Effect of changing External parameters
() Let the external parameters be denoted by $x_{1}, x_{2}, \ldots x_{n}$ and let the state of the System be denoted by r
() The energy of the state r depends on the external parameters

$$
E_{r}=E_{r}\left(x_{1}, x_{2}, \cdots x_{n}\right)
$$

Partition function
(-) The partition function is given by

$$
Z=\sum_{\gamma} e^{-\beta E_{\gamma}\left(x_{1}, \ldots x_{n}\right)}
$$

and therefore

$$
z=z\left(\beta, x_{1}, x_{2} \ldots x_{n}\right) .
$$

a function of fundamental temperature β and external parameters $x_{1}, x_{2}, \ldots x_{n}$.

Average Energy
() Suppose the states are dismbited according to thermal equilitnum at temp. 2 then

$$
\begin{aligned}
\bar{E} & =\sum_{r} P_{r}\left(x_{1}, x_{2} \ldots x_{n}, z\right) E_{r}\left(x_{1}, \ldots x_{n}\right) \\
& =\sum_{r} \frac{e^{-\beta E_{r}}}{z} E_{\sigma} \\
\Rightarrow \bar{E} & =-\frac{\partial}{\partial \beta} \ln z
\end{aligned}
$$

and $\bar{E}=\bar{E}\left(\beta, x_{1}, x_{2} \ldots x_{n}\right)$.

Entropy of a System
(-) The entropy of a System in thermal equilionum witt fundamental temperature r is determined entirely by z and external parameter $x_{1}, y_{2} \ldots x_{n}$.
\rightarrow Note that we have defined entropy as $\eta\left(E x_{1}, x_{2}, x_{n}\right)=\#$ of accenable states of the Sypher when Energy is between Fard EFIE when external parameters are $x_{1}, \ldots x_{n}$

Entropy of a system.
\rightarrow when the temperature C is provided then the most probable energy of the system is given by

$$
\begin{aligned}
& \left.\quad \frac{\partial \ln \cap(E)}{\partial E}\right|_{E=\tilde{E}}=\beta=1 / 2 \\
& \text { (1.e. } \left.\left.\frac{\partial \sigma(E)}{\partial E}\right|_{E=\tilde{E}}=1 / 2\right) .
\end{aligned}
$$

() We have also shown that $P\left(E-\widetilde{E} \mid>د^{*} E\right) \approx 0$ with $D^{*} E \approx \bar{E} / \sqrt{f}$; f berg \# of states.

Entropy of a System
(1) Thus, the entropy of a System in thermal equilibrium at temperature z is determined by

$$
\sigma(\bar{E})=\ln \Omega(\bar{E}) \text { where } \bar{E} \text { is }
$$ deternured by the canonical dismbitions

© Thus, $\sigma=\sigma\left(r, x_{1}, x_{2} \ldots x_{n}\right)$.

Entropy in terms of partition function
(1) Note that

$$
\begin{aligned}
& z=\sum_{\gamma} e^{-\beta E_{\gamma}} \\
& =\sum_{E} \Omega(E) e^{-\beta E} \\
& \cong\left(\eta(\bar{E}) e^{-\beta \bar{E}}\right) \frac{\Delta^{*} E}{\delta E} \\
& \therefore \quad \ln z=\ln N(E) e^{-\beta \bar{E}}+\ln \frac{\partial^{\alpha} E}{\delta E} \\
& =\ln \Omega(\bar{E})-\beta \bar{E}+\overline{\delta E}(\ln f) \approx \ln (\bar{E})-\beta \bar{E} \\
& \text { and E+SE } \\
& \therefore \frac{\Lambda(E)}{\delta E} \text { is } \\
& \text { the density } \\
& \text { of states }
\end{aligned}
$$

Entropy in terms of poritionfuncteon

$$
\begin{array}{ll}
\Rightarrow & \ln z=\ln \Omega(\bar{E})-\beta \bar{E} \\
\Rightarrow \quad \sigma=\ln n(\bar{E})=\ln z+\beta \bar{E}
\end{array}
$$

and $\quad \sigma=\sigma\left(\tau, x_{1}, x_{2}, \ldots x_{n}\right)$.

Entropy Expression
Thus

$$
\begin{aligned}
& \sigma=\ln Z+\beta \bar{E} \\
& =\ln z+\beta \sum_{\gamma} \operatorname{Pr} E_{\gamma} \\
& =\ln z+\beta \sum \operatorname{Pr}\left(-\frac{1}{\beta}\right) \ln \left(P_{r}\right) \\
& =\ln z-\sum \operatorname{Pr} \ln (z \operatorname{Pr}): \\
& =\ln z-\sum_{r} \operatorname{Pr} \ln z-\sum_{r} \operatorname{Pr} \ln P_{r} \\
& =\ln z-(\ln z) \sum_{r} P_{r}-\sum_{r} P_{r} \ln P_{r} \\
& =-\sum_{r} \operatorname{Pr} \ln P_{r} \\
& \therefore \quad \sigma=-\sum_{r} \operatorname{Pr} \ln P_{r}
\end{aligned}
$$

Work done in stater
(-) Evidently if the external variable x_{α} is changed from $x_{\alpha} \mapsto x_{\alpha}+d x_{\alpha}$ then

$$
d E_{r}=\sum_{\alpha} \frac{\partial E_{r}}{\partial x_{2}} d x_{\alpha}
$$

and the work done by the system kif it were in state r and parameter $\left.x_{\alpha} \mapsto x_{\alpha}+d x_{\alpha}\right)$ is

$$
\begin{aligned}
& \left.+d x_{\alpha}\right) \text { is } \\
& \left.d W_{\gamma}=-d E_{r}=\int_{\alpha}^{\left(-\frac{\partial F_{r}}{\partial x_{\alpha}}\right.}\right) d x_{\lambda}=\sum_{\alpha} x_{,}, d x_{\lambda}
\end{aligned}
$$

Average Work done
(*) If the probability distinbution of states $\operatorname{Pr}\left(x_{1}, \ldots x_{n}\right)$ is known then the average work done when parameter $x_{\alpha} \mapsto x_{\alpha}+d x_{\alpha}$ is

$$
\begin{aligned}
d W & =\sum_{\gamma} \operatorname{Pr} d w_{\gamma} \\
& =\sum_{r} \operatorname{Pr}\left(x_{1}, x_{2}, \ldots x_{n}\right)\left(-\sum_{\alpha} \frac{\partial E_{\sigma}}{\partial x_{\alpha}} d x_{\alpha}\right) \\
& =-\sum_{\alpha} \sum_{r} \operatorname{Pr}\left(x_{1}, \ldots x_{n}\right) \partial \sigma \delta \partial x_{\alpha} d x_{\alpha}
\end{aligned}
$$

Average work done

$$
d W=-\sum_{\alpha} \sum_{\gamma} P_{r}\left(x_{1},--x_{n}\right) \frac{\partial E_{r}}{\partial x_{\alpha}} d x_{\alpha}
$$

We define

$$
\bar{x}_{\alpha}=\sum_{r}\left(P_{r}\left(x_{1}, x_{2}, \cdots x_{n}\right) \frac{\partial E_{r}}{\partial x_{\alpha}}\right)
$$

assuming that P_{r} is governed by thermal equilibrium.

Average Work done
(c) Note that

$$
\operatorname{Pr}\left(x_{1}, x_{2}, \ldots x_{n}, r\right) \text { is completely }
$$

determined by thermal equilibrium statistics
$\left[\operatorname{Pr}=\frac{e^{-E_{2}\left(x, \ldots x_{n}\right) / \tau}}{z} ; \tau\right.$ is the fundamental temp.]
(c) Also $\frac{\partial E_{r}}{\partial x_{\alpha}}$ is completely determined by $x_{1}, x_{2} \ldots x_{n}$ and therefore

Generalized force
(1) $\quad \bar{x}_{\alpha}=-\sum_{\gamma} \operatorname{P}\left(x, \ldots, x_{1}, \tau\right) \frac{\partial E_{\gamma}}{\partial x_{\alpha}}$ is completely determined by $\left(x_{1}, \cdots x_{n}, \tau\right)$
(c) Therefore

$$
d w=\sum_{\alpha=1}^{n} \bar{x}_{\alpha} d x_{\alpha} \quad\binom{\text { in a quasistatic }}{\text { process }}
$$

where \bar{x}_{α} is determined by external parameter $\left(x, x, \ldots x_{n}\right)$ and temperature $=$

Generalized fore
(7) Thus, the generalized force \bar{x}_{α} determined by the external parameters. and temperature r.
(ब) Indeed if $Z=\sum_{\gamma} e^{-\beta E_{\gamma}}$ Then, $d W=\sum_{\alpha} \sum_{\gamma} \frac{e^{-\beta \operatorname{tr}}}{z}\left(-\frac{\partial \tau_{r}}{\partial x_{\alpha}}\right) d x_{\alpha}$

$$
\therefore \quad \bar{x}_{\alpha}=\frac{1}{\beta} \frac{\partial \ln z}{\partial x_{\alpha}}=\tau \frac{\partial \ln z}{\partial x_{\alpha}} .
$$

Generalized fore

Thus,

$$
\bar{X}_{\alpha}=\frac{1}{\beta} \frac{\partial \ln z}{\partial x_{\alpha}}
$$

is the generalized force and

$$
\bar{x}_{\alpha}=\bar{x}_{\alpha}\left(\beta, x_{1}, x_{2} \ldots x_{n}\right) .
$$

is a function of $\beta(=1 / 2)$ and external parameters.
(1) Note that for a quasistatic process.

$$
\begin{aligned}
\bar{E} & =\sum_{r} \operatorname{Pr}\left(x_{1}, x_{2}, x_{2} r\right) E_{r}\left(r_{1}, \ldots x_{n}\right) \\
\Rightarrow d \bar{E} & =\sum_{r}\left(\operatorname{P} \quad d E_{r}+E_{r} d P_{r}\right) \\
& =-\sum_{r} \operatorname{Pr} d w_{r}+\sum_{r} E_{r} d \operatorname{Pr} \\
& =-d w+\sum_{r} E_{r} d P_{r} .
\end{aligned}
$$

But $d Q_{0}=d \bar{E}+d \omega=\sum_{r} E_{r} d f_{r}$.

$$
\therefore d Q=\sum_{r} E_{r} d P_{r}
$$

Summary
Thus for a quasstatic process
(-) Entropy is fixed if $\left(z, x_{\alpha}\right)$ are
(1) Generalized forces are foxed if $\left(2, x_{2}\right)$ are fixed
(1) Mean Energy is fixed if $\left(\tau, x_{\alpha}\right)$ are fixed.

$$
d \sigma=\frac{t Q}{\tau}
$$

(4) Now,

$$
z=z\left(\beta, x_{\alpha}\right) \quad\left[\begin{array}{l}
z \text { is the } \\
\text { canonical partition }
\end{array}\right.
$$ function)

$$
\begin{aligned}
\Rightarrow \ln z & =\ln z\left(\beta, x_{\alpha}\right) \\
\Rightarrow d \ln z & =\frac{\partial}{\partial \beta} \ln z\left(\beta, x_{\alpha}\right) d \beta+\frac{\partial}{\partial x_{\alpha}} \ln \left(z, x_{\alpha}\right) d x_{\alpha} \\
& =-\bar{E} d \beta+\beta d w \\
& =-d(\bar{E} \beta)+\beta d \bar{E}+\beta d w \\
\Rightarrow d \ln z & =-d(\bar{E} \beta)+\beta(d \bar{E}+d w)
\end{aligned}
$$

$$
\begin{array}{cc}
& d \sigma=d Q / \tau \\
\Rightarrow & d(\ln z-\beta \bar{E})=\beta(d \omega+d \bar{E}) \\
\Rightarrow & d \sigma=\beta d Q \\
\Rightarrow & d \sigma=\frac{d Q}{\tau}
\end{array}
$$

Thus, for a quasistatic process

$$
\begin{aligned}
& d \sigma=\frac{d \theta}{\sim} \text { or } \tau d \sigma=d Q=d \bar{E}+d \omega \text {. } \\
& =d \overline{\mathrm{E}}+\bar{x}_{\alpha} d x_{\alpha} \text {. }
\end{aligned}
$$

Generalized Forces
Thus,

$$
\begin{aligned}
& \quad d \sigma=\frac{1}{2} d \bar{E}+\frac{1}{\tau} \bar{x}_{\alpha} d x_{\alpha} \\
& \therefore \sigma=\sigma\left(\bar{E}, x_{\alpha}\right) \\
& \text { with } \\
& \left(\frac{\partial \sigma}{\partial \bar{E}}\right)_{k}=1 / \tau \\
& \left(\frac{\partial \sigma}{\partial x_{\alpha}}\right)_{\bar{E}}=\frac{1}{2} \bar{x}_{\alpha}
\end{aligned}
$$

Free Energies
(1) We have seen that the probability distribution of any state r of a System s in thermal contact with a heat Reservoir R is determined by maximizing the entropy of the closed System $A^{(\Omega)}=$ RUS.
© However, we would like to determine a function dependent only on System \& that achieves an extremum at the equilitionum condition

Free Energy (Helmholtz)

- This function should not depend on the Reservoirs properties
(a) Consider the function Free-Energy $\left.\begin{array}{c}\text { (average energy of } \\ 8)\end{array}\right)=E-\tau C^{(E m p r o p o t ~ 8)}$

$$
F \equiv E-\tau \sigma \int \begin{aligned}
& \text { (Entrosof 8) } \\
& {\left[\begin{array}{l}
\text { is the average } \\
\text { Energy }]
\end{array}\right]}
\end{aligned}
$$

- Suppose all external parameters ore kept constant
- Suppose temperature is kept constant

Free Energy
\rightarrow Here σ, E and τ are all properties of the system \&

Now

$$
\begin{aligned}
d F & =d E-\tau d \sigma \\
& =d E-\left[d E+\bar{X}_{\alpha} d P_{\alpha}\right]
\end{aligned}
$$

and as all external parameters are Rept constant

$$
d F=d E-d E=0 .
$$

Thus, F is an extremem w.r.t. all vanatons at constant z and

Free Energy
Also
$\sigma(0)$ the entropy of the isolated system satisfies

$$
\sigma^{(\Omega}=\sigma+\sigma_{R}
$$

and thus

$$
\begin{aligned}
\sigma^{(0)}(E)= & \sigma(E)+\sigma_{R}\left(E^{(0)}-E\right) \\
\approx & \sigma_{R}\left(E^{(0)}\right)-\left.\frac{\partial \sigma_{R}\left(E^{\prime}\right)}{\partial E^{\prime}}\right|_{E^{\prime}=E^{(0)}} \\
& +\sigma(E)
\end{aligned}
$$

$$
\Rightarrow \quad \sigma^{(\Omega}(E) \approx \sigma_{R}\left(E^{(N)}\right)-\beta E+\sigma(E) .
$$

Free Energy
(*)Thus

$$
\begin{aligned}
\sigma^{(0)} & \cong \tau \sigma_{R}\left(E^{(0)}\right)-E+\tau \sigma(E) \\
& \cong \tau \sigma_{R}\left(E^{(0)}\right)-[E-\tau \sigma(E)] . \\
& \cong \tau \sigma_{R}\left(E^{(\Omega)}\right)-F(E)
\end{aligned}
$$

Thus, $\left.\sigma^{(}\right)(E)$ is maximized at thermal eq $\left(b^{m}\right.$; and any change in E from \tilde{E} will decrease σ°. Thu, F must be a minimum witt respect to $' \hat{E}$ at constant temp. and volume.

Free Erersy $\left(\mathrm{Hel}_{\text {mholt }}^{3}\right.$).
(1) The free Energy is entirely determinable from the properties of the system \& itself and does not require the charactenstics of the reservoir.
Thus, at Constant external parameters and constant temperature free energy of the bytom can be determined andy is vanation dP set to zero to determine Espilimymin conditions.

Helmholtz free Energy
(2) Note that if $A^{(0)}$ is the isolated system then

$$
\Delta s^{(\omega)} \geqslant 0
$$

(1) Suppose $A^{(\infty)}=\& \cup R$ w th $\&$ being the System and R is the reservar at temperature T_{0}.
(3) $\quad \Delta s^{(3)}=\Delta s+\Delta s^{\prime}$
[ΔS is the chare inentorpy of Land Δf^{2} that of R]

Helmholtz free Energy
\rightarrow Suppose the heat absorbed during the process is by $\&$ is Q. Then the heat absorbed by the Reservoir is $-Q^{\prime}=-Q$ and

$$
\Delta s^{\prime}=\frac{-Q^{\prime}}{T_{0}}
$$

\rightarrow and

$$
Q=\Delta \bar{E}+W
$$

$\left[\begin{array}{l}\text { note that the } \\ \text { resemsir te }\end{array}\right.$ resermir teenpeative does not change] where $A^{\prime} \bar{E}$ is the change in megan energy of s

Helmholtz free Energy
Thus we have

$$
\begin{aligned}
\Delta S^{(0)} & =\Delta S+\Delta g^{\prime} \\
& =\Delta S-\frac{\theta}{T_{0}} \\
& =\Delta S-\frac{(\Delta E+W)}{T_{0}} \\
& =\frac{T_{0} \Delta S-\Delta E-W}{T_{0}} \\
& =\frac{\Delta\left(T_{0} S-E\right)}{T_{0}}-W=-\frac{\Delta F_{0}-W^{\prime}}{T_{0}}
\end{aligned}
$$

where $F_{0}=\bar{E}-T_{0} T_{0}$ is the Helmholtz free energy at temp to:
energy at temp to:

Helmholtz free Energy
as $\Delta S^{(0)} \geqslant 0$ it follows that

$$
\begin{array}{ll}
& -\Delta F^{\circ}-w \geqslant 0 \\
\Rightarrow & -\Delta F^{0} \geqslant+W 1
\end{array}
$$

and thus, the maximum work that con be done by a system in contact with a heat reservoir is $-\Delta F_{0}$.
(d) Also, if the external parameter is kept constant then $W=0$ and $\triangle F^{\circ} \leqslant 0$

Helmholtz free Energy

Thus,
If a system whose external parameters are fixed is in thermal contact with a heat reservoir; the stable equilibrium situation is characterized by the condition that
F_{0} is a minimum

Helmholtz Free Every
\rightarrow Suppose the external parameters of s are fred; $\Rightarrow W=0$
\rightarrow Suppose A is described by parameter y.
\rightarrow Suppose the parameter charges from y_{1} to y witt $\Delta s=s(y)-s\left(y_{1}\right) ; \Delta E=E(3)$ $-E\left(y_{1}\right)$
$=2$
\rightarrow Then we have $\Delta s(D)=-\frac{\Delta F_{0}}{T_{0}}=-\frac{\left(F(Y)-F\left(y_{1}\right)\right)}{T_{0}}$

Helmholtz free Energy
\rightarrow Now, the probability of finding $\&$ with parameter y is $p(y)$ is proportional to the \# of accessible states of the system $A^{(0)}$ witt 8 described by parameter y.
Thus

$$
p(y) \propto u^{(0)}(y)=e^{5^{(0)}(y) / k_{B}}
$$

Helmholts tree Enersy
Thus $\quad p(y) \propto e^{(0)(y) / k}$

$$
\begin{aligned}
& s^{(0}(y)= \\
&=s^{(0}(y)+\Delta s^{(\theta}(y) \\
&=s^{(0)}(y,)-\frac{\Delta F_{0}(y)}{T} \\
& \therefore P(y) \alpha e^{s(y)} e^{-\frac{\Delta F_{0}}{k T_{0}}} \\
& \Rightarrow P(y)=C e^{-\Delta F_{0}(y) / k T_{0}} .
\end{aligned}
$$

Gibbs Free Energy
(1) Suppose τ and generalized force x_{α} are kept constant. Consider

$$
G_{0}^{?}=E-\tau \sigma+x_{\alpha} x_{\alpha}
$$

Then

$$
\begin{aligned}
d G & =d E-r d \sigma+x_{\alpha} d x_{\alpha} \\
& =d E-\left[d E+x_{\alpha} d x_{\alpha}\right]+x_{\alpha} d x_{\alpha}
\end{aligned}
$$

Thus G_{σ} is an extremer when X, and
temperature are kept constant.

Gibbs free Energy
[use Gibbs free Energy when Z and \bar{x}_{2} are
© We have thus shown that constant]
Gibbs free Energy is an extremum under thermal Equilibrium and constant generalized force and constant temperature
© HW: prove that G achieves a minimum under conditions above.

Energy [Independent variables Sand V]
We know that (assuming $\bar{x}_{\alpha}=p$ and $x_{\alpha}=v$)

$$
\begin{aligned}
& T d s=d E+p d v \\
& \Rightarrow \quad d E=T d s-p d v . \\
& E=E(s, y)
\end{aligned}
$$

then

$$
d E=\left(\frac{\partial E}{\partial s}\right)_{v} d s+\left(\frac{\partial F}{\partial v}\right)_{s} d V
$$

$d E \equiv 0$ under constant entropy and external variables. (constant entropy of systems)

Maxwell's Relations

$$
\begin{aligned}
\Rightarrow\left(\frac{\partial F}{\partial S}\right)_{V} & =T \\
(\partial E / \partial V)_{S} & =-p \\
\left(\frac{\partial}{\partial V}\right)_{S}\left(\frac{\partial E}{\partial S}\right)_{V} & =\left(\frac{\partial}{\partial S}\right)_{V}\left(\frac{\partial E}{\partial V}\right)_{S} \\
\Rightarrow\left(\frac{\partial T}{\partial V}\right)_{S} & =-\left(\frac{\partial p}{\partial S}\right)_{V} .
\end{aligned}
$$

\rightarrow because dE is an exact diffestial.
when weir view $E=E(s, b)$

$$
\left(\frac{\partial E}{\partial S}\right)_{V}=T ;\left(\frac{\partial E}{\partial V}\right)_{S}=-p ;\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{1} .
$$

Enthalpy [Independent variable Sand P]

$$
\begin{aligned}
& T d s=d E+p d v . \\
& \Rightarrow d E_{i}+d s-p d v . \\
& d(p v)=p d v+v d p \Rightarrow p d v=d(p v)-v d p . \\
& d E=T d s-d(p v)+v d p \\
& \Rightarrow \quad d E+d(p)=T d s+v d p \\
& \Rightarrow \quad d(\underbrace{E+p v})=T d s+v d p . \\
& \\
& H \equiv E_{n}+h a l p y \equiv E+p v .
\end{aligned}
$$

$$
\Rightarrow \begin{array}{rl}
d H=0 & d H d s+v d p . \\
\text { under }
\end{array}
$$

$d H=0$ under constant entropy and generalized force

Maxwells Relations

$$
\begin{aligned}
& \Rightarrow\left(\frac{\partial H}{\partial S}\right)_{p}=T ;\left(\frac{\partial H}{\partial p}\right)_{s}=V . \\
& \frac{\partial^{2} H}{\partial p \partial s}=\frac{\partial^{2} H}{\partial s \partial p} \quad(a s \text { ditis an exact } \\
& \text { differential }
\end{aligned}
$$

Helmholtz Free Energy [independent Variables Tandw]

$$
\begin{gathered}
d E=T d s-p d v . \\
d(T s)=s d T+T d s \\
d E=d(T T)-s d T-p d v \\
\Rightarrow d E-d(T s)=-s d T-p d v . \\
\Rightarrow d(E-T S)=-s d T-p d v \\
\Rightarrow \\
d F=-s d T-p d v
\end{gathered}
$$

$F \cong E-T S$. is called the Helmholtz free ensor $d F=0$ under constant temperature and external vanables.

Maxwells Relations

$$
\begin{aligned}
\Rightarrow\left(\frac{\partial F}{\partial T}\right)_{V} & =-s ; \quad\left(\frac{\partial F}{\partial V}\right)_{T}=-p . \\
\frac{\partial^{2} F}{\partial T \partial S} & =\frac{\partial^{2} F}{\partial V \partial T} \\
\left(\frac{\partial S}{\partial V}\right)_{T} & =\left(\frac{\partial p}{\partial T}\right)_{V}
\end{aligned}
$$

Gibbs free Energy [Independent Vanables Tandp]

$$
\begin{aligned}
& d E=T d s-p d v-G \\
& T d s=d(T s)-s d T \ldots \\
& p d v=d(p V)-v d p .-\theta \\
& d E=d(T)-s d T-d(p v)+v d p \\
& \Rightarrow d(E-T s+p Y)=-s d T+v d p
\end{aligned}
$$

$G=E-T s+P V$ is called the Gibbs free

$$
=F+P V_{i}
$$ entry

$d G=0$ under constant temperature and generalized forces

Maxwell's Relations

$$
\begin{aligned}
& \left(\frac{\partial G}{\partial T}\right)_{P}=-S ;\left(\frac{\partial G}{\partial p}\right)_{T}=V_{.} \\
& -\left(\frac{\partial S}{\partial P}\right)_{T}=\left(\frac{\partial V}{\partial T}\right)_{p} .
\end{aligned}
$$

Summary

$$
\begin{aligned}
& E=E(S, v) \\
& H=E+p V ; \quad M=H(S, p) \\
& F=E-T S ; F=F(T, V) \\
& G=E-T S+p Y ; G=G(T, p)
\end{aligned}
$$

Summory

$$
\begin{array}{l|l}
\begin{array}{l}
d E=T d S-p d v \\
d H=T d S+v d p \\
d F=-s d T-p d y \\
d u=-s d T+v d p .
\end{array} & \begin{array}{l}
\left(\frac{\partial T}{\partial v}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V} \\
\left(\frac{\partial T}{\partial p}\right)_{S}=\left(\frac{\partial V}{\partial}\right)_{P} \\
\left(\frac{\partial S}{\partial Y}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}
\end{array} \\
\underbrace{\left.\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial v}{\partial T}\right)_{p}}_{\text {Maxuels relativas }}
\end{array}
$$

Gibbs Factor and the Grand Canonical Ensemble.
(1) Consider a very large body, $A^{\left.A^{(}\right)}$th constant energy $E^{(0)}$ and Constant number of particles $N^{(0)}$
(-) $A^{(0)}$ is composed of two parts
(a) a large ressuar R
(b) The System \&
R and \& can exchange particles as well as energy

Probabilities
Question: What is the probability of finding the system A with N particles and to be in a state s with energy Es?
Answer: All accessible states of $A^{(N)}$ are equally likely.
The number of ways in which $A^{(N)}$ can be in a state where A has N particles, in astate s witt energy ε_{s} is proportional to

$$
u^{(0)}\left(\varepsilon_{3}, N\right)=\Omega_{R}\left(E^{(0}-\varepsilon_{3}, N^{(0}-N\right)
$$

Probability
Thus

$$
P\left(N, \varepsilon_{s}\right) \propto \Omega_{R}\left(E^{(0)}-\varepsilon_{S}, N^{(0}-N\right)
$$

and let $\sigma_{R}:=\ln \Lambda_{R}$

$$
\begin{aligned}
& \ln P\left(N, \varepsilon_{3}\right) \propto \ln N_{R}\left(\varepsilon^{(\infty}-\varepsilon_{3}, N^{(-}-N\right) \quad,^{\frac{1}{2}-\beta} \\
& =\Lambda_{R}\left(\varepsilon^{(0)}, N^{\infty}\right)-\varepsilon_{\Omega}\left(\left.\frac{\partial \sigma_{R}}{\partial \varepsilon}\right|_{\varepsilon=\varepsilon^{(0)}}\right)_{N_{0}} \\
& -\left(\left.N \frac{\partial \sigma_{R}}{\partial N}\right|_{N=N}{ }^{*}\right)_{E} \cdot \\
& =U_{R}\left(\varepsilon^{(0)}, N^{\overline{(})}\right)-\varepsilon_{s} \beta+\mu \beta N
\end{aligned}
$$

where $\mu:=-1 /\left.\beta\left(\frac{\partial \sigma}{\partial N}\right)_{E}\right|_{n=-N}$.

Probability
Thus

$$
\begin{aligned}
\ln P\left(N, \varepsilon_{s}\right) & =\ln C e^{-\beta \varepsilon_{s}+\mu \beta N} \\
\Rightarrow \quad P\left(N, \varepsilon_{s}\right) & =C e^{+R\left[\mu N-\varepsilon_{8}\right]}
\end{aligned}
$$

and $C=z^{-1}$

$$
z=\sum_{N} \sum_{S(N)} e^{-\beta\left[\varepsilon_{s}-\mu N\right]}
$$

T Note that the possible states depend on the Number of porrcles N

Grand Canonical Ensemble.

$$
z=\sum_{N_{1}} \sum_{N_{2}} \cdots \sum_{N_{m}} \sum_{\substack{\left(N_{m}\right)}} \sum_{s_{1}\left(N_{1}\right)} e^{-\beta\left[\varepsilon_{i}\left(s_{i}\right)-\mu_{i} N_{i}\right]}
$$

is called the grand canonical ensemble.

