Final Exam

You have 2 hours to complete this exam. You must show your work to receive credit.

1. Basics (15 pts)

Let X_{1} and X_{2} be i.i.d. $\operatorname{Bern}(1 / 2)$ random variables, and let $Y=\max \left(X_{1}, X_{2}\right)$. Compute: (5 pts each)
(a) $H(Y)$
(b) $I\left(X_{1} ; Y\right)$
(c) $I\left(X_{1}, X_{2} ; Y\right)$

2. Source Coding (20 pts)

(a) Which of the following codes are optimal prefix-free codes for the given source distribution? Briefly justify each answer. (10 pts total)

x	$\mathrm{p}(\mathrm{x})$	$\mathrm{C}(\mathrm{x})$
1	0.25	110

i. 20.50
$\begin{array}{lll}3 & 0.1 & 10\end{array}$
$\begin{array}{lll}4 & 0.1 & 111\end{array}$

x	$\mathrm{p}(\mathrm{x})$	$\mathrm{C}(\mathrm{x})$
1	0.25	0

ii. $2 \begin{array}{lll}2 & 0.25 & 10\end{array}$
$\begin{array}{lll}3 & 0.25 & 110\end{array}$
$\begin{array}{lll}4 & 0.25 & 111\end{array}$

x	$\mathrm{p}(\mathrm{x})$	$\mathrm{C}(\mathrm{x})$
1	0.3	00

iii. 20.301
$\begin{array}{lll}3 & 0.2 & 10\end{array}$
$\begin{array}{lll}4 & 0.2 & 11\end{array}$
(b) Consider the following source X :

$$
X= \begin{cases}1, & \text { with probability } 0.25 \\ 2, & \text { with probability } 0.25 \\ 3, & \text { with probability } p \\ 4, & \text { with probability }(0.5-p)\end{cases}
$$

for $0<p<0.5$. For what values of p does the optimal prefix-free code have expected length equal to 2 ? (10 pts)

3. Channel Capacity (25 pts)

Compute the capacity of the following channels:
(a) $C=?(5 \mathrm{pts})$

(b) $C=$? (10 pts)

(c) $C=?(10 \mathrm{pts})$

4. Differential Entropy (15 pts)

Let X be a continuous random variable with support $S=[-1,1]$ (i.e., $f(x)>0$ for $-1 \leq x \leq 1$ and $f(x)=0$ for $x<-1$ and $x>1)$. Assume $h(X)$ is finite. Define the random variable Y as:

$$
Y= \begin{cases}+a & \text { with probability } 1 / 2 \\ -a & \text { with probability } 1 / 2\end{cases}
$$

for some constant $a \geq 0$. Assume X and Y are independent. Let $Z=X+Y$.
(a) Compute $h(Z)$ in terms of $h(X)$ for $a>1$. (10 pts) (Hint: The quantity $h(Z)$ is finite.)
(b) Does the same answer hold if $a<1$? Why or why not? (5 pts)

5. Rate Distortion (25 pts)

Consider a ternary source and reconstruction alphabet $(\mathcal{X}=\{0,1,2\}, \hat{\mathcal{X}}=\{0,1,2\})$. Assume the source has a uniform distribution, i.e. $p(X=0)=p(X=1)=p(X=$ $2)=1 / 3$, and let the distortion measure be given by the following matrix:

$$
d(x, \hat{x})=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

or equivalently

$$
d(x, \hat{x})= \begin{cases}1 & \text { if }(x=0, \hat{x}=2) \text { or }(x=1, \hat{x}=0) \text { or }(x=2, \hat{x}=1) \\ 0 & \text { otherwise } .\end{cases}
$$

(a) Compute an expression for the expected distortion $E[d(x, \hat{x})]$. (5 pts)
(b) Compute the rate distortion function at $D=1 / 3$, i.e., $R(D=1 / 3)$. (10 pts)
(c) Compute the rate distortion function at $D=0$, i.e., $R(D=0)$. (10 pts) (Hint: $R(0)$ is strictly smaller than $H(X)$ because there are two zero-distortion reconstructions for each source symbol.)

