System With Several Components

- Consider a System with mean energy E volume V and m different kinds of molecules.
 Actual to the standard of the stan
 - Jet Ni be the number of molecules of type i.
 Entropy of the System is given by

$$S = SCE, V, N, --N_m)$$

$$ds = \left(\frac{\partial g}{\partial e}\right)_{V,N} dE + \left(\frac{\partial g}{\partial V}\right)_{E,N} dV + \tilde{E}\left(\frac{\partial g}{\partial N_{i}}\right) dN_{i}$$

$$\bar{N}_{i} = \left(N_{1} - N_{g-1}, N_{e_{1}}, \dots, N_{m}\right)$$

(a) Suppose
$$dN_{i} = 0$$
 for all $k = 1 - m$
Then
 $dS = (\frac{\partial S}{\partial E}), dE + (\frac{\partial S}{\partial Y}), dV$
and in this Schwatzen we have already
established that
 $dS = \frac{dE}{F} = \frac{dE + pdY}{F}$

Multiple components
...,
$$Tds = dE + pdv$$

 $ds = \frac{1}{T}dE + \frac{p}{T}dv$
 $\vdots \left(\frac{\partial s}{\partial E}\right)_{V,N} = \frac{1}{T}; \left(\frac{\partial s}{\partial V}\right)_{N,E} = \frac{p}{T}$
(*) Lets define
 $\frac{\mu_{i}}{\pi} = -\left(\frac{\partial S}{\partial N_{i}}\right)_{E,V,\overline{N}_{i}}$
 $= TdS = dE + pdv - \sum_{i=1}^{N} \mu_{i} dN_{i}$

٠

Note that
 F= E-TS
 ⇒ dF= dE-TdS-SdT = dE-(dE+pdv-Epiconi)
 - sdT

Multiple components $dF = -sdT - pdV + \leq \mu i dNi$ $(\partial F)_{V,N} = -S$ $(\partial F)_{V,N} = -P$ $(\partial F)_{T,N} = -P$ $(\partial F)_{N_{c},V,T} = \mu i$

(i) G = E-TS+ pV
 ⇒ dG = dF+ pdv + vdp = -SdT + vdp + ≤ picdNi
 ⇒ (∂G) / P,N = -S; (∂G) / T,N = V
 and (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = -S; (∂G) / T,N = Ni
 (∂G) / D, P,N = Ni
 <li

General Condition for chemical Equilibrium.

atoms in the chemical reaction are conserved.

Chemical Equilibrium.

Chenical Equilibrium

Calculation of chemical Potential

Consider m molecular Apecies in a volume V.

Chemical Potential of Ideal gos mixture

(*) Now, if three are Nimoleales of i^{H} gas molecules that are indistinguishable then let $Z_{i} = \frac{q_{i}}{N_{i}}$

and Z: ZZ... Zm. . clearly ln Z= Žln Zi and therefore

every of the etc species
(b)
$$\overline{p} = \tau \frac{\partial l_n \tau}{\partial V} = \frac{\pi}{\tau_n} \frac{\pi}{\partial V}$$

where pe = Zdlati is the pressure of the in molecular Species. If each of the m nusleader Species is an ideal yes then Di = nic ; ni = Ni and threfne $\vec{p} = \vec{z} \cdot \vec{p}_{z} = \vec{z} \cdot \vec{n}_{z} \vec{z} = n \vec{z}$ where n= ≤ né ∴ p = n kgT[Aso Pe: <u>ni</u>= Ci is the p + achenal concent] $F_{=}-zl_{n}z = \underbrace{\xi}_{z=1}^{m} -zl_{n}z_{i} = \underbrace{\xi}_{z=1}^{m} F_{i}$ $Z = \prod_{ij}^{n} (Z_i) = \prod_{ij}^{m} (\underline{\zeta_i})^{N_i}$ Now as For an ideal geres $G_{ii} = (\frac{M_i z}{1 \pi L^2})^{3/2} V$

Chemical Reaction

Chemical Reaction: Equilibrium Conditions

$$\begin{array}{l} & \text{Mi} = \mathbb{C} \ln p_i + f_i(z). \\ & \text{Under thread Equilibrium} \\ & \underset{i=1}{\cong} \text{Mi} \, dN_i = 0 \quad ; \quad dN_i = -\lambda b_i \\ = & \underset{i=1}{\cong} \text{Mi} \, b_i = 0 \quad ; \quad dN_i = -\lambda b_i \\ = & \underset{i=1}{\cong} \text{Mi} \, b_i = 0 \quad ; \quad kartur \quad \mathcal{E} b_i b_i = 0 \\ = & \underset{i=1}{\cong} \left(\mathbb{C} \ln p_i + f_i(z) \right) b_i = 0 \\ = & \underset{i=1}{\cong} \left(\mathbb{C} \ln p_i = -\frac{\mathbb{E}}{2} f_i(z) b_i \right) / z \\ = & \underset{i=1}{\cong} \frac{1}{2} \ln p_i = -(\frac{\mathbb{E}}{2} f_i(z) b_i) / z \\ \Rightarrow & \ln (\prod_{i=1}^{m} p_i^{b_i}) = -(\frac{\mathbb{E}}{2} f_i(z) b_i) / z \\ \Rightarrow & \ln \prod_{i=1}^{m} p_i^{b_i} = e^{-(\frac{\mathbb{E}}{2} f_i(z) b_i) / z} \\ \Rightarrow & \ln \prod_{i=1}^{m} p_i^{b_i} = e^{-(\frac{\mathbb{E}}{2} f_i(z) b_i} \\ A(z) := \exp\left[-\frac{\mathbb{E}}{2} f_i(z) b_i \right] \\ & = e^{h_i - h_i} = A(z) \end{array}$$

Law of mass action

$$\frac{hi}{p} = \frac{hi}{p} = \frac{hi}{2} = \frac{hi}{2} = (i)$$

$$\frac{hi}{2} = \frac{hi}{2} = (i)$$

$$\frac{hi}{2} = \frac{hi}{2} = (i)$$

$$\frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2} = (i)$$

$$\frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2}$$

$$\frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2}$$

$$\frac{hi}{2} = \frac{hi}{2} = \frac{hi}{2$$

Chemical Reaction

chemical reaction

•

Thus,

$$\Delta G = \lambda z \left[\frac{z}{z_{n}} \ln \dot{p}_{i}^{bi} - \ln A(z) \right]$$

$$= \lambda z \quad \tilde{z} \left[\ln \dot{p}_{e}^{bi} - h(\dot{p}_{i,ey})^{bi} \right]$$

$$\left[at \quad eglb^{m} \text{ conditions } \dot{A}(z) = \prod_{i=1}^{m} (\dot{p}_{i,ey})^{bi} \right]$$

Now;
$$\beta = c_i \beta_i$$
 and $\beta e_{\gamma} = c_i e_{\gamma} \beta_{i,e_{\gamma}}$
 $\therefore \quad \Delta G_{z} \quad \lambda z \quad \Sigma \ln \frac{C_1^{b_1} G_2 \dots G_m}{C_{i,e_{\gamma},\cdots, G_m,e_{\gamma}}}$

$$CS \quad peq = p \quad [Constant pressure operat]$$

$$DG = \lambda z [ln C_1^{D1} C_2^{D2} - C_m^{Dm}] + DG^{O}$$

Chemical reaction

$$\therefore \Delta G = \Delta G^{0} + \lambda z = \ln(c_{1}^{b_{1}} G^{b_{2}} \dots G^{b_{m}})$$

where
$$\Delta G^{\circ} := -\lambda z \ln (C_1)_{es}^{b_1} (G_2)_{es}^{b_2} \dots (G_n)_{es}^{b_m}$$

 $:= -\lambda z \ln [K_{es}(P_1 z)]$
 $\Delta G := \Delta G^{\circ} + RT \ln (G_1^{b_1} \dots G_n^{b_m} - G_n^{b_m} - G_1^{b_1} \dots G_n^{b_m} - G_1^{b_1} \dots G_n^{b_m} - G_1^{b_1} \dots G_n^{b_m}$

Probabilities

Oueston: What is the probability of
finding the System A with N portheles and
to be in a state & with energy E8?
Answer: All accessible states of A⁽²⁾ are
equally likely.
OThe number of ways in which A⁽²⁾ Can be
in a state while A has N particles, in a state
s with energy Es is proportional to
$$N^{(2)}(E_8, N) = M_R(E^{(2)}-E_8, N^{(2)}, N)$$

Probability

Thus
$$P(N, \xi_S) \propto \Lambda_R (E^{(\Theta)} \xi_S, N^{(\Theta)} - N)$$

and let $\sigma_R := \ln \Lambda_R$
 $\ln P(N, \xi_S) \propto \ln \Lambda_R (E^{(\Theta)} \xi_S, N^{(\Theta)} - N)$, $\frac{1}{2} = R$
 $= \Lambda_R (E^{(\Theta)}, N^{(\Theta)}) - \mathcal{E}_S (\frac{\partial \sigma_R}{\partial \mathcal{E}}|_{\mathcal{E} = \mathcal{E}^{(G)}})$
 $- (N \frac{\partial \sigma_R}{\partial N}|_{N = N^{(\Theta)}}) = \mathcal{E}_S (\frac{\partial \sigma_R}{\partial \mathcal{E}}|_{\mathcal{E} = \mathcal{E}^{(G)}})$
where $\mu := -\frac{1}{2} (\frac{\partial \sigma}{\partial N})_E |_{N = N^{(M)}}$.

Probability

thus $l_n P(N, \varepsilon_s) = l_n C e^{-\beta \varepsilon_s + \mu \beta N}$ P(N,Eg) = C etr[mn-Eg] $C = 3^{-1}$ and $3 = \sum_{N \text{ S(N)}} \sum_{k=1}^{N} \frac{-\beta [\epsilon_k - \mu_n]}{2}$ depend on the Number of particles N

Grand Canonical Ensemble.

$$3 = \sum_{N_i} \sum_{N_2} \sum_{N_m} \sum_{\substack{S \in N_m \\ T}} \sum_{\substack{N_i \\ T}} \sum_{\substack{N_m \\ T}} \sum_{\substack{S \in N_m \\ T}} \sum_{\substack{N_i \\ T} \sum_{\substack{N_i \\ T}} \sum_{\substack{N_i \\ T} \sum_{\substack{N_i \\ T}} \sum_{\substack{N_i \\ T} \sum_{\substack{N_i \\ T} } \sum_{\substack{N_i \\ T} \sum_{\substack{N_i \\ T} } \sum_{\substack{N_i \\ T} } \sum_{\substack{N_i \\ T} } \sum_{\substack{N_i \\ T} } \sum_{$$