weeks)

Discrete memoryless channels, joint typicality, achievability & converse proofs of channel capacity theorem, feedback channels, source-channel separation, practical channel codes.

4. Differential Entropy & Gaussian Channels (2 weeks)

Differential entropy, capacity of AWGN channels, band-limited channels, parallel & fading channels.

5. Rate-Distortion (Lossy Source Coding) (2 weeks)

Quantization, proofs of achievability & converse of rate distortion function.