The Simple Harmonic Oscillator

The deterministic Simple harmonic oscillator is governed by the equation

$$
\ddot{x}+r \dot{x}+\omega^{2} x=f(t)
$$

or equivalently

$$
\begin{aligned}
\frac{d v}{d t} & =-\omega^{2} x-r \dot{x}+f(t) \\
& =-\omega^{2} x-r v+f(t) \\
\Rightarrow \quad d v & =-\omega^{2} x d t-r v d t+f(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d x}{d t} & =v \\
\Rightarrow \quad d x & =v d t
\end{aligned}
$$

Assuming that the forcing is being caused by the Surrounding neokcules and the damping is also due to the sirroundiry molecules: We can model
the stochastic forcing due to surrounding molecules by

$$
f(t) d t=\sqrt{\beta^{2} d t} N_{t}^{t+d t}(0,1)
$$

and thus,

$$
d V=-\omega^{2} x-\gamma V+\sqrt{\beta^{2} d t} N_{+}^{t+d t}(0,1)
$$

and $\quad d x=V$ at.

Clearly as in earlier cases; assenting that $X(0)$ and $V(0)$ are determenestec we have that

$$
\begin{aligned}
& Y(d t)=-\omega^{2} x(0)-\gamma V(0)+\sqrt{\beta^{2} d t} N_{0}(0,1)+V(0) \\
& \in \operatorname{Span}\left\{N_{0} d t(011)\right\} \\
& X(d t)=V(0) d t+X(0) \in \\
& V(2 d t)=-\omega^{2} X(d t)-\gamma V(d t)+\sqrt{\beta^{2} d t} N_{d t}^{2 d t}(0,1) \\
&+V(a t)
\end{aligned}
$$

Normality
Monday, February 01, 2010
7:28 PM 7:28 PM

$$
\therefore V(R d t) \in S_{p a r}\left\{N_{0}^{d t}(0,1), N_{d t}^{2 d t}(0,1)\right\}
$$

Ill, $\quad x(2 d t) \in S_{p a n}\left\{N_{d t}^{d t}(0,1)\right\}$.
and in general

$$
\begin{aligned}
& V(n d t) \in \operatorname{Span}\left\{N_{0}^{a t}(0,1), \ldots N^{2 t}(011\}\right. \\
& (n-1) d t \\
& X(n d t) \in \operatorname{Span}\left\{N_{0}^{d t}(0,1), \cdots \begin{array}{l}
\left.N^{(n-1)}(0 d 1)\right\} \\
(n-2) d t
\end{array}\right.
\end{aligned}
$$

Letting rat $=t$

$$
\begin{aligned}
\Rightarrow & V(t) \in S_{\text {par }}\left\{N_{0}^{\alpha t}(0,1) ; \ldots N_{t-d t}^{+}(0,1)\right\} \\
& X(t)+S_{\operatorname{par}}\left\{N_{0}^{\alpha t}(0,1), \ldots N_{t-2 d t}^{t-d t}(0,1)\right\} .
\end{aligned}
$$

Thus, both $V(t)$ and $X(t)$ are hear combinations of the Same set of independent normals and therefore sonly joussian. Therefore their joint $p d f$ is completely determined by

Jointly Gaussanity of X and V
Monday, February 01, 2010
7:32 PM

$$
\begin{array}{ll}
\langle x(t)\rangle ; & \langle v(t)\rangle ;\left\langle x^{2}(t)\right\rangle ;\left\langle v^{2}(t)\right\rangle \\
\text { and } & \operatorname{cov}\{x(t), v(t)\} .
\end{array}
$$

We will determine these now.

Note that

$$
\begin{aligned}
& V(t+d t)-V(t)=-\omega^{2} x(t)-\gamma V(t) d t+\sqrt{\beta^{2}} d t N_{t}\left(\left(_{1}\right)\right. \\
\Rightarrow & \langle V(t+d t)\rangle-\langle V(t)\rangle=-\omega^{2}\langle x(t)\rangle-\gamma\langle V(t)\rangle d t
\end{aligned}
$$

and $\langle x(t+d t)\rangle-\langle x(t)\rangle=\langle y(t)\rangle d t$

$$
\begin{aligned}
& \Rightarrow \quad \lim _{d t \rightarrow 0} \frac{\langle V(t+d t)\rangle-\langle V(t)\rangle}{d t}=\left[-\omega^{2}-r\left[\begin{array}{l}
\langle x(t)\rangle \\
\langle x(t)\rangle
\end{array}\right]\right. \\
& \Rightarrow \frac{d\langle v(\phi\rangle}{d t}=\left[\begin{array}{ll}
-v^{2} & -\gamma
\end{array}\right]\left[\begin{array}{l}
\langle x(t)\rangle \\
\langle y(t)\rangle
\end{array}\right] \\
& \frac{d\langle x(t)\rangle}{d t}=\left[\begin{array}{ll}
0 & +1
\end{array}\right]\left[\begin{array}{l}
\langle x(t)\rangle \\
\langle x+1\rangle
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
\frac{d\langle x(t)\rangle}{d t} \\
\frac{d\langle v(1)\rangle}{d t}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-v^{2} & -r
\end{array}\right]\left[\begin{array}{l}
\langle x(t)\rangle \\
\langle x(t)\rangle
\end{array}\right] \\
& \text { wtt inchal condetons }
\end{aligned}
$$

$$
\begin{aligned}
& \langle X(0)\rangle=X_{0} \text { and } \\
& \left\langle V(0)=V_{0} .\right.
\end{aligned}
$$

Mean of X and V
Monday, February 01, 2010
7:36 PM
Letting $A=\left[\begin{array}{cc}0 & 1 \\ -\omega^{2} & r\end{array}\right]$
and letting $s=\left[\begin{array}{l}\left\langle\begin{array}{l}x(b\rangle \\ \langle v p\rangle\end{array}\right]\end{array}\right]$
we have

$$
\frac{d s}{d t}=A 8 \text { witt } s(0)=\left[\begin{array}{l}
\langle x(0)\rangle \\
\langle X(0)
\end{array}\right]
$$

and this has a solution

$$
s(t)=e^{A t} s(0)
$$

where

$$
\begin{aligned}
e^{A^{t}} & =\left(I+A t+\frac{A^{2}}{2} t^{2}+\cdots\right) \\
& =\sum_{n=0} \frac{(A t)^{n}}{n!}
\end{aligned}
$$

Mean of X and V
Monday, February 01, 2010
$7 \cdot 39$ PM
Ore con solve for $e^{A t}$ in closed form to obtain

$$
\langle x(t)\rangle=e^{-r t / 2}\left[x_{0} \cos \left(\omega^{\prime} t\right)+\left(r_{0}+r \frac{x_{0}}{2}\right) \frac{\sin \omega^{\prime} t}{\omega^{\prime}}\right]
$$

and

$$
\left\langle V(b)=e^{-r t / 2}\left[r_{0} \cos \omega^{\prime} t-\left(x \cos \omega^{2}+\frac{r r_{0}}{2}\right) \frac{\left.\sin \omega^{\prime} t\right]}{\omega^{\prime} t}\right]\right.
$$

where $w^{\prime}=\sqrt{\omega^{2}-r^{2} / 4} ; X(0)=x_{0}$

$$
V(0)=\gamma_{0} .
$$

Variance of V
Tuesday, February 02, 2010
12:46 AM
12:46 AM
Note that

$$
\begin{aligned}
& d V=-\omega^{2} x d t-\gamma V d t+\sqrt{\beta^{2} d t} N^{+1+2 t}(0,1)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
d v^{2}= & v^{2}(t+d t)-v^{2}(t) \\
= & (v+d v)^{2}-v^{2}= \\
= & v^{2}+2 v d v+(d v)^{2}-v^{2} \\
\therefore \quad d\left\langle v^{2}\right\rangle= & \left\langle d v^{2}\right\rangle=2\langle v d v\rangle+\left\langle(d v)^{2}\right\rangle \\
= & 2\left\langle-\omega^{2} x v d t-r v^{2} d t+\sqrt{\left.\beta^{2} d t v N_{+}^{-1+d t}(0,1)\right\rangle .}\right. \\
& +\left\langle\left(-\omega^{2} x\right)^{2} d t^{2}+(r v d t)^{2}+\left(\sqrt{\beta^{2} d t} N_{+}^{-1+d t}(0,1)\right)\right. \\
& +2\left\langle\left(-\omega^{2} x\right)(-r v)\right\rangle d t^{2} \\
& +2\left\langle-\omega^{2} x \sqrt{\beta^{2}} d t N_{+}^{++d t}(0,11)\right\rangle d t \\
& +2\left\langle-r v \sqrt{\left.\beta^{2} d t N_{+}^{+1+d t}(0,1)\right\rangle d t}\right. \\
= & -2 \omega^{2}\left\langle x v^{2}\right\rangle d t-2 v\left\langle x^{2}\right\rangle d t+0 \\
& +\left\langle-\omega^{2} x\right\rangle d t^{2}+\left\langle r^{2} v\right\rangle d t^{2}+\beta^{2} d t
\end{aligned}
$$

Ode for var\{V\}
Tuesday, February 02, 2010
1:00 AM
1:00 AM

$$
\therefore \frac{d\left\langle v^{2}\right\rangle}{d t}=-2 \omega^{2}\langle x, v\rangle-2 r\left\langle v^{2}\right\rangle+\beta^{2}
$$

We alrecdy tare

$$
\begin{aligned}
& \frac{d\langle v\rangle^{2}}{d t}=2\langle v\rangle \frac{d\langle v\rangle}{d t} \\
&=2\langle v\rangle\left[-\omega^{2}\langle x\rangle-r\langle v\rangle\right] \\
&=-\omega^{2} 2\langle v\rangle\langle x\rangle-r\langle v\rangle^{2} \\
& \therefore \frac{d\left\langle v^{2}\right\rangle-\langle v\rangle^{2}}{d t}=-2 \omega^{2} \operatorname{Cov}\{x, v\}-2 r v a v\{y\} \\
&+\beta^{2} \\
& \therefore \frac{d V a r}{d t} \\
&\therefore v\}=-2 \omega^{2} \operatorname{Cov}\{x v\}-2 r \operatorname{var}\{v\}+\beta^{2} .
\end{aligned}
$$

Now.

$$
\begin{aligned}
& d x^{2}=x(t+d t)^{2}-x^{2}(t) \\
&=(x+d x)^{2}-x^{2} \\
&=x^{2}+(d x)^{2}+2 x d x-x^{2} \\
&=(d x)^{2}+2 x d x \\
&=(V d t)^{2}+2 x d x \\
&=v^{2} d t^{2}+2 x d x=2 v^{2} d t^{2}+2 x v d t \\
& \therefore\left\langle d x^{2}\right\rangle=\left\langle v^{2} d t^{2}\right\rangle+2\langle x v\rangle d t \\
& \frac{d\left\langle x^{2}\right\rangle}{d t}=2\langle x v\rangle \\
& \frac{d\langle x\rangle^{2}}{d t}=2\langle x\rangle \frac{d\langle x\rangle}{d t}=2\langle x\rangle\langle v\rangle \\
&\left.\therefore \frac{d\left(\left\langle x^{2}\right\rangle\right.}{d t}-\langle x\rangle^{2}\right)=2(\langle x v\rangle-\langle x\rangle\langle v\rangle) \\
& \therefore \quad=2 \operatorname{lov}(x y) .
\end{aligned}
$$

Ode for $\operatorname{Cov}\{\mathrm{X}, \mathrm{V}\}$
Tuesday, February 02,2010
1:08 AM

$$
\begin{aligned}
d(x v) & =x(t+d t) v(t+d t)-x(t)(x t) \\
& =(x+d x)(v+d y)-x y \\
& =x y+x d y+v d x+d x d v-x v \\
& =x d v+v d x+d x d v \\
& =x d y+v^{2} d t+v d v d t \\
d\langle x v\rangle & =\langle d x v\rangle=\langle x d v\rangle+\left\langle v^{2} d t\right\rangle
\end{aligned}
$$

$+\langle v d r d t\rangle$

$$
=\left\langle x\left(-\omega^{2} x d t-r v d t+N_{t}^{++d t}(0,1)\right\rangle\right.
$$

$$
+\left\langle v^{2}\right\rangle d t+\left\langlex \left(-\omega^{2} x d t-r v d t+N_{+}^{1+d(\rho, 1)\rangle} \underset{d t}{ }\right.\right.
$$

$$
=-\omega^{2}\left\langle x^{2}\right\rangle d t-r\langle x, v\rangle d t+0+\left\langle v^{2}\right\rangle d t
$$

$$
+o\left(d t^{2}\right)
$$

$$
\begin{gathered}
\left.\therefore \frac{d\langle x v\rangle}{d t}=-\omega^{2}\left\langle x^{2}\right\rangle-r\left\langle x_{1}\right\rangle\right\rangle d t+\left\langle v^{2}\right\rangle d t . \\
\frac{d}{d t}\langle x\rangle\langle v\rangle=\langle x\rangle \frac{d\langle v\rangle}{d t}+\langle v\rangle \frac{d\langle x\rangle}{d t}
\end{gathered}
$$

Solution for second order statistics
Tuesday, February 02, 2010
1:13 AM
1:13 AM

$$
\begin{aligned}
= & \langle x\rangle\left(-\omega^{2}\langle x\rangle-\gamma\langle v\rangle\right) \\
& +\langle V\rangle\langle v\rangle \\
= & -\omega^{2}\left\langle x^{2}\right\rangle^{2}-\gamma\langle x\rangle\langle y\rangle+\langle y\rangle^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d}{d t} \operatorname{cov}\{x, y\}=-\omega^{2} \operatorname{Var}\{x\}-r \operatorname{cov}\{x, y\} \\
&+6 \operatorname{Var}\{x\}
\end{aligned}
$$

The three differential equations ore

$$
\begin{aligned}
& \frac{d}{d t} \operatorname{Cov}\{x, y\}=-\omega^{2} \operatorname{Var}\{x\}-\gamma \operatorname{Cov}\{x, y\}+\operatorname{Var}[y\} \text {. } \\
& \frac{d \operatorname{van}\{x]}{d t}=2 \operatorname{cov}\{x, y\} \\
& \frac{d v \tan \{v\}}{d t}=-2 \gamma V_{\operatorname{ara}}\{v\}-2 \omega^{2} \operatorname{lov} v x(v)+\beta^{2} \underbrace{\underbrace{2}(x+x)}
\end{aligned}
$$

From (,$+(x, x)$ and $\left(x_{k} \times\right)$ we obtains

$$
\frac{\left.d^{3} \operatorname{Vad} \lambda x\right)}{d t^{3}}+\frac{3 r d^{2} \operatorname{Var}\{x\}}{d t^{2}}+\left(4 \omega^{2}+2 r^{2}\right) \frac{d \operatorname{Vard} x\}}{d t}\left(\operatorname{Var}\{x\}-\beta^{2} / 2 \pi \omega^{2}\right)=0
$$

Solution for second order statistics
Tuesday, February 02, 2010
1:22 AM
Defining $y=\operatorname{Var}\{x\}-\frac{\beta^{2}}{L r w^{2}}$

$$
\frac{d^{3} y}{d t^{3}}+3 r \frac{3 d^{2} y}{d t^{2}}+\left(4 v^{2}+2 r^{2}\right) \frac{d y}{d t}+4 r w^{2} y=0 .
$$

whichcer be solved to obtain.

$$
\begin{aligned}
\operatorname{Var}\{x\}= & \frac{\beta^{2}}{2 \gamma \omega^{2}}+e^{-\gamma t}\left(\frac{\beta^{2}}{8 \gamma \omega^{2} \omega^{\prime 2}}\right) x \\
& \left\{-4 \omega^{2}+\gamma^{2} \omega\left(2 \omega^{\prime} t\right)-2 \gamma \omega^{\prime} \sin \left(2 \omega^{\prime} t\right)\right\} \\
\operatorname{Cov}\{x, v\}= & e^{-\gamma^{2}}\left(\frac{\beta^{2}}{4 \omega^{\prime 2}}\right)\left[1-\cos 2 \omega^{\prime} t\right] \\
\operatorname{Var}\{v\}= & \left.\frac{\beta^{2}}{2 \gamma}+e^{-\gamma t} \frac{\beta^{2}}{8 \gamma \omega^{\prime 2}}\left[-4 \omega^{2}+\gamma^{2} \cos / \omega^{\prime} t\right)\right] \\
& \left.+2 \gamma \omega^{\prime} \sin \left(2 \omega^{\prime} t\right)\right]
\end{aligned}
$$

Thermal Equilibrium
Tuesday, February 02, 2010
1:25 AM
1.25 AM

$$
\begin{array}{r}
\text { Art } \rightarrow \infty \quad \operatorname{Var}\{v\} \rightarrow \beta_{2 r}^{2} \\
\text { and } \quad \frac{1}{2} M \operatorname{Van}\{v\}=\frac{1}{2} \underset{B}{k T} \\
\Rightarrow \frac{\beta_{B}^{2}}{2 r}=\frac{k_{B}}{2} / M .
\end{array}
$$

