Large heat bath

then the most probable energy of A
after eglb is veached is determined
+
$$Z(E) = z'(E'); E' = E^{(0)} - E$$

week5 Page 2

Large heat bath JE' Q' 25 B' 22' O' $\mathbf{\mathbf{x}}$ is the rate of $\frac{\partial \beta'}{\sum_{i \in I}} \approx O\left(\frac{\beta'}{\overline{\epsilon_i}}\right).$ change of B € is Satisfied if <u>E</u> ≫1. absubed by A. There this 'is D'A'IS a reservoir for A if mean energy of A' is much larger than the equal to AB'; the energy (heat energy of A. exchange with

Large heat bath

$$\begin{aligned}
\underbrace{\partial}_{i} \int_{i} \int_{i} \int_{i} (E^{i} + e^{i}) - \int_{i} \int_{i} \int_{i} (E^{i}) \Big|_{i} \\
= \frac{\partial}{\partial E^{i}} \int_{i} \int_{i} \frac{\partial}{\partial E^{i}} + \frac{1}{2} \frac{\partial}{\partial E^{i}} \int_{i} \int_{i} \frac{\partial}{\partial E^{i}} \\
+ h.o.t. \\
= \beta^{i} \partial^{i} + \frac{1}{2} \frac{\partial}{\partial E^{i}} \int_{i} \int_{i} \frac{\partial^{i}}{\partial E^{i}} \\
= \partial^{i} \left[\beta^{i} + \frac{1}{2} \frac{\partial e^{i}}{\partial E^{i}} + h.o.t \\
= \partial^{i} \left[\beta^{i} + \frac{1}{2} \frac{\partial e^{i}}{\partial E^{i}} + h.o.t \\
\approx \partial^{i} \beta^{i}. \\
\Rightarrow \quad \Delta \sigma^{i} \approx \partial^{i} \beta^{i}
\end{aligned}$$

Large heat bath

$$\Rightarrow \quad \Delta \sigma' \approx \frac{\omega'}{z}$$
(F) Suppose A is the system of introt
with energy E >>d0 that is absorbed by A

$$\Delta \sigma = \ln \Lambda(E + d0) - \ln \Lambda(E) \approx \frac{d0}{z}.$$

$$\Delta \sigma = \frac{d}{z} \frac{d0}{z}.$$

The Canonical Distribution

The Canonical distribution

$$\Rightarrow \text{Thus probability of A being in a}$$

$$postranlar \quad state \quad r \quad is$$

$$P_{r} = C \quad \mathcal{N}'(E^{(o)} - E_{r})$$

$$\text{with} \quad \underset{r}{\leq} P_{r} = 1 \Rightarrow C^{-1} = \underset{r}{\leq} \mathcal{N}'(E^{(o)} - E_{r})$$

The canonical distribution

The canonical dutubution
The canonical dutubution
(a)
$$\ln(P_r) = \ln C + \ln n'(E^{(0)} - E_r)$$

 $= \ln C + \ln n'(E^{(0)}) + \frac{\partial(nn')}{\partial E'} \Big|_{E'=E^{(0)}}$
 $+ h \cdot 0 \cdot t$

$$\Rightarrow h(P_r) = hc + h_n \langle E^{(s)} \rangle - \beta'(E^{(s)}) E_r + h_{o} \cdot t$$

$$\Rightarrow h_n P_r = l_n [C_n \langle E^{(s)} \rangle \bar{e}^{\beta E_r}] + h_{o} \cdot t \cdot$$

$$\Rightarrow P_r \approx C_n \langle E^{(s)} \rangle \bar{e}^{\beta E_r} [ignority h_{o} \cdot t].$$

The cononical distribution

 $P_r = \frac{e^{-\beta E_r}}{e^{-\beta E_r}} - - - - (*)$ where $Z = \Sigma e^{-\beta E_T}$ is the partition function. • e is the Boltzmann factor; (*) is the canorical distribution and an ensemble of Systems that are in thermal equilibrium with a reservoir at temperature T and distributed according to (*) is said to be canonically distributed. **- -** -

The canonical distribution

$$\Rightarrow$$
 $P(E) = \frac{\Lambda(E)}{Z}e^{-\beta E}$

The Canonical distribution

(*) If a system has states
distributed canonically then
the expected value of any
quantity y that has value
$$y_r$$
 in state r
is $\overline{y} = \sum_{r} P_r y_r = \sum_{z} \sum_{r} e^{-\beta \overline{k} r} y_r$

A System with specified mean Energy

A system with specified mean Energy -> Consider a representative ensemble of a Systems that satisfy all the specifications imposed on A and Suppose A admide n states. Suppose d'a of à systems in the ensemble are in state &. Then Pr the probability of dystem A to be in state ris $P_r = \frac{a_r}{a}$.

A system with mean energy specified. (F) Thus $\sum_{x} Q_{x} \tilde{t}_{x} = \alpha \tilde{t} - - (2)$ $\sum_{x} Q_{x} = \alpha - - - (1)$ Thus, the n-tuplet (a, a -- an) have to Satisfy (1) and (2).

Manres

→
$$a_1$$
 bystems can be chosen from a elements
in $a_{G_1} = \frac{q!}{a_1! (q-a_1)!}$ ways
of the (a-a,) bystems left a_2 systems
Can be chosen as in $a_2 = \frac{(q-a_1)!}{a_2!}$

week5 Page 24

A System with mean energy Specified
Thun,
In
$$\Gamma(a, -an) \cong -a \cong \operatorname{fr} \operatorname{ln} \operatorname{fr}$$

Thun, the optimization problem is
 $\max - \cong \operatorname{fr} \operatorname{ln} \operatorname{fr}$
 $\operatorname{fr} 7,0$
 $\cong \operatorname{fr} = 1$
 $\cong \operatorname{fr} \operatorname{Er} = \overline{\operatorname{E}}$

System with mean specified Energy
-> Using Lagrange Multipliers the Solution is
obtained by

$$d \left[- \leq Pr \ln Pr + \lambda \left[\leq Pr + T \right] + \alpha \left[\leq Pr + 1 \right] \right] = 0$$

 $\Rightarrow d \left(- Pr \ln Pr + \lambda Pr + \pi Pr + \pi Pr \right) = 0$
 $\Rightarrow d \left(- Pr \ln Pr + \lambda Pr + \pi Pr$

A system with mean specified energy $r = C e^{-\lambda Er}$; r = 1 - - nAlso as Elrz 1 we have $C = Z^{-1} = \frac{1}{Z = \lambda \epsilon_r}$ Also $\sum_{x} Pr E_{r} = \overline{E}$ $\sum_{x} C e^{-\lambda E_{r}} E_{x} = \overline{E}$ 3

A System with mean specified Energy $= \frac{1}{x} = \frac{$ where Z= Ze-rEr

A System with mean Speafed Energy Thus, the probability Porthat the System is in a state r is given by where λ is determined by the equation $\Xi e^{-\lambda E_T} E_T = Z \overline{E}$ which is again a cononical distribution

Canonical distribution in the classical approximation

-> Suppose the energy of the system depends Classically on generalized momenta pi and generalized coordinates qi with energy $E(q_1, q_2, -9_5, p_1, p_2, -p_f)$ in the elemental volume dy, dr2 - dgg dp--dpg at (91,91, -94, p, 2--pf). Then the Canonical partition function is $Z = \int \cdot \int \cdot \cdot \int e^{-\beta E(\theta_{1}, - \cdot, \theta_{f})} d\theta_{1} \cdot d\theta_{f}$

The Equipartition theorem.

-> Suppose the energy E at (9, -- 94, R-- Df) in the & volume di, -- diff is buch that

 $E[9, --94, p_{1}, -p_{f}] = E_{i}(P_{i}) + E'[9, -94, p_{1}, -p_{f}]$ Then if the System is in thermal Eglo^M then $\langle \mathcal{E}_i \rangle = \int \mathcal{E}_i(\mathbf{P}_i) e^{-\beta \mathbf{E}(\mathbf{Q}_1, \dots, \mathbf{P}_f)} d\mathbf{Q}_{1, \dots} d\mathbf{P}_f$ (e-BE(9,--#F) dg,--dpf

Equipartition theorem

$$\langle E_{i}7 = \int \mathcal{E}_{i}(P_{i}) \in \mathcal{P}[\mathcal{E}_{i}(P_{i}) + \mathcal{E}'] \\ dq_{i} - dp_{f} \\ f \in \mathcal{E}_{i}(P_{i}) + \mathcal{E}'] \\ dy_{i} - dp_{f} \\ = \left(\int \mathcal{E}_{i}(P_{i}) e^{-\mathcal{P}\mathcal{E}_{i}(P_{i})} dp_{i}\right) \int \mathcal{E}^{\mathcal{P}\mathcal{E}_{i}'} dq_{i} dp_{i} \\ p_{i} \\ f \in \mathcal{E}_{i}(P_{i}) e^{-\mathcal{P}\mathcal{E}_{i}(P_{i})} \int \mathcal{E}^{\mathcal{E}_{i}'} dq_{i} dp_{i} \\ dq_{i} - dq_{i} dp_{i} \\ dq_{i} \\ dq_{i} \\ dq_{i} \\ dq_{i} \\ dq_{i} - dq_{i} \\ dq_{i$$

Equipartition theorem

$$\langle E_i 7 : \int E_i (\phi_i) e^{-\beta E_i(\phi_i)} d\phi_i \\ \int e^{-\beta E_i(\phi_i)} d\phi_i \\ = \frac{\partial}{\partial \beta} \left(\int e^{-\beta E_i(\phi_i)} d\phi_i \right) \\ \int e^{-\beta E_i(\phi_i)} d\phi_i$$

Equiportition theorem

$$(((((()))))) = -\frac{\partial}{\partial \beta} \int e^{-\beta E_{i}(\beta_{i})} d\beta_{i}$$

$$\int e^{-\beta E_{i}(\beta_{i})} d\beta_{i}$$

$$= -\frac{\partial}{\partial \beta} l_{n} \left[\int e^{-\beta E_{i}(\beta_{i})} d\beta_{i} \right]$$

Equiportition theorem

€ Suppose EilPit bhi2 Then Je-Beilpi $z \int_{-\infty}^{\infty} e^{-\beta b p_i} dp_i$ Let Bbfi=z² x= VBb pi = JBb Je-x2dx $\int_{-\infty}^{\infty} e^{-\beta \epsilon_i} dp_i = \ln \sqrt{\beta b} + \ln \int_{-\infty}^{\infty} e^{-\beta \epsilon_i} dx$ $= \ln \sqrt{\beta t} + \ln \sqrt{\beta t} + \ln \int_{-\infty}^{\infty} e^{-\beta \epsilon_i} dx$

Equipartition theorem

$$\Rightarrow \langle \mathcal{E}_{i} 7 = \frac{\partial}{\partial \beta} \left[\ln \int_{0}^{\infty} e^{-\beta \mathcal{E}_{i}} dp_{i} \right]$$

$$= \frac{\partial}{\partial \beta} \left(\ln \sqrt{\beta} \right)$$

$$= \frac{1}{\sqrt{\beta}} \frac{1}{2} \frac{1}{\sqrt{\beta}} = \frac{1}{2\beta}$$

$$\leq \mathcal{E}_{i} 7 = \frac{1}{2} kT$$
Thus, the mean of the quadratic energy term is $\frac{1}{2} kT$

A typical Situation.

-> Given the external parameters of a System, the quantum mechanical states are fixed with each quantum mechanical state & having Some energy $E_{r} = E_{r}(x_{1}, x_{2}, \dots, x_{n})$ where Xi are the external parameters.

Example: Particle in a Box (Quantum Mechanical)

$$\begin{split} & O(x, y_{13}) \quad \text{are the coordinates of the particle} \\ & O \in x \in L_x, \quad O \in y \in L_y \quad \text{and} \quad O \leq y \leq L_{g}; \\ & -\frac{t^2}{2\pi} \left(\begin{array}{c} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial y^2} \right) \Psi = E\Psi; \\ & Zm \quad S_{X2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial y^2} \right) \Psi = E\Psi; \\ & \Psi = Sm \left(\pi \frac{n_x x}{Lx} \right) Sm \left(\pi \frac{n_y y}{Ly^2} \right) Sm \left(\pi \frac{n_y 2}{Ly^2} \right). \\ & Energy associated E_y = \frac{t^2}{4\pi} \pi^2 \left(\frac{n_x^2}{Lx} + \frac{n_y^2}{Ly^2} + \frac{n_y^2}{Ly^2} \right). \\ & \text{with} \quad x \neq (n_x, n_y, n_y). \\ & \text{a) The states are enumerated by} \end{split}$$

En

$$\Upsilon$$
: $(n_1, n_2, \dots, n_n, n_n, n_n, n_n, n_n)$; Υ : (n_1, n_1, \dots, n_n) ; Υ : (n_1, n_1, \dots, n_n) ;

/

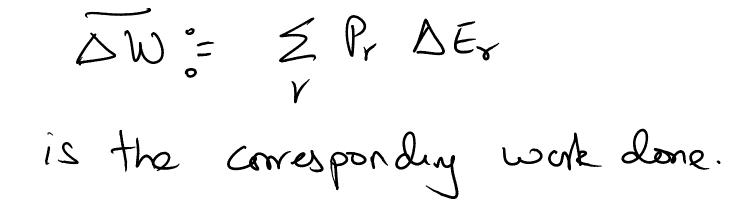
Purely thermal Interaction. Pure thermal Interaction > In a pure thermal interaction between two systems A and A', the quantum states of A and quantum states of A' do not charge as the external parameters are > Fure thermal interaction charges the probability of System A being in State & (with energies) and thus changes the mean energy at thermal participation of A [limit-lafor A!]

Monourion of a raining los

Purely Mechanical Interaction

Work done

Pure mechanical work



Typical Interaction

Work and Heat in a Jeneral Interaction > Typically it is possible to find W work done through some other means (Wis the work done by the Systen) -> Suppose the Change in mean energy DE is also known then heat absorbed by the System is defined as $Q = \Delta E + W.$

Quasistatic Process

-> A process where the external parameters of the system are changed in a manner in which at every stage of the process the System is in thermal equilibrium.

Example: Particle in a Box (Quantum Mechanical)

En

γ

$$\Upsilon$$
: $(n_1, n_2, \dots, n_n, n_n, n_n, n_n, n_n)$; Υ : (n_1, n_1, \dots, n_n) ; Υ : (n_1, n_1, \dots, n_n) ;

/

Work done when length is changed

Question: If the length of the box in the
x-direction is changed quasistatically from
Lx to Lx+dLx what is the work done.
Assume initially Lx=Ly=Lz.
Answer: For each state x, the change in energy
due to the change Lx +> Lx+dLx is

$$dEr = \frac{\partial E_r}{\partial L_x} dL_x = \frac{\partial}{\partial L_x} [M] [\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2}] dL_x$$

 $\frac{\partial E_r}{\partial L_x} dL_x = \frac{\partial}{\partial L_x} [M] [\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2}] dL_x$

Work done by a porticle in a box.

Statis Tres

Work done by a particle in a box.
(*) There is another means of evaluating
dW.
Indeed by Symmetry (La=b=b3) we have

$$\langle n_x^2 7_3 = \langle n_y^2 7_3 = \langle n_y^2 7_3 + \langle n_y^$$

Work done by a pathole in a box.

• Thus,

$$dW = \underset{x}{\leq} \Pr dW_{r}$$

$$= \underset{x}{\leq} \Pr dW_{r} (L_{n}, L_{n}, L_{n}) \underbrace{2M}_{L^{3}} n_{x}^{2} dL_{x}$$

$$= \underset{x}{\leq} \Pr dL_{x} \underbrace{\underset{x}{\leq}}_{s} \Pr (L_{n}, L_{n}, L_{n}, L_{n}) \underbrace{n_{x}^{2}}_{s} dL_{x}$$

$$= \underset{z}{\leq} M dL_{x} \underbrace{\leq}_{s} \Pr (L_{n}, L_{n}, L_{n}, L_{n}) \underbrace{n_{x}^{2}}_{s}$$

$$= \underset{z}{\leq} M dL_{x} \underbrace{$$

Work done by a perificle in a box.
Now, the parifilm function is given by
(with dimensions 2x, 1y, 1g)

$$Z = \sum_{X} e^{-\beta E_{Y}} \sum_{Z \leq 2} e^{-\beta M \left(\frac{n_{X}^{2} + n_{Y}^{2} + n_{Z}^{2}}{n_{X}^{2} n_{Y}^{2}}\right)}$$

and $\langle E \rangle = -\frac{\partial}{\partial \beta} \left(\ln 2 \right)$
 $O(n + 1) = \frac{\partial}{\partial \beta} \left(\ln 2 \right)$
Note that (E) Can be evaluated to find Z
and therefore to find $\langle E > (L_{X}, L_{Y}, L_{Y}) \rangle$. Thus
 $\langle E > is known.$

Work done by a particle in abox

$$< nx^{2}7 = \sum_{\substack{n_{x},n_{y}n_{y}\\n_{x},n_{y}n_{y}}} \left(2 - \beta E_{x} / 2 \right)$$

$$:= (nx^{2}) = \sum_{\substack{n_{x},n_{y}\\n_{x}n_{y}}} \left(2 - \beta E_{x} / 2 + nx^{2} + nx^{2} + nx^{2} - nx^{2} + nx^{2} - nx^{2} + nx^{2} + nx^{2} - nx^{2} + nx^{2} + nx^{2} + nx^{2} - nx^{2} + nx^{2}$$

Wolk done by a perhole
Let
$$Z_x = \sum_{\substack{n \neq -1 \\ n \neq -1}}^{\infty} e^{-\beta m n x^2/Lx^2}$$

Then $\frac{\partial Z_x}{\partial \beta} = \sum_{\substack{n \neq -1 \\ n \neq -1}}^{\infty} (-nx)(2) \frac{\beta^m}{Lx^2} e^{-\beta m nx^2/Lx^2}$
 $\frac{\partial Z_x}{\partial \beta^2} = \sum_{\substack{n \neq -1 \\ n \neq -1}}^{\infty} (\frac{2\beta m nx}{Lx^2})^2 e^{-\beta m nx^2/Lx^2}$
 $(nx^2)(Cx) = (Lx^2)^2 \frac{\partial^2 Z}{\partial \beta^2} = \sum_{\substack{n \neq -1 \\ n \neq -1}}^{\infty} nx^2 e^{-\beta m nx^2/Lx^2}$
 $Z = \sum_{\substack{n \neq -1 \\ n \neq -1}}^{\infty} nx^2 e^{-\beta m nx^2/Lx^2}$

Work done by a possile
is Thus,
$$2nx^2$$
? Con be evaluated
as a function of Lx .
Thus, dW is known as a function
of Lx and thus L_{xi} :
 $W = \int_{x} dW$
 $= \int_{x} dW$
 $= \int_{x} dW$
 $= \int_{x} dW$

Fleat during the process

(*)
$$dQ$$
:= $dE + dW$
The heat during the process is
 $Q = \langle E7 + W$
 $\int \int f$
Calculated as before
as before.

Quasistatic Processes.
→ We will now generalize the discussion
on work done.
③ Er= Er(X, 72 = ... Zn).
④ dEr= ∑ dEr dz
is the charge in energy of guantum state
X when
$$x_X \mapsto x_X + dz_X$$
.
④ dWy = the work done by the System
when it remains in the perficular state X

Wolk done in a Quasistatic Process $dW_r = -dE_r = \sum X_{\alpha,r} dX_{\alpha}$ where $X_{a,r} = -dE_r$ $\exists x_{a,r}$ -> Suppose the probability dustribution over the states r when the external parameters are X_{α} ; $\alpha = 1 - n$ is known \rightarrow $dt W = \underbrace{\Xi}_{\alpha=1} \left(\underbrace{\Xi}_{\gamma} P_{\gamma}(X_{1,} - x_{n}) X_{\alpha, \tau} \right) dX_{\alpha}$ $= \underbrace{\Xi}_{\alpha=1} \underbrace{X}_{\alpha} dX_{\alpha}$

Work done during a Quesi-static Process

$$- \tilde{X}_{d} = \sum_{T} P_{T} X_{d,T} = \sum_{T} P_{T} \left(-\frac{\partial E_{T}}{\partial \tau_{d}} \right)$$
is the mean generalized force
conjugate to X_{d} .

Generalized Force

Er
$$(\pi_1, \pi_2, \dots, \pi_n)$$
.
Then, when the parameter changes
from $\chi_x \vdash \pi_{x+} d \chi_x$
 $d Er = + \frac{2}{2} \frac{\partial E_r}{\partial \chi_x} d \chi_x$.
 $d W_r = - dE_r = -\frac{2}{2} \frac{dE_r}{d\chi_x} d \chi_x$.
 $\rightarrow q_{yuas} istatic process is assumed
then $d w = -\frac{2}{2} \frac{dE_r}{d\chi_x} d \chi_x = \frac{2}{\chi_x} \chi_x d \chi_x$.$

Generalized force