Noise in Gene Regulatory Networks

D. Materassi¹

¹Department of Electrical and Computer Engineering, University of Minnesota

April 1, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Summary

Models for Chemical Reactions

Macroscopic Model Microscopic Model Mesoscopic Model

Chemical Reactions as Markov Processes

The Chemical Master Equation A result for linear/affine transitions An equivalence property

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Comments

Stochastic and Deterministic Models

Chemical reactions can be modeled by

- Deterministic ordinary differential equations involving the species concentrations (macroscopic model)
- Many spatial agents each one describing a single molecule (microscopic model)

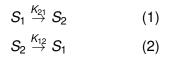
Both the approaches present advantages and drawbacks

- When there are few molecules of a species the concentration description is meaningless, mass action kinetics are not valid, and discrete models are necessary.
- Multi-agent models require a huge computational effort to be simulated

Macroscopic model

The system state is given by the concentration of the species and ODEs can be easily written.

Consider the reversible reactions



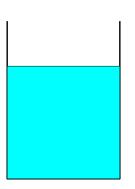
leading to the ODEs

$$\dot{x}_1 = -K_{21}x_1 + K_{12}x_2$$
 (3)

$$\dot{x}_2 = K_{21}x_1 - K_{12}x_2$$
 (4)

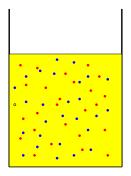
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where x_i is the concentration of the species S_i .



Microscopic model

Every single particle is modeled as a distinct agent with a specific position and velocity.



- Monomolecular reactions occur according to the given rate.
- Dimolecular reactions occur when two particles are in the same spot and the absolute value of their relative velocity is large enough.

イロト 不良 とくほ とくほう 二日

The Chemical Master Equation (Mesoscopic model)

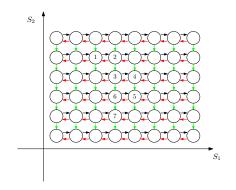
The mesoscopic model tries to combine both the approaches.

- ► The system is described in terms of the *n* reactants and/or products {S₁, S₂, ..., S_n}
- ► The state of the system is given by the integer vector {x₁, x₂, ..., x_n} representing the number of molecules for every species
- The system is considered a time-continuous Markov model
- The *M* chemical reactions represent the Markov transitions which can be described by the stoichometric vectors (*r*₁, ..., *r_M*)
- ► The probabilities of every state configuration are described by a vector P(t) = [P₁(t), P₂(t), ...] which evolves according to

$$\dot{\mathcal{P}}(t) = \mathcal{A} \, \mathcal{P}(t)$$
 (5)

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小日 ・

A graphical representation clarifies the meaning of the Mesoscopic Model



The reactions with the relative stoichometric vectors are

 $egin{aligned} & \emptyset o S_1 & r_1 = (1,0) \ & S_1 + S_2 o S_1 & r_2 = (0,-1) \ & S_1 o \emptyset & r_3 = (-1,0) \end{aligned}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Transition Probabilities

The probability that the reaction R_{μ} will be the next reaction and that will occur within the next time *dt* is given by $a_{\mu}(x)dt$.

• If R_{μ} represents a supply ($\emptyset \rightarrow 'Products'$), then

$$a_{\mu}(x) = c_{\mu}$$
 (6)

▶ If R_{μ} is a monomolecular reaction ($S_i \rightarrow 'Products'$), then

$$a_{\mu}(x) = c_{\mu}x_{i} \tag{7}$$

▶ If R_{μ} is a dimolecular reaction ($S_i + S_j \rightarrow 'Products'$), then

$$a_{\mu}(x) = c_{\mu} x_i x_j \tag{8}$$

Let us consider a chemical system with *n* molecular species and *m* elementary reactions and its related mesoscopic model.

$$\mathbf{x}(t) \stackrel{W_i(\mathbf{x}(t))}{\longrightarrow} \mathbf{x}(t) + r_i \tag{9}$$

(日) (日) (日) (日) (日) (日) (日)

where $x(t) \in \mathbb{N}^n$ is the vector of molecule numbers at time t; $r_i \in \mathbb{N}^n$ is the stechiometric vector of the *i*-th reaction and $W_i \in \Re^+$ is the transition rate.

The transitions described by (9) can be naturally modeled by a jump Markov system (markovian Petri net).

The Chemical Master Equation

Let us consider how the probability p of the configuration x at time t evolves. It satisfies the ODE

$$\dot{p}(t)(x,t) = \sum_{i} W_{i}(x-r_{i})p(x-r_{i},t) - \sum_{i} W_{i}(x)p(x,t) \quad (10)$$

which is known as the Chemical Master Equation. Defining $\mathcal{P}(t)$ as the vector containing the probabilities of all the possible configurations *x*, we have that

$$\dot{\mathcal{P}}(t) = \mathcal{A} \mathcal{P} \tag{11}$$

where the entries in A depend on the terms $W_i(x)$. This means that the evolution of the PDF follows a linear dynamics, even though the transition rates are not linear.

Notation

- I shall use capital letters to denote random variables/random processes and lower case letter to denote their realizations
- E[X] is the mean of the stochastic variable X
- ► E_X(t) := E[X(t)] is the mean of the stochastic process X(t) at time t
- $V_{XY}(t_1, t_2) := E[X(t_1)X(t_2)^T]$ is the second moment
- ► $R_{XY}(t_1, t_2) := E[X(t_1)X(t_2)^T] E[X(t_1)]E[X(t_2)]$ is the second central moment

• $R_X(t_1, t_2) := R_{XX}(t_1, t_2)$ and $V_X(t_1, t_2) := V_{XX}(t_1, t_2)$

Notation

A process *X* is stationary (wide sense) if and only if, for all t, t_1, t_2, τ ,

$$E_X(t) = E_X;$$
 $R_X(t_1, t_2) = R_X(t_1 + \tau, t_2 + \tau)$ (12)

Two stationary processes X and Y are mutually stationary (wide sense) if and only if

$$R_{XY}(t_1, t_2) = R_{XY}(t_1 + \tau, t_2 + \tau)$$
(13)

(日) (日) (日) (日) (日) (日) (日)

In such a context, the following definitions make sense

- $R_{XY}(t) := R_{XY}(t, 0)$ (abusing the notation!)
- $\Phi_{XY}(i\omega) := \mathcal{F}(R_{XY}(t,0))(i\omega)$

A result for linear/affine transitions

In many applicative cases, the transition rate functions $W_i(\cdot)$ can be considered linear. In the case of linear/affine transition rates some analytical results can be proved.

Theorem If $W_i(x) = c_1^{(i)}x + c_0^{(i)}$ then, there exist matrices $A, D(t) = D(E_X(t)) \in \Re^{n \times n}$, D(t) semi-positive defined and a vector $C_0 \in \Re^n$ such that

$$\frac{d}{dt}E_X(t) = AE_X(t) + C_0 \tag{14}$$

$$\frac{d}{dt}R_{X}(t,t) = A\frac{d}{dt}R_{X}(t,t) + \frac{d}{dt}R_{X}(t,t)^{T}A^{T} + D(E_{X}(t)) \quad (15)$$

$$\frac{d}{dt_{1}}R_{X}(t_{1},t_{2}) = AR_{X}(t_{1},t_{2}) \quad (16)$$

(日) (日) (日) (日) (日) (日) (日)

Let us evaluate
$$\frac{d}{dt}E_X(t)$$

$$\frac{d}{dt}E_X(t) = \sum_x x \frac{dp(x,t)}{dt} =$$

$$= \sum_{i,x} xW_i(x-r_i)p(x-r_i,t) - \sum_{i,x} xW_i(x)p(x,t) =$$

$$= \sum_{i,x} (x+r_i)W_i(x)p(x,t) - \sum_{i,x} xW_i(x)p(x,t) =$$

$$= \sum_{i,x} r_iW_i(x)p(x,t).$$

Define $f(x) := \sum_{i} r_i W_i(x)$ and we have

$$\frac{d}{dt}E_X(t)=E[f(x(t))]$$

In the linear/affine case $W_i(x) = c_1^{(i)}x + c_0^{(i)}$, thus

$$f(x(t)) = \sum_{i} r_{i} W_{i}(x(t)) = \sum_{i} r_{i} \left[c_{1}^{(i)} x(t) + c_{0}^{(i)} \right] =$$
(17)

$$=\sum_{i}r_{i}c_{1}^{(i)}x+\sum_{i}r_{i}c_{0}^{(i)}=Ax(t)+C_{0}$$
(18)

That leads to

$$\frac{d}{dt}E_X(t) = E[f(x(t))] = E[Ax(t) + C_0]$$
$$= AE_X(t) + C_0$$

Let us evaluate the dynamics of $R_{XX}(t, t)$

$$\frac{d}{dt} V_X(t,t) = \sum_x x x^T \frac{dp(x,t)}{dt} = \\
= \sum_{x,i} x x^T [W_i(x-r_i)p(x-r_i,t) - W_i(x)p(x,t)] = \\
= \sum_{x,i} (x+r_i)(x+r_i)^T W_i(x)p(x,t) - \sum_{x,i} x x^T W_i(x)p(x,t) = \\
= E[\sum_i x r_i^T W_i(x)] + E[\sum_i r_i x^T W_i(x)] + E[\sum_i r_i r_i^T W_i(x)] = \\
= E[x f^T(x)] + E[f(x) x^T] + E[\sum_i r_i r_i^T W_i(x)]$$

<□ > < @ > < E > < E > E のQ @

$$\frac{d}{dt}R_{X}(t,t) = \frac{d}{dt}V_{X}(t,t) - \frac{d}{dt}(E_{X}(t)E_{X}(t)^{T}) = \\ = E[x(t)f^{T}(x(t))] + E[f(x(t))x(t)^{T}] + E[\sum_{i} r_{i}r_{i}^{T}W_{i}(x(t))] + \\ - E_{X}(t)E[f(x(t))^{T}] - E[f(x)]E_{X}(t)^{T} = \\ = E[(x(t) - E_{x}(t))(f(x(t)) - E[f(x(t))])^{T}] + \\ + E[(f(x(t)) - E[f(x(t))])(x(t) - E_{x}(t))^{T}] + \\ + E[\sum_{i} r_{i}r_{i}^{T}W_{i}(x(t))]$$

In the linear case $f(x(t)) - E[f(x(t))] = A(x(t) - E_X(t))$, thus

$$\frac{d}{dt}R_X(t,t) = AR_X(t) + R_X(t)A + E[\sum_i r_i r_i^T W_i(x(t))]$$
(19)

Define D(t) and consider its Choleski factorization in terms of B(t), as follows

$$D(t) = D(E[W(x(t))]) := E[\sum_{i} r_{i}r_{i}^{T}W_{i}(x(t))]$$
(20)

$$D(t) = B(t)B(t)^{T}.$$
(21)

We can write that

$$\frac{d}{dt}R_X(t,t) = AR_X(t) + R_X(t)A + D(t)$$
(22)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $p(x_1, t_1, x_2, t_2)$ be the joint probability of the random variables $X(t_1)$ and $X(t_2)$. Let us evaluate the dynamics of $R_{XX}(t_1, t_2)$, observing that the Chemical Master Equation holds also for the joint probability.

$$\frac{d}{dt_1} V_X(t_1, t_2) = \sum_{i,x,y} xy^T \frac{d}{dt_1} p(x_1, t_1, x_2, t_2) = \\
= \sum_{x,y} xy^T [W_i(x - r_i)p(x - r_i, t_1, y, t_2) - W_i(x)p(x, t_1, y, t_2)] \\
= \sum_{i,x,y} (x + r_i)y^T W_i(x)p(x, t_1, y, t_2) - \sum_{i,x,y} xy^T W_i(x)p(x, t_1, y, t_2) \\
= \sum_{i,x,y} r_i W_i(x)p(x, t_1, y, t_2)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Comments

In the non-stationary case we have

$$\frac{d}{dt}E_X(t) = AE_X(t) + C_0 \tag{23}$$

$$\frac{d}{dt}R_{X}(t,t) = AR_{X}(t,t) + R_{X}(t,t)A^{T} + D(E_{X}(t))$$
(24)
$$\frac{d}{dt_{1}}R_{X}(t_{1},t_{2}) = AR_{X}(t_{1},t_{2})$$
(25)

The evolution of the mean of the molecule numbers follows a standard linear/affine dynamics.

The autocovariance of the molecule numbers evolves according to the second equation which is a Differential Riccati Equation. The cross-covariance follows a purely linear dynamics.

The stationary scenario

We have that the signal E_X does not depend on t, therefore it satisfies the relation

$$AE_X + C_0 = 0 \tag{26}$$

This implies that $D(t) = D(E_X(t))$ does not depend on *t*, either. Moreover, $R_X(t_2 + \tau, t_2)$ depends upon τ only. Hence we have

$$AR_X(t,t) + R_X(t,t)A^T + D = 0$$
(27)

$$\frac{d}{d\tau}R_X(t+\tau,t) = AR_X(t+\tau,t).$$
(28)

That Lyapunov Equation is known in physics as the fluctuation-dissipation problem, since it is very often related to a balance between phenomena of expansion and dissipation.

An equivalence property

Theorem

Assume that the Markov process described by the reactions $x(t) \xrightarrow{W_i(x(t))} x(t) + r_i$ with affine transition rates reaches the steady state. Consider

$$AR_X(t,t) + R_X(t,t)A^T + D = 0$$
 (29)

$$\frac{d}{d\tau}R_X(t+\tau,t) = AR_X(t+\tau,t). \tag{30}$$

Factorize D as $D = BB^T$ The power spectrum of x is given by

$$\Phi_X(\omega) = G(i\omega)G(i\omega)^* \tag{31}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $G(s) = (sI - A)^{-1}B$