System With Several Components
© Consider a system with mean energy $E$ volume $V$ and $m$ different kinds of molecules.
(*) Let $N_{i}$ be the number of molecules of type $i$.
(1) Entropy of the system is given by

$$
\left.S=S C E, V, N_{1}, \cdots N_{m}\right)
$$

(c) In a completely general infinitesimal quasistatic process

$$
\begin{gathered}
d s=\left(\frac{\partial s}{\partial E}\right)_{V, N} d E+\left(\frac{\partial s}{\partial V}\right)_{E_{1} N} d V+\sum_{l=1}^{\tilde{T}}\left(\frac{d s}{\partial N_{i}}\right)_{N_{i}, v, E} d N_{i} \\
N_{i}=\left(N_{1} \ldots N_{l-1}, N_{i-1}, \ldots, N_{m}\right)
\end{gathered}
$$

(6) Suppose $d N_{i} \equiv 0$ for all $l=\ldots \mathrm{m}$

Then

$$
d S=\left(\frac{\partial S}{\partial E}\right)_{V, N} d E+\left(\frac{\partial S}{\partial r}\right)_{E, N} d V
$$

and in this situation we have already established that

$$
d s=\frac{d Q}{T}=\frac{d E+p d y}{T}
$$

Multiple components

$$
\begin{aligned}
& \therefore T d s=d E+p d V \\
& d s=\frac{1}{T} d E+\frac{p}{T} d V \\
& \therefore\left(\frac{\partial s}{\partial E}\right)_{V, n 1}=\frac{1}{T} ;\left(\frac{\partial s}{\partial V}\right)_{N, E}=\frac{p}{T} .
\end{aligned}
$$

(1) Lets define

$$
\begin{aligned}
& \frac{\mu_{i}}{T}=-\left(\frac{\partial S}{\partial N_{i}}\right)_{E_{N}, N_{i}} \\
& \therefore T d S=d E+p d v-\sum_{i=1}^{m} \mu_{i} d N_{i}
\end{aligned}
$$

(1) Note that

$$
\begin{aligned}
& \text { Note that } \\
& d E=T d s-p d v+\sum_{i=1}^{m} \mu_{i} d N_{i} \\
& \therefore\left(\frac{\partial E}{\partial S}\right)_{Y, N}=T ;\left(\frac{\partial E}{\partial r}\right)_{T, N}=-p \\
& \left(\frac{\partial E}{\partial N_{i}}\right)_{\bar{N}_{i}, v, S}=\mu_{i}
\end{aligned}
$$

(-) Note that

$$
\begin{aligned}
& F=E-T S \\
& \Rightarrow \quad d F=d E-T d S-S d T= d E-\left(d E+p d v-\Sigma \mu_{i} d N_{i}\right) \\
&-s d T
\end{aligned}
$$

Multiple components

$$
\begin{aligned}
& d F=-s d T-p d V+\sum_{l} \mu_{i} d N_{i} \\
& \Rightarrow\left(\frac{\partial F}{\partial T}\right)_{V, N}=-s \\
& \left(\frac{\partial F}{\partial T}\right)_{T, N}=-p \\
& \left(\frac{\partial F}{\partial N_{i}}\right)_{\bar{N}_{l}, V, T}=\mu_{i}
\end{aligned}
$$

$\odot$

$$
\begin{aligned}
& G=E-T S+p V \\
& \Rightarrow d G=d F+p d v+v d p=-s d T+v d p+\sum_{i} \mu_{i} d N_{i} \\
& \Rightarrow\left(\frac{\partial G}{\partial T}\right)_{P, N}=-S ;\left(\frac{\partial G}{\partial p}\right)_{T, N}=v
\end{aligned}
$$

and

$$
\left(\frac{\partial G}{\partial N_{i}}\right)_{\bar{N}_{L}, p_{1} T}=\mu_{i}
$$

(*) $\mu_{i}$ is called the "chemical potential" per molecule of the itu Species

General Condition for chemical Equilibnum.
(7) Suppose there are $m$ different kinds
of molecules $B_{1}, B_{3}$, Bm. of molecules $B_{1}, B_{2}, \ldots, B_{m}$.
(a) Assume that there exists the possibility of transformation of molecules into each other where the total number of atoms of each kind are preserved.
(1) A chemical reaction can be written in the form

$$
\begin{equation*}
\sum_{i=1}^{M} b_{i} B_{i}=0 \tag{0}
\end{equation*}
$$

Example $\quad 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}$ Con be writtenas

$$
\begin{aligned}
& -2 \mathrm{H}_{2}-\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}<0 \\
& B_{1} \equiv H_{2} ; B_{2} \equiv O_{2} ; B_{3} \equiv H_{2} O
\end{aligned}
$$

and $b_{1}=-2 ; b_{2}=-1 ; b_{3}=+2$
(त) Note that $b_{i} i n$ are constrained in a manner such that the number of atoms in the chemical reaction are conserved.

Chemical Equilitanum.
(*) Now if $d N_{i}$ denotes the change in the number of $i^{\text {th }}$ molecule $B_{i}$ then

$$
d N_{i}=\lambda b_{i} ; e^{i}=1 \cdots m \text {, for }
$$

Some scalar $\lambda$.
For the reaction

$$
\begin{gathered}
2 \mathrm{H}_{2}+\mathrm{O}_{2} \vec{\leftarrow} 2 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{H}_{2} \mathrm{O}-2 \mathrm{H}_{2}-\mathrm{O}_{2}=\mathrm{O} \\
b_{1}=-2 ; b_{2}=-1 ; \quad b_{3}=2
\end{gathered}
$$

and $d N_{\mathrm{H}_{2} \mathrm{O}}: d N_{\mathrm{O}_{2}}: d N_{\mathrm{H}_{2}}=2:-1:-2$
(*) Consider an equilitonum condition where Constant temperature and pressure are maintained. Then as $d G=0$ at eq(bre and

$$
\left.\begin{array}{rl}
0 & =d G
\end{array}=-\frac{s}{} d T+v d p+\sum_{i} \mu_{i} d N_{i} \quad \text { [as } d T=d p=0\right]
$$

Thus, the chemical potential of the venous species at equilionum needs to satusty

Chemical Equilibnum

$$
\sum_{i=1}^{M} \mu_{i} b_{i}=0
$$

(2) where $\mu_{i}$ is the chemical potential per mole of Species $i$ and
$\sum_{i=1}^{m} b_{i} B_{i}=0$ defines the
reaction
(i) Note that under constant temp. and volume $d F=0$ which again leads to

$$
\sum_{i=1}^{m} \mu_{i} b_{i}=0
$$

Thu, the condition $\sum_{i=1}^{m} \mu_{i} b_{i}=0$ can be shown to be a chariacterste of equilibnums (maximum entropy of the isolated system) itself.

Calculation of chemical Potential
(®) Consider $m$ molecular Species in a volume $V$.
(r) Suppose the state of the th molecular spenes is denoted by $s_{i}$ which can belong to a set $S_{i}$. let the energy of state $s_{i}$ be $\varepsilon_{i}\left(s_{i}\right) ; s_{i} \in S_{i}$
(*) The state of the mixture of $m$-molecular species is given by

$$
8=\left(s_{1}, \delta_{2}, \cdots \delta_{m}\right) \in S_{1} \times \delta_{2} \times \delta_{3} \times \times S_{m}
$$

( with energy $E(s)=\varepsilon_{1}\left(s_{1}\right)+\varepsilon_{2}\left(s_{2}\right) \cdots+\varepsilon_{m}\left(s_{m}\right)$
(*) The partition function is given by

$$
\begin{aligned}
& Z=\sum_{s_{1} s_{2} \cdot S_{m}} e^{-\beta\left(\varepsilon_{1}\left(s_{1}\right)+\varepsilon_{2}\left(s_{2}\right) \cdots+\varepsilon_{m}\left(s_{m}\right)\right)} \\
&=\left[\sum_{s_{1}} e^{-\beta \varepsilon_{1}\left(s_{1}\right)}\right]\left[\sum_{s_{2}} e^{-\beta \varepsilon_{2}\left(s_{2}\right)}\right] \cdots \\
& \cdots \cdot\left[\sum_{s_{m}} e^{-\beta \varepsilon_{m}\left(s_{m}\right)}\right]
\end{aligned}
$$

Let $\xi_{i}:=\sum_{s_{i}} e^{-\beta \varepsilon_{i}\left(s_{i}\right)}$

Chemical Potential of ideal gas mixture
(1) Now, if there ore Nimolecales of $i^{t h}$ gas molecules that are indistinguishable then let

$$
z_{i}=\frac{\xi_{i}^{N_{i}}}{N_{i}!}
$$

and

$$
\begin{aligned}
z & =z_{1} z_{2} \cdots z_{m} \\
& =\prod_{i=1}^{m} z_{i}
\end{aligned}
$$

clearly

$$
\ln z=\sum_{i=1}^{m} \ln z_{i}
$$

and therefore
(a) $\bar{E}=\tau^{2} \frac{\partial \ln z}{\partial z}=\sum_{l=}^{M} \frac{\tau^{2} \ln z_{i}}{\partial \tau}=\sum_{i=1}^{M} \bar{E}_{i}$
where

$$
\bar{E}_{i} \vdots z^{2} \frac{\partial \ln z_{i}}{\partial z} \text { the overage }
$$

energy of the $e^{\text {th }}$ species
(b) $\quad \bar{p}=\tau \frac{\partial \ln z}{\partial V}=\sum_{i=1}^{M} \frac{\partial \ell_{n} z_{i}}{\partial v}=\sum_{i=}^{M} \bar{p}_{i}$
chemical potential
where

$$
\tilde{p}_{e}=\tau \frac{\partial \ln z_{i}}{\partial v}
$$

is the pressure of the $i^{x}$ molecular species.
If each of the $m$ nusecular Spenes is an ideal yeas then

$$
\bar{p}_{i}=n_{i} \tau ; \quad n_{i}=\frac{N_{i}}{V}
$$

and therefore

$$
\bar{p}=\sum_{i} \bar{p}_{e}=\sum_{i} n_{i} \tau=n \tau
$$

when $n=\sum_{i} n_{i}$

$$
\therefore \quad \bar{p}=n k_{B} T\left[^{\Delta s_{0} o} \quad \frac{p_{e}}{p}=\frac{n_{i}}{p}=c_{i}\right. \text { is the }
$$

Also,

$$
F=-\tau \ln z=\sum_{i=1}^{m}-\tau \ln z_{i}=\sum_{l=}^{m} F_{i}
$$

Now as $Z=\prod_{i=1}^{m}\left(Z_{i}\right)=\prod_{i=}^{m} \frac{\left(\xi_{i}\right)^{N_{i}}}{N_{i}!}$
For an idea genes $\varepsilon_{i}=\left(\frac{M_{i} \tau}{2 \pi h^{2}}\right)^{3 / 2} V$

Chemical Potential

$$
\begin{aligned}
\therefore \quad Z_{i} & =\frac{\left(\xi_{i}\right)^{N_{i}}}{N_{i}!} \\
\ln z_{i} & =N_{i} \ln \xi_{i}-\ln N_{i}! \\
& \approx N_{i} \ln \xi_{i}-N_{i} \ln N_{i}+N_{i}
\end{aligned}
$$

Now we have shown that

$$
\begin{aligned}
& \mu_{i}=\left(\frac{\partial F}{\partial N_{i}}\right)_{\overline{N_{i}, \tau V}}= \\
& =-2\left[\ln \xi_{i}-1-\ln N_{i}+1\right] \\
& =-2\left(\ln \xi_{i}-\ln N_{i}\right) \\
& \therefore \quad \mu_{i}=-2 \ln \frac{\xi_{i}}{N_{i}} \\
& \mu_{i}=-k_{B} T \frac{\ln \frac{\xi_{i}}{N_{i}}}{}
\end{aligned}
$$

Chemical Reaction
(2) For an ideal yeas we have

$$
\varepsilon_{i}=\left(\frac{M_{i} \tau}{2 \pi \hbar^{2}}\right)^{3 / 2} V
$$

and

$$
\begin{aligned}
& \mu_{i}=-\tau \ln \frac{\left(\xi_{i}\right)}{N_{i}} \quad n_{i}=\frac{N_{i}}{V} \\
& =\tau \ln \left(\frac{N_{i}}{\varepsilon_{i}}\right) \\
& =2 l\left[\begin{array}{l}
\frac{\mu_{i}}{N_{i}} \\
\left.M_{i} \tau\right)^{3 / 2} V \\
\left(2 \pi \hbar^{2}\right)^{3 / 2}
\end{array}\right] \\
& =\tau \ln \left[\frac{N_{i} \tau}{V} \frac{\left(2 \pi \hbar^{2}\right)^{3 / 2}}{\left(M_{i}\right)^{3 / 2} \tau}\right] \\
& =\tau \ln \left(\frac{N_{i} \tau}{V}\right)+\tau \ln \left(2 \pi \hbar^{2}\right)^{3 k}\left(M_{i} \tau\right)^{3 / 2} \tau \\
& =\tau \ln p_{i}+f_{i}(\tau) ; p_{i}=n_{i} \tau=\frac{N_{i} \tau}{v}
\end{aligned}
$$

where $f_{i}(\tau)=z \ln \frac{\left(2 \pi \hbar^{2}\right)^{3 / 2}}{\left(M_{i} \tau\right)^{3 / 2} \tau}$

Chemical Recateon: Equilibrium Conditions

$$
\therefore \quad \mu_{i}=\tau \ln p_{i}+f_{i}(\tau)
$$

Under thermal Equilibrum

$$
\begin{aligned}
& \sum_{i=1}^{m} \mu_{i} d N_{i}=0 ; \quad d N_{i}=-\lambda b_{i} \\
& \Rightarrow \sum_{i=1}^{m} \mu_{i} b_{i}=0 \rightarrow \text { Reactex } \sum b_{i} B_{i}=0 \\
& \Rightarrow \quad \sum_{i=}^{m}\left(r \ln p_{i}+f_{i}(z)\right) b_{i}=0 \\
& \Rightarrow \quad \sum_{i=1}^{M} b_{i} \tau \ln p_{i}=-\sum_{i=1}^{M} f_{i}(\tau) b_{i} \\
& \Rightarrow \quad \sum_{i=1}^{m} b_{i} \ln p_{i}=-\left(\sum_{i=1}^{m} f(z) b_{i}\right) / \tau \\
& \Rightarrow \quad \ln \left(\prod_{i=}^{m} p_{i}^{b_{i}}\right)=-\left(\sum_{i=1}^{r} f_{i}(z) b_{i}\right) / \tau \\
& \Rightarrow \ln \prod_{i=1}^{\mu} p_{i}^{i=} b_{i} \quad=e^{-\left(\sum_{i=1}^{\mu} f_{i}(\tau) b_{i}\right) / \tau} \\
& A(c):=\exp \left[\frac{\sum_{i=1}^{m} f_{i}(z) b_{i}}{\tau}\right] \\
& p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{m}^{b_{m}}=A(2)
\end{aligned}
$$

Law of Mass Action
Thus, Law of mase acton follows.
(1) for a chemical reaction

$$
\sum_{i=1}^{M} b_{i} B_{i}=0
$$

assuming all molecules $\mathrm{Bi}_{i}$ car be considered as a mixture of ideal gases with no interacted potential energy the equilitonum condition sates es

$$
p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{M}^{b_{M}}=A(r)
$$

where $p_{i}=\frac{N_{i}}{V} \tau$ with $p_{i}$ being the $=n_{i} \quad$ pressure due to the

- Note that the pressure $p$ of the mixture is

$$
p=\sum_{i=2}^{m} p_{i} ;
$$

Let $N=\sum_{i=1}^{M} N_{i}$ and $C_{i}=\frac{N_{i}}{N}$ denote the number concentration of the Species $i$. Then

Law of mass action

$$
\begin{aligned}
& \frac{p_{i}}{p}=\frac{n_{i} z}{p}=\frac{\frac{N_{i}}{V} z}{\sum_{i=1} \frac{N_{i} r}{V}}=\frac{N_{i}}{\Sigma N_{i}}=C_{i} \\
\therefore & p_{i}=C_{i} p,
\end{aligned}
$$

of Species $i$. ${ }_{i}$ is the concentration
Therefore as
$p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{m}^{b_{m}}=A(r)$ we have

$$
\begin{aligned}
& \Rightarrow\left(c_{i} p\right)^{b_{1}}\left(c_{2} p\right)^{b_{2}} \cdots\left(c_{m p}\right)^{b_{m}}=A(r) \\
& \Rightarrow c_{1}^{b_{1}} c_{2}^{b_{2}} \cdots c_{m} b^{m}=p^{-\sum b_{i}} \quad A(r)
\end{aligned}
$$

$\therefore$ The concentration at equilibrium satishes

$$
\begin{aligned}
\prod_{i=1}^{m} c_{i}^{b i} & \left.=p^{-\sum b_{i}} A \mid z\right) \\
& =: k(p, r)
\end{aligned}
$$

where the reactor is $\sum_{i=1}^{M} b_{i} B_{i}=0$.

Chemical Reaction
Suppose the reaction occurs at constant temperature and pressure
Then the minimum amount of wok required to change the confjecration of the system is governed by Gibbs free Energy. Indeed in the case of constant temperature and pressure

$$
\begin{aligned}
d G & =\sum_{i} \mu_{i} d N_{i} \\
& =\sum_{i} \mu_{i} \lambda b_{i} \\
& =\lambda \sum_{i} \mu_{i} b_{i}
\end{aligned}
$$

Now, $\mu_{i}=2 \ln p_{i}+f_{i}(2)$

$$
\begin{aligned}
\therefore d G & \left.=\lambda \sum_{i}\left[\tau \ln p_{i}+f_{i} k\right)\right] b_{i} \\
& \left.=\lambda \tau \frac{s}{s}\left(\ln p_{i}\right) b_{i}+\frac{f_{i}(r) b_{i}}{\tau}\right] \\
& =\lambda \tau \sum_{i}\left(\ln p_{i}^{b_{i}}-\ln [A(\tau)]\right)
\end{aligned}
$$

Chemical reaction

Thus,

$$
\begin{aligned}
\Delta G & =\lambda^{2}\left[\sum_{i=1}^{n} \ln p_{i}^{b_{i}}-\ln A(r)\right] \\
& =\lambda \tau \sum_{i=1}^{n}\left[\ln p_{e}^{b i}-\ln \left(p_{i, e q}\right)^{b i}\right]
\end{aligned}
$$

[at eq( $b^{\text {m }}$ condeteans $\dot{A}(z)=\prod_{1=1}^{m}\left(p_{i, q}\right)$

$$
\begin{aligned}
\therefore \Delta G & \left.=\lambda \tau \sum_{l=1}^{m} \frac{\ln \left[p_{i}\right.}{\left(p_{i}\right)_{e q}}\right]^{b_{i}} \\
& =\lambda \tau \sum_{l=1}^{m} \ln \frac{p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{r m}^{b_{m}}}{\left(p_{1, e q}\right)^{b_{1}} \ldots p_{m, l}^{b}}
\end{aligned}
$$

Now; $p=c_{i} p_{i}$ and $p_{e q}=c_{i e q} p_{i, e q}$

$$
\therefore \Delta G=\lambda \tau \sum \ln \frac{C_{1}^{b_{1}} c_{2}^{b_{2}} \cdots c_{r}^{b m}}{C_{1, e q}, \cdots c_{m, e r}}
$$

as $p e q=p \quad$ [ constant pressure operand.]

$$
\therefore \Delta G=\lambda z\left[\ln C_{1}^{b_{1}} C_{2}^{b_{2}} \ldots C_{m}^{b_{m}}\right]+\Delta G^{0}
$$

Chemical reaction

$$
\therefore \Delta G=\Delta G^{0}+\lambda \tau \ln \left(c_{1}^{b_{1}} c_{2}^{b_{2}} \ldots c_{m}^{b_{m}}\right)
$$

where $\Delta c^{0}=-\lambda \tau \ln \left(C_{1}\right)_{e q}^{b_{1}}\left(\mathcal{E}_{2}\right)_{e q}^{b_{2}} \cdots\left(C_{m}\right)_{e_{s}}^{b_{m}}$

$$
\frac{=-\lambda r \ln \left[K_{\text {eq }}\left(p_{1} z\right)\right]}{\Delta G=\Delta 4^{0}+R T \ln \frac{C_{1}^{b_{1}} \cdots C_{m} C_{r}}{\left.\left(C_{1}\right)_{e g}^{b_{1}-\left(C_{m}\right)_{e g}}\right)^{b_{m}}}}
$$

Gibbs Factor and the Grand Canonical Ensemble.
(1) Consider a very large body, $A^{\left.A^{( }\right)}$th constant energy $E^{(0)}$ and Constant number of particles $N^{(0)}$
(-) $A^{(0)}$ is composed of two parts
(a) a large ressuar $R$
(b) The System \&
$R$ and \& can exchange particles as well as energy

Probabilities
Question: What is the probability of finding the system $A$ with $N$ particles and to be in a state $s$ with energy Es?
Answer: All accessible states of $A^{(N)}$ are equally likely.
The number of ways in which $A^{(N)}$ can be in a state where $A$ has $N$ particles, in astate $s$ witt energy $\varepsilon_{s}$ is proportional to

$$
u^{(0)}\left(\varepsilon_{3}, N\right)=\Omega_{R}\left(E^{(0}-\varepsilon_{3}, N^{(0}-N\right)
$$

Probability
Thus

$$
P\left(N, \varepsilon_{s}\right) \propto \Omega_{R}\left(E^{(0)}-\varepsilon_{s}, N^{(0}-N\right)
$$

and let $\sigma_{R}:=\ln \Lambda_{R}$

$$
\begin{aligned}
& \ln P\left(N, \varepsilon_{3}\right) \propto \ln N_{R}\left(\varepsilon^{(\infty}-\varepsilon_{3}, N^{(-}-N\right) \quad,^{\frac{1}{2}-\beta} \\
& =\Lambda_{R}\left(\varepsilon^{(0)}, N^{\infty}\right)-\varepsilon_{R}\left(\left.\frac{\partial \sigma_{R}}{\partial \varepsilon}\right|_{\varepsilon=\varepsilon^{(\omega)}}\right)_{N_{0}} \\
& -\left(\left.N \frac{\partial \sigma_{R}}{\partial N}\right|_{N=N}{ }^{*}\right)_{E} \cdot \\
& =U_{R}\left(\varepsilon^{(0)}, N^{\overline{( })}\right)-\varepsilon_{s} \beta+\mu \beta N
\end{aligned}
$$

where $\mu:=-1 /\left.\beta\left(\frac{\partial \sigma}{\partial N}\right)_{E}\right|_{n=N}$.

Probability
Thus

$$
\begin{aligned}
\ln P\left(N, \varepsilon_{s}\right) & =\ln C e^{-\beta \varepsilon_{s}+\mu \beta N} \\
\Rightarrow \quad P\left(N, \varepsilon_{s}\right) & =C e^{+R\left[\mu N-\varepsilon_{8}\right]}
\end{aligned}
$$

and $C=z^{-1}$

$$
z=\sum_{N} \sum_{S(N)} e^{-\beta\left[\varepsilon_{s}-\mu N\right]}
$$

T Note that the possible states depend on the Number of porrcles $N$

Grand Canonical Ensemble.

$$
z=\sum_{N_{1}} \sum_{N_{2}} \cdots \sum_{N_{m}} \sum_{\substack{\left(N_{m}\right)}} \sum_{s_{1}\left(N_{1}\right)} e^{-\beta\left[\varepsilon_{i}\left(s_{i}\right)-\mu_{i} N_{i}\right]}
$$

is called the grand canonical ensemble.

