Midterm 2

You have 50 minutes to complete this exam. You must show your work to receive credit.

1. Combined BSC \& Erasure Channel (40 pts) - 2 parts

Consider a combination of the binary symmetric channel and the erasure channel, where the input bit is either received correctly (with probability $1-\alpha-p$), erased (with probability α), or flipped (with probability p).

(a) Find the capacity and the capacity-achieving input distribution for this channel. (25 pts)
(b) Do erasures always reduce capacity? Let $C(\alpha, p)$ denote the capacity of the combination BSC-erasure channel with erasure probability α and cross-over probability p. If the cross-over probability p is fixed, is capacity always maximized when $\alpha=0$? In other words, is the following statement true:

$$
C(0, p) \geq C(\alpha, p) \quad \forall 0 \leq \alpha \leq 1
$$

for all $0 \leq p \leq 1$? Prove this is true, or provide a counter-example. (15 pts)
2. Channels with Feedback (40 pts) - 3 parts

Consider a BSC with feedback with cross-over $p=1 / 2$.
Consider the following feedback code for this channel with block-length $n>2$. Let $M=2$ (i.e. two messages), and let $x_{i}(k)$ indicate the i-th symbol of the codeword for message k. Let $x_{1}(1)=0$ and $x_{1}(2)=1$ (i.e., if message 1 is selected, a 0 is transmitted during the first channel use, and if message 2 is selected, a 1 is transmitted during the first channel use).
For $2 \leq i \leq n, x_{i}\left(W, Y^{i-1}\right)=y_{i-1}$, i.e., the i-th channel input is equal to the $(i-1)$-th channel output. Assume the message W is chosen equiprobably from $\{1,2\}$.
(a) What is the capacity of this channel? (5 pts)
(b) Compute $I\left(W ; Y^{n}\right)$. (15 pts)
(Hint: There is a very easy method to compute this)
(c) Compute $I\left(X^{n} ; Y^{n}\right)$. (20 pts)
3. Differential Entropy (20 pts)

Consider a continuous random variable X with infinite support $(f(x)>0$ for all $x)$ and with a symmetric density function $(f(x)=f(-x)$ for all $x)$. Assume that $h(X)$ is finite. Let $Y=|X|$. Derive an expression for $h(Y)$ in terms of $h(X)$.

