Midterm 1

You have 50 minutes to complete this exam. You must show your work to receive credit.

1. Drawing Without Replacement (25 pts) - 2 parts

Consider an urn with n black balls and n red balls (with $n \geq 1$). Let X_{1} and X_{2} denote two balls randomly drawn without replacement.
(a) Compute $H\left(X_{2} \mid X_{1}\right)$. (15 pts)
(b) Compute $I\left(X_{1} ; X_{2}\right)$. (10 pts)
2. Random Processes (30 pts) - 2 parts

Let X_{1}, X_{2} be i.i.d. random variables taking values in $\{0,1\}$, with $\operatorname{Pr}\left(X_{1}=1\right)=$ $\operatorname{Pr}\left(X_{2}=1\right)=\frac{1}{2}$. For $n \geq 3$, define X_{n} as follows:

$$
X_{n}= \begin{cases}0, & \text { if } X_{n-1} \neq X_{n-2} \\ 1, & \text { if } X_{n-1}=X_{n-2}\end{cases}
$$

This process is easily shown to be stationary, which implies $P\left(X_{n}=1\right)=\frac{1}{2}$ for all n.
(a) Compute $H\left(X_{n} \mid X_{1}, X_{2}\right)$ for $n \geq 3$. (15 pts)
(b) What is the entropy rate of this random process? (15 pts)
3. Source Coding (45 pts) - 3 parts
(a) Compute a binary Huffman code for a source with distribution $\mathbf{p}=\left(\frac{1}{15}, \frac{2}{15}, \frac{3}{15}, \frac{4}{15}, \frac{5}{15}\right)$. (15 pts)
(b) Can the following codes be optimal prefix-free codes for any probability assignment? Briefly justify each answer. (15 pts)
i. $\{0,10,11,01\}$
ii. $\{0,1\}$
iii. $\{00,01,101,110,111\}$
(c) Consider the following source X :

$$
X= \begin{cases}1, & \text { with probability } 0.4 \\ 2, & \text { with probability } p \\ 3, & \text { with probability }(0.6-p)\end{cases}
$$

and the following binary code:

$$
C(x)= \begin{cases}0 & \text { if } \mathrm{x}=1 \\ 10 & \text { if } \mathrm{x}=2 \\ 11 & \text { if } \mathrm{x}=3\end{cases}
$$

For what values of p is $C(x)$ an optimal (i.e., shortest expected length) prefix-free code for source X? (15 pts)

