Non-Quantised Energy Values
(x) For the System of Spin Half particles the energy states were quantized
(6) We will now generalize the discussion when energy is not necessarily quantized.
*We will start with an example.
N molecules in a box
\rightarrow Consider N jas molecules in a volume V.
\rightarrow The energy of the gas molecules will depend upon
(a) The potential energy of the N gas molecules determined the position $r_{1}, r_{2}, \ldots r_{N}$ of the molecules

Gas molecules in a Box
(A) The kinetic energy of the molecules determined by their respective momenta; $p_{1}, p_{2}, \ldots p_{N}$
(*) The internal energy of each molecule characterized by the interval confsuration coordinates $Q_{1}, \ldots Q_{N}$ and momentum coordinates $P_{1}, \ldots P_{N}$.

Density of states
\rightarrow Suppose $\Omega(E)$ denotes the density of states. which is the number of states that the system can take when the total energy is between E and $E+\delta E$.

Density of states
\rightarrow clearly $E+\delta E$
where we integrate over all of the space that satisfy the constraint of total energy between E and $E+\delta E$

Ideal gas approximation
\rightarrow Suppose the jas molecules do not have any interaction enorys".
Then

$$
\begin{aligned}
& \Omega(E) \propto\left(\iint_{E}^{E+\delta E} \iint_{1}^{E} d p_{1}-d p_{N} d \theta_{1}-d \theta_{\mu} d p_{\cdots} d p_{N}\right) \\
& \int_{r_{i}} \int d r_{1} \ldots d r_{N}
\end{aligned}
$$

Towards Ideal gas

$$
=\int_{E}^{E+B E} d p_{1}-d p_{N} d \theta_{1} \cdot d \theta_{N} d p_{1}-d p_{M}
$$

\rightarrow Suppose, the molecules do not have any internal degrees of freedom and their internal energy $E \cdot n t=0$.
Then

$$
\Lambda(E) \propto V^{N}\left[\iint_{E}^{E+\delta E_{1}} d p_{1} \ldots d p_{N}\right]
$$

Limit of an ideal Jas.

$$
\rightarrow \quad J(E) \propto V^{N} \int \cdot \iint_{E}^{E+8 E} d p_{1} \ldots d p_{N}
$$

Suppose each molecule ivith momentum $\vec{p}_{i}=p_{i, 1} \vec{e}_{x}+p_{i z} \vec{e}_{y}+p_{i z} \vec{e}_{3}$
has energy $E_{i}=\sum_{j=1}^{3} \frac{1}{2 m} \phi_{i j}^{2}$
\rightarrow Total Energy is

$$
\bar{E}=\sum_{i=1}^{N} \sum_{j=1}^{3} \frac{1}{2 m} p_{i s}^{2}
$$

Limit of an ideal Jas

$$
\rightarrow \therefore \Omega(E) \propto V^{N} \int_{E}^{E+\gamma E} d p_{1} \ldots d p_{N}
$$

and $\iint_{E}^{E+\delta E^{E}} d p_{1} \ldots d p_{N}$ is the measure of the set

$$
\left\{\left(p_{1}, p_{2} \ldots p_{N}\right) \left\lvert\, E \leq \sum_{i=1}^{N} \sum_{j=1}^{3} \frac{p_{i s}^{2}}{2 m} \leq E+\delta E\right.\right\}
$$

which is the volume of a shell in $3 N$ dimensional space.

Limit of an Ideal Gas

$$
\begin{aligned}
& \Omega(E) \propto V^{N} \int^{E+\delta E} \cdot \int_{E} \int d p_{1} \cdots d p_{N} \\
& \rightarrow X(E)=\iiint_{E}^{E+\delta E} d p_{1} \ldots d p_{N} . \\
& =\mu\left\{p_{i j}^{E}: i=\cdots N_{j j}=\cdots 3 ; E \leqslant \sum_{i} \sum_{j} \frac{p_{i j}^{2}}{\sum_{i n}^{2}} \leq\right.
\end{aligned}
$$

Lint of an ideal gas

$$
\Rightarrow \Omega(E) \propto \vee^{N} X(E)
$$

$X(E)$ is the volume of a shell of an hypersptre between the randuas $R(E) \doteq \sqrt{2 m E}$ and $R(E+\delta E)$.
\rightarrow Volume of a hypessphre, with radix $R(E) \propto(R E) f$

$$
\Rightarrow \quad \chi(E)=\left[\frac{d}{d E}(R(E)) f\right]^{f E}
$$

Limit of an ideal Jas

$$
\begin{aligned}
\Rightarrow \quad \chi(E) & =\left[\frac{d}{d E}(2 m E)^{f / 2}\right] \delta E \\
& \left.=(f / 2 / 2 m E)^{f / 2}\right) \delta E \\
\Rightarrow & M(E) \propto V_{\frac{3 N}{2}}^{N}(2 m E)^{3 N / 2-1} ; f=3 N \\
\Rightarrow U(E)= & B V^{N} E^{3 N / 2} \\
& Y \text { is a constant independent of } N, V . V .
\end{aligned}
$$

Limit of ax ideal yous
\rightarrow Evidently
$U(E)$ increases rapidly
with E
$*$ Consider $N \approx$ Avagadros
number

$$
\Lambda(E)=B V^{N} E^{3 N / 2}
$$

Generalization

- Suppose the System has f degrees of freedom
\rightarrow Let $\phi_{i}(\varepsilon)$ be the number of ways in which the th doff', can have energy $\leq \varepsilon$
$\rightarrow \phi(E)$ be the number of ways in which the entire System can have energy $\leq E$

Density of states.
Then

$$
\phi(E) \leqslant \phi_{1}(E / f) \phi_{2}(E / f) \cdots \phi_{f}(E / f)
$$ where the RIIS is the number of ways in which the total energy is less than or equal to E witt each d. of having to satisfy the added constraint to have energy less than E / f.

\rightarrow Assume that $\phi_{i}(\varepsilon)=\Phi_{T}(\varepsilon)$

Density of states

$$
-\phi(E) \leqslant\left[\phi_{1}(E / f)\right]^{f}
$$

- We will assume

$$
\phi(E) \approx \phi_{1}\left(E_{f}\right) f
$$

$\Omega(E)=$ Number of states of System between E and $E+\delta E$

$$
\begin{aligned}
& =\frac{d \phi(E)}{d E} \delta E=\delta E f\left[\left.\frac{\partial \phi_{1}(\varepsilon)}{\partial \varepsilon}\right|_{\varepsilon=E / f}\right] 1_{f}\left[\Phi_{1}(E / f)\right]^{f-1} \\
& =\left(\partial \phi_{1}(\varepsilon / \partial \varepsilon)_{\varepsilon=E / f}\left[\phi_{1}\left(\theta_{f}\right)\right]^{f-1} \delta E\right.
\end{aligned}
$$

Density of states

$$
\begin{aligned}
\Rightarrow \Omega(E) & =\left.\frac{\partial \phi_{1}(\varepsilon)}{\partial \varepsilon}\right|_{\varepsilon=E / f} \phi_{1}(E / f)^{f-1} \delta E \\
& =\left(\left.\frac{\partial \phi_{1}(\varepsilon)}{\partial \varepsilon}\right|_{\varepsilon=E / f} \delta E\right)\left[\phi_{1}(E / f)\right]^{f-1}
\end{aligned}
$$

\rightarrow It is evident that a Small increase in ϕ_{1} will lead to a large increase in I due to the large exponent $(f-1)$ in $\left[\phi_{1}(E / f)\right]^{f-1}$. (Note that $\partial \phi / \partial \varepsilon>0$).

Density of states

$$
\begin{aligned}
\Rightarrow \ln \Omega E= & =(f-1) \ln \phi_{1}+\ln \left[\frac{\partial \phi_{2}}{\partial \varepsilon} \delta E\right] \\
& \approx f \ln \phi_{1} \quad \text { for } f \text { large } .
\end{aligned}
$$

If the energy E of the system is not too close to the ground state [in which case $\phi(\varepsilon) \approx 1$ and

$$
\begin{array}{ll}
& \left.\ln \phi_{1} \approx 0\right] \\
\Rightarrow \quad & \sim(E)=\phi_{1}^{f} \propto E^{f}
\end{array}
$$

Density of states
\rightarrow Thus
$\Omega(E)$ is an Extremely
rapidly increasing function of energy.

Thermal Interaction
\rightarrow In describing a macroscopic system It is in general possible to specify macrosupically measurable independent parameters $x_{1}, x_{3} \ldots x_{n}$ which are known to affect the equation of motion. (ie. appear in the Hamiltonian)
\rightarrow Appléd magnetic feed, volume of a Sptem
\rightarrow If a particular quantum state has energy E_{r}. Then $E_{r}=E_{r}\left(x_{1}, x_{2}, \ldots x_{n}\right)$.

Macroscopic State
\rightarrow The macroscopic state or the macrostate is defined by specifying external parameter and any other constraints imposed on the system.
\rightarrow Corresponding to a macrostate, the System can be in any one of a very large number of micrustaties

Thermal Interaction
$\rightarrow A$ and A^{\prime} are two macroscopic Systems
$\rightarrow A^{(0)}=A \cup A^{\prime}$ is isolated (closed) System.
\rightarrow Suppose all possible external parametes remain fred; thus, the energy levels of the System A and System A^{\prime} remain fred. [External magnetic field of Spin $/ 2$ example]

Thermal Interaction
\rightarrow Every system A and A^{\prime} that are forepared in accordance with the specification will have energy transfer with different $\left(A, A^{\prime}\right)$ elements hawing different energy transfer.
\rightarrow Mean Energies con be discussed.

Heat
\rightarrow The mean Energy transferred from one system to the other as a result of purely thermal interactions is called heat
\rightarrow The change $\overline{\Delta E}$ of the mean ensor of System A is called the heat Q absubed by the sptem.

$$
Q \equiv \bar{A}_{E}
$$

Conservation
\rightarrow Since Energy of $A^{(-)}$is conserved

$$
\overline{\Delta E}+\overline{\Delta E^{\prime}}=0
$$

$\overline{\Delta E^{\prime}}$ is the mean change in energy of A^{\prime}.

$$
\therefore \quad Q+Q^{\prime}=0 \quad \text { or } Q=-Q^{\prime}
$$

Thermal Equilibrium.
\rightarrow Suppose A had energy E_{i} inchally and A^{\prime} had energy E_{i}^{\prime}. Then

$$
E+E^{\prime}=E_{i}^{\prime}+E_{i}=E^{(\Omega)}=\text { constant }
$$ as $A^{(\Delta)}$ s closed.

\rightarrow In thermal equhbrium all accessible of the closed system are equally lely.

Most probable confseration
\rightarrow Number of accessible states of A If energy of A is between E and $E+S E$

$$
=\Lambda(E) .
$$

\rightarrow For each accessible state of A witt energy E, A^{\prime} will have $V^{\prime}\left(E^{\prime}\right)$ with $E^{\prime}=E^{(0)}-E$ accessiblestates
\rightarrow Total number of accessible states for $A^{(\Omega} \propto \quad \(\mathbb{E}) \Lambda^{\prime}\left(\bar{E}^{\prime}\right)$

Most probable Confserution accessible
\rightarrow As all states are equally likely the nowt probable energy configuration is the one that has the most number of accessible states which is obtained by Settry

$$
\frac{\partial}{\partial E}\left[\tilde{L}(E) u^{\prime}\left(E^{\prime}\right)\right]=\frac{\partial}{\partial E} \Omega(E) u^{\prime}\left(\frac{0}{\partial}-E^{\prime}\right)=0
$$

which has $\frac{\partial E}{}$ the same solution ar

$$
\frac{\partial}{\partial E}\left(\ln \wedge(E) \wedge\left(E^{0}-E^{\prime}\right)^{\prime}\right)=\frac{\partial}{\partial E} \ln N(E)+\frac{\partial}{\partial E} \ln u^{\prime}\left(E^{\prime}\right)=0
$$

Most probable energy Confjuration

$$
\begin{aligned}
& \Rightarrow \quad \frac{\partial}{\partial E} \ln \Omega(E)-\frac{\partial}{\partial E^{\prime}} \ln u^{\prime}\left(E^{\prime}\right)=0 \\
& \Rightarrow \quad \frac{\partial}{\partial E} \ln \|(E)=\frac{\partial}{\partial E^{\prime}} \ln u^{\prime}\left(E^{\prime}\right)
\end{aligned}
$$

\rightarrow Defining $\sigma(E)=\ln \Omega(E)$ we have $\frac{\partial \sigma(E)}{\partial E}=\frac{\partial \sigma^{\prime}\left(E^{\prime}\right)}{\partial \bar{E}^{\prime}}$

Most probable Energy Confseration
$\rightarrow \quad$ Let

$$
\begin{aligned}
& \text { let } \beta=\frac{\partial \ln u}{\partial E} \text { and } \\
& \sigma-\ln \Omega . \\
& -k T=1 / \beta ; \quad \tau=1 / \beta \\
& S=k \ln \Omega \\
& \Rightarrow \frac{1}{T}=k \beta=k \frac{\partial \ln \Omega}{\partial e}=\frac{\partial S}{\partial E}
\end{aligned}
$$

Thus, the most probable energy confusurtion occurs when $s+s^{\prime}$ is maximized or when $T=T^{\prime}$.

