Random Process
(1) Suppose $X(t)$ is a random process Then let the meanfunction be defined by

$$
\mu_{x}(t)=E[x(t)]
$$

(-) Define the Correlationfunction as

$$
\left.R_{x}\left(t_{1}, t_{2}\right)=E\left[x\left(t_{1}\right) \times H_{2}^{*}\right)\right] .
$$

(2) Define the Covariance functem as

$$
k_{x}\left(t_{1}, t_{2}\right) \triangleq E\left[\left(x\left(t_{1}\right)-\mu_{x}\left(t_{1}\right)\right)\left(x\left(t_{2}\right)-\mu_{x}\left(t_{2}\right)\right)\right]
$$

One can easily show that

$$
K_{x}\left(t_{1}, t_{2}\right)=R_{x}\left(t_{1}, t_{2}\right)-\mu_{x}\left(t_{1}\right) \mu_{x}\left(t_{2}\right)
$$

Markov Random Proces
Defintion:
(a) A contincuous-valued Marteor proces $X(t)$ Satesfies

$$
\begin{aligned}
& f_{x}\left(x_{n}, t_{n} \mid x_{n-1}, x_{n-2}, \ldots x_{1} ; t_{n-1}, \ldots t_{1}\right) \\
& =f_{x}\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}\right)
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots x_{n}$ and for all

$$
t_{1}<t_{2}<\cdots<t_{n} \text { and }
$$

forall integes $n>0$
(b) A duscote-valued Markes frocess satities

$$
\begin{aligned}
& P_{x}\left(x_{n}, t_{n} \mid x_{n-1}, \ldots x_{n} ; t_{n-1}, \ldots h\right) \\
& =P_{x}\left(x_{n} ; t_{n} \mid x_{n-1} ; t_{n-1}\right)
\end{aligned}
$$

forall $x_{1}, \ldots x_{n}$ and $t<t_{2} \ldots$ <tn for all integers $n>0$.

Chapman - Kolmogorov Equations
Consider three times $t_{3}>t_{2}>t_{1}$ and Marka process random variables at these times $x\left(t_{3}\right) ; x\left(t_{2}\right) ; x\left(t_{1}\right)$.

Then

$$
\begin{aligned}
\begin{aligned}
& f_{x}\left(x_{3}, x_{1} ; t_{3}, t\right)= \int_{-\infty}^{\infty} f_{x}\left(x_{3} ; x_{2}, x_{1} ; f_{3}, t_{2}, t\right) d x_{2} \\
&= \int_{-\infty}^{\infty} f_{x}\left(x_{3} \mid x_{2}, x_{1} ; t_{3}, t_{2} t_{2}\right) \\
& f_{x}\left(x_{2}, x_{1} ; t_{2}, t\right) d x_{2} \\
&= \int_{-\infty}^{\infty} f_{x}\left(x_{3} \mid x_{2}, x_{1} ; t_{3}, t_{2}, t_{1}\right) f_{x}\left(x_{2} \mid x_{1} ; t_{2}, t\right) \\
& \Rightarrow f_{x}\left(x_{3} \mid x_{1} ; t_{3} ; h\right) f_{x}(x / ; t) \\
& \Rightarrow f_{x}\left(x_{3} \mid x_{1} ; t_{3} ; h\right)=\int_{-\infty}^{\infty} f_{x}\left(x_{3} \mid x_{2}, x_{1} ; t_{3}, t_{3}, t\right) d x_{2} \\
& \Rightarrow f_{x}\left(x_{2} \mid x_{1} ; t_{2}, t\right) d x_{2} \\
& \Rightarrow f_{x}\left(x_{3} \mid x_{1}\right)=\int_{-\infty}^{\infty} f_{x}\left(x_{3} \mid x_{2}\right) f^{2}\left(x_{2} \mid x_{1}\right) d x_{2}
\end{aligned}
\end{aligned}
$$ where we have dropped it for convenience.

Linear Systems with radon Inputs
Theorem: Let the random process $x(t)$ be the input to a linear System L with output forces $Y(t)$. Then the mean function of the output is given as

$$
\begin{aligned}
E[Y(t)] & =L\{E(x(t))\} \\
& =L\left[\mu_{x}(t)\right]
\end{aligned}
$$

Poof: By definction

$$
\begin{aligned}
Y(t, \varphi) & =L[X(t, \varepsilon)] \\
\Rightarrow E[(T(t, \varphi))] & =E[L X(t, \varphi))] \\
& =L[E(X(t, \varphi)]
\end{aligned}
$$

The last step (Somewhat heunstically) follows as the action of L car be captured by a conolution kernel described the output

$$
\int_{0}^{0} h(t, 2) u(\tau) d t
$$

for a detérenentsc input u

Mean
From which at follows that

$$
\begin{aligned}
E[L\{X(t, r)\}] & =E\left[\int_{-\infty}^{\infty} h(t, r) X(z, r) d z\right] \\
& =\int_{-\infty}^{\infty} h(t, r) E[X(z, z)) d z \\
& =\int_{-\infty}^{\infty} h(t, z) \mu_{x}(z) d z \\
& =L\left[\mu_{x}(t)\right] .
\end{aligned}
$$

0

CLassification
Detintions
Let X and Y be random process. They are
(a) Uncorrelated if $R_{x},\left(t_{1} t_{2}\right)=\mu_{x}\left(t_{1}\right) \mu_{x}\left(t_{2}\right)$

$$
\forall t_{1}, t_{2}
$$

(b) orthogonal if $R_{x}\left(t_{1} t_{2}\right)=0 . \forall_{1}, t_{1}, t_{2}$
(c) Independent it for all positive integers n, the n^{t} order pdf of X and Y factors

$$
\begin{aligned}
P_{x} & \left(x_{1} y, x_{2} y_{2} \ldots x_{n} y_{n} ; t_{1}, t_{2}, \ldots t_{n}\right) \\
= & P_{x}\left(x_{1} x_{2} \ldots x_{n} ; t_{i}, t_{2} \ldots t_{n}\right) \\
& P_{y}\left(y_{1} \ldots y_{n}, t_{1}, t_{2}, \ldots t_{n}\right) .
\end{aligned}
$$

Stationary Prows
Definition
A random process $x(t)$ is stationary if at has the same $n^{\text {th }}$ order distribution as $x(t+T)$ for all T and for all positive n.
Note that for stationary processes the $p d f$

$$
p\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)=p\left(x_{1}, x_{2}, t_{1}+T, t_{2}+T\right)
$$

and in particular by choosing $T=-t_{2}$

$$
p\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)=p\left(x_{1}, x_{2} ; t_{1}-t_{2}, 0\right) .
$$

which implies

$$
\begin{aligned}
R_{x}^{\text {Pup }}\left(t_{1}, t_{2}\right) & \left.=E\left[x\left(t_{1}\right)\left(x t_{2}^{*}\right)\right)\right] \\
& =E\left[x\left(t_{1}, t_{2}\right) x^{x}(0)\right] \\
& =R_{x}\left(t_{1}-t_{2}, 0\right)
\end{aligned}
$$

and we con define

$$
\begin{aligned}
R_{x}(\tau)=R_{x}(\tau, 0)= & E\left[x(t+2) x^{x}(t)\right] \\
& \forall t .
\end{aligned}
$$

Wide Sense stationarity
Definition:
A process $x(t)$ is wide sense stationary

$$
E[x(t+2) x(t)]=R(2) ;-\infty<z<\infty .
$$

independent of t
and

$$
E\left[x(b)=p_{x} \quad\right. \text { a constant }
$$

independent of t.

Wide Sense Stationary and Linear Systems
Note that if $Y(t)$ is the output random frocess with $X H$ a iss process as the input to a Linear time-invanart System then

$$
\begin{aligned}
E[Y(t)] & =L\left[\mu_{x}(t)\right] \\
& =\int_{-\infty}^{\infty} h(z) \mu_{x}(t-z) d z \\
& =\int_{-\infty}^{\infty} h(z) \mu_{x} d z \\
& =\mu_{x} \int_{-\infty}^{\infty} h(z) d z \\
& =\left.\mu_{x}\left(\int_{-\sigma}^{\infty} h(z) e^{-J \omega z} d r\right)\right|_{\omega=0} \\
& =\mu_{x} H(0)
\end{aligned}
$$

where $H(O$ is the frequency response representation of the Inced system L.
wide Sense stationary and Lineor bystems
Note that

$$
\begin{aligned}
R_{x y} & \left(t_{1}, t_{2}\right)=E\left[x\left(t_{1}\right) x\left(t_{2}\right)\right] \\
& =E\left[x\left(t_{1}\right) \int_{-\infty}^{\infty} h^{*}(z) x^{x}\left(t_{2}-z\right) d r\right] \\
& =\int_{-\infty}^{\infty} h^{*}(r) E\left[x\left(t_{1}\right) x^{*}\left(t_{2}-2\right)\right] d r \\
& =\int_{-\infty}^{\infty} h^{*}(r) R_{x x}\left(t_{1}, t_{2}-z\right) d z
\end{aligned}
$$

Similarly

$$
R_{Y Y}\left(t_{1}, t_{2}\right)=\int_{-\infty}^{\infty} h\left(\tau_{1}\right) R_{X} Y\left(t_{1}-z_{1}, t_{2}\right) d z_{1}
$$

Mean Square Calculus
Sample function Continuity:

$$
\lim _{\varepsilon \rightarrow 0} x(t+\varepsilon, \xi)=x(t) \quad \forall \varepsilon,
$$

Almost Sure Continuity

$$
P\left[\lim _{s \rightarrow t} x(s) \neq x(t)\right]=0
$$

$p-C o n t r u n i t y: ~$

$$
\lim _{s \rightarrow 0} P[\mid x(s)-x(b \mid>\varepsilon]=0
$$ for each $\varepsilon>0$.

Continuity in the Mean Spare Sense.
Definition:
A random process $X(t)$ is continuous in the mean swore sense at the point $t_{1 f}$

$$
\begin{aligned}
& E\left[|x(t+\varepsilon)-x(t)|^{2}\right] \rightarrow 0 \\
& \text { as } \varepsilon \rightarrow 0 .
\end{aligned}
$$

If the above holds for all t Then $X(t)$ is mean square continuous

Mean Square Continuous
Theorem: The random process $x(t)$ is m.s. continuous if and my if
$R_{x}\left(t_{1}, t_{2}\right)$ is continuous at the point (t, t) for all.
Proof:

$$
\begin{aligned}
&\left.E[\mid x(t+\varepsilon)-x(t)]^{2}\right] \\
&= E\left[x(t+\varepsilon) x^{*}(t+\varepsilon)\right]+E\left[x(t) x^{*}\left(t^{\prime}\right)\right] \\
&-E\left[x(t+\varepsilon) x^{*}(t)\right] \\
&-E\left[x(t)^{*} x(t+\varepsilon)\right] \\
&= R_{x}\left(t+\varepsilon,(t \varepsilon)+R_{x}(t)\right. \\
& \quad-R_{x}(t t \varepsilon, t)-R_{x}(t, t+\varepsilon)
\end{aligned}
$$

\therefore The theorem follows.

Mean Square Continuity
Corollary: A wide Sense r porous is m.-s Continuous for all if and only if $R_{x}(z)$ is Continuous at $z=0$.

Mean Square differentidblity
The random process $x(t)$ has a meansquare derivative at t if the lint

$$
\frac{x(t+\varepsilon)-x(t)}{\varepsilon}
$$

has a mean square limit.

$$
\begin{aligned}
& \text { re } \quad \exists \frac{\text { such that }}{E}\left[\frac{\left(\frac{\left.x(t+\varepsilon)-x(t)-I)^{2}\right]}{\varepsilon}\right]}{} \begin{array}{l}
\downarrow_{0} \\
\quad \text { as } \varepsilon \rightarrow 0 .
\end{array}\right.
\end{aligned}
$$

Theorem: A random process $x(t)$ with autocorrelation $R_{x}\left(t_{1}, t_{2}\right)$ has a m.s-derivative at times if and

$$
\frac{\partial^{2} R_{x}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}} \quad \text { existat } \quad t_{1 ; t_{2}=t}
$$

Mean Square denvative
Theorem: If a random process $x(t)$ with mean function $\mu_{X}(t)$ and correlation function $R_{X}\left(t_{1}, t_{2}\right)$ has a m.-s derivative $x^{\prime}(t)$ then the mean and correlations function of $x^{\prime}(t)$ ore given by

$$
\begin{aligned}
\mu_{x^{\prime}}(t) & =\frac{d \mu_{x}(t)}{d t} \\
R_{x^{\prime}}\left(t_{1}, t_{2}\right) & =\frac{\partial^{2} R_{x}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}}
\end{aligned}
$$

(8) Note that we have seen ecrleer that If $X(t)$ is a Wiener process then

$$
R_{x}\left(t_{1}, t_{2}\right)=E\left[x\left(t_{1}\right) x\left(t_{2}\right)\right]=\min \left(t_{1}, t_{2}\right) \cdot \alpha
$$

and $E(x(t))=0 \quad \forall t$
(this was a HW problem).
clecty

$$
\begin{aligned}
\frac{\partial R_{x}\left(t_{1} t_{2}\right)}{\partial t_{2}} & =\frac{\partial}{\partial t_{2}}\left(\alpha t_{2}\right) \quad \text { if } t_{2}<t_{1} \\
& =\frac{\partial}{\partial t_{2}}\left(\alpha t_{1}\right) \quad \text { if } t_{1}<t_{2} \\
\therefore \frac{\partial f_{x}\left(t_{1}, t_{2}\right)}{\partial t_{2}} & =\alpha \quad \text { if } \quad t_{2}<t_{1} \\
& =0 \quad t_{1}<t_{2}
\end{aligned}
$$

Which has a shape as a function of t_{1}

Therefore

$$
\frac{\partial R_{x}\left(t_{1}, t_{2}\right)}{\partial t_{2}}=\alpha u\left(t_{1}-t_{2}\right)
$$

as a function t_{1} and t_{2} fixed

$$
\begin{aligned}
\therefore \frac{\partial R_{\alpha}}{\partial t_{2}}\left(t_{1} t_{2}\right) & =\alpha-\frac{\partial}{\partial t_{1}} u\left(t_{1}-t_{2}\right) \\
& =\alpha \delta\left(t_{1}-t_{2}\right) .
\end{aligned}
$$

The generalized $m-s$ derivative of wiener process is called white noise and from an earlier theorem

$$
R_{x^{\prime}}\left(t_{1}, t_{2}\right)=\frac{\partial R_{x}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}}=\alpha \delta\left(t_{1}-t_{2}\right)
$$

WSS processes and ps dj; Wiener-Khinchin Relation
Suppose $x(t)$ is a $w . S . S$ process with

$$
R_{x x}(z)=R_{x x}(z, 0)=R_{x x}(t+z, t)
$$

WIener. Khinchin Relatemship.
Then define

$$
\begin{aligned}
S_{x y}(\omega)= & \int_{-\infty}^{\infty} R_{x x}(z) e^{--x c} d z \\
\text { 1.e. } & S_{x x}(\omega)=F T\left(R_{x x}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{x x}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) e^{j \omega t} d \omega \\
& R_{x x}=\operatorname{If} T\left(S_{x x}\right)
\end{aligned}
$$

Now Suppose $Y(t)=L[X(t)]$ defined by

$$
Y^{\prime}(t, \xi)=\int_{-\infty}^{\infty} h(r) x(t-z, \varphi) d \tau
$$

Power Spectral density

$$
\begin{aligned}
R_{Y X}(\tau) & =E[Y(t+r) \hat{x}(t)] \\
& =E\left[\int_{-\alpha}^{\infty} h(t+\tau-\alpha) x(\alpha) d \alpha x^{x}(t)\right] \\
& =\int_{-\infty}^{\infty} h(t+\tau-\alpha) E\left(x(\alpha) x^{x}(t)\right) d \alpha \\
& =\int_{-\infty}^{\infty} h(t+\tau-\alpha) R_{x x}(t-\alpha) d \alpha \\
& =\int_{-\infty}^{\infty} h\left(\tau-\alpha^{\prime}\right) R_{x x}\left(\alpha^{\prime}\right) d x^{\prime} \\
& =h(r) * R_{x x}(\tau)
\end{aligned}
$$

Power spectral density
Then

$$
S_{Y Y Y}(\omega)=\int_{-\infty}^{\infty} R_{Y Y}(\tau) e^{-\pi \omega \tau} d \tau
$$

Now,

$$
\begin{aligned}
& R_{Y Y}(\tau)=E\left[Y(t+r) Y^{x}(t)\right] \\
& =E\left[Y(t+\tau) \int_{-\infty}^{\infty} X^{x}(t=\alpha) h^{\alpha}(\alpha) d \alpha\right] \\
& =\int_{-\infty}^{\infty} E\left[Y(t+\tau) X^{\alpha}(t-\alpha) h^{x}(\alpha) d \alpha\right. \\
& =\int_{-\infty}^{\infty} R_{Y X}(\tau+\alpha) h^{x}(\alpha) d x \\
& =\int_{-\infty}^{\infty} R_{\gamma X}(\tau-\beta) h^{x}(-\beta) d \beta \\
& =R_{Y X}(\tau) * h^{*}(-\tau)
\end{aligned}
$$

We have shown that

$$
\begin{aligned}
K_{y x}(\tau) & =h(\tau) * R_{y x}(r) \\
\therefore & R_{y y}(\tau)=h(\tau) * R_{x x}(\tau) * R^{*}(-\tau)
\end{aligned}
$$

Power Spectral Density

$$
\begin{aligned}
\therefore \quad S_{Y Y}(\omega) & =H(\omega) S_{X X}(\omega) H^{*}(\omega) \\
& =|H(\omega)|^{2} S_{X X}(\omega)
\end{aligned}
$$

Thus

if

White noise input
Evidently if the input is white noise

$$
R_{x}(\tau)=\delta(\tau)
$$

$$
\Rightarrow \quad S_{x x}(\omega)=1
$$

and

$$
S_{Y_{1}}(\omega)=|H(\omega)|^{2}
$$

Why is it power Spectral density
Theorem: Let $X(t)$ be a stationary random process witt finite variance, autocorrelation function $R(\tau)$ and power Spectral density $S_{x}(\omega)$. Then $f_{x}(\omega) \geq 0$ and for $\omega_{2} \geqslant \omega_{1}$,
$\frac{1}{2} \pi \int_{\omega_{1}}^{\omega_{2}} S_{x}(\omega) d \omega$ is the average power of $X(t)$ in the frequency bund (ω_{1}, ω_{2})
Proof: Define a filter H sech that

$$
\begin{aligned}
H(\omega) & =0 & \text { if } \quad \omega \notin\left[\omega_{1}, \omega_{2}\right] \\
& =1 & \text { if } \quad \omega \in\left[\omega_{1}, \omega_{2}\right]
\end{aligned}
$$

Suppose $Y(t)$ is the output of the filter witt $X(t)$ the input. Then from the therem we have proven

Why is itpsd

$$
\begin{aligned}
S_{Y y}(\omega) & =S_{x x}(\omega) & & \text { if } \omega \in\left[\omega_{1}, \omega_{2}\right] \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

and the autocorrelation function

$$
R_{Y}(\tau)=\frac{1}{2} \int_{-\infty}^{\infty} S_{Y Y}(\omega) e^{j \omega z} d \omega
$$

and in particular

$$
\begin{aligned}
0 \leqslant E[Y(t) Y(t)] & =R_{Y}(0) \\
& \left.=\frac{1}{2} \pi \int_{-\infty}^{\infty} S_{Y Y}(\omega) d w\right) \\
& =\frac{1}{2 \pi} \int_{+w_{1}}^{\left(\omega_{2}\right.} S_{X X}(\omega) d \omega
\end{aligned}
$$

\therefore The output of a filter that retains only the frequencies between (ω_{1}, w_{2}) has average power

$$
\frac{1}{2 \pi} \int_{w_{1}}^{\omega_{2}} S_{x x}(\omega) d w
$$

In particular the average power in the

Why Call it pod
the frequency range $(\omega, \omega+\Delta \omega)$ is

$$
\begin{aligned}
\quad & \frac{1}{\pi} \pi \int_{\omega}^{\omega+\Delta \omega} S_{x x}(\omega) d \omega^{\prime} \geqslant 0 \\
& \approx \frac{1}{2} \pi \\
& S_{x x}(\omega) \Delta \omega \geqslant 0 \\
\therefore \quad & S_{x x}(\omega) \geqslant 0
\end{aligned}
$$

and the power density of $x(t)$ at the frequency ω is
$S_{x x}(1)$.
Remark:
One Ger stat with the definition of $\left.S_{x y} / w\right)$ as the average power of x in the frequency range $(\omega, \omega+\Delta \omega)$ and prove that
$S_{X X}(w)$ is the Founder transform of the autocorrelation function. This what is dome in physics books and is called the Ixiener-khinchin Theorem

Examples

Consider the stochastic process generated by

$$
\begin{aligned}
& Y(t+d t)-Y(t)=-\alpha Y(t) d t \\
&+\underbrace{\sqrt{d t} N(0, d t)}_{d w_{t}}
\end{aligned}
$$

wiener process
Symbolically this can be
\Rightarrow reunlten as

$$
\begin{aligned}
& \frac{Y(t+d t)-Y(t)}{d t}=-\alpha Y(t)+\frac{d \omega_{t}}{d t} \\
\Rightarrow & \frac{d Y(t)}{d t}=-\alpha Y(t+n(t)
\end{aligned}
$$

where $n(t)$ is white noise (the derivative of wien proven)

$$
\Rightarrow \quad \frac{d Y(t)}{d t}+\alpha Y(t)=n(t)
$$

Assume $\alpha>0$.
Then $n(t)$ is white noise.
Note that we have shown earner that the wiener process

Examples
has mean $\langle\omega(t)\rangle=0$ and Variance $\left\langle\omega^{2}(t)\right\rangle=t$ and $k_{\omega w}\left(t_{1}, t_{2}\right)=\min \left(t_{1}, t_{2}\right)$.
\therefore as n is the derivative of the wiener frocess we have

$$
\begin{aligned}
\langle n(t)\rangle & =\frac{d\langle\omega(h)}{d t} \\
& =0
\end{aligned}
$$

and $R_{n n}\left(t_{1}, t_{2}\right)=\delta\left(t_{1}-t_{2}\right)$
\uparrow established earlier.
Thus, $n(t)$ is wide Sense stationary with mean O and autocomelatren

$$
R_{n}(\tau)=\delta(\tau) .
$$

Coming back to the stochastic differential equation

$$
\frac{d Y(t)}{d t}+\alpha Y(t)=n(t)
$$

Example
The filter corresponding to the above equation is

and in the fourier domain

$$
\begin{aligned}
& H(\rho)=\frac{1}{\alpha+J \omega} \\
& \Rightarrow H(\omega)=\frac{\alpha-\pi \omega}{\alpha^{2}+\omega^{2}} \\
&= \frac{\alpha}{\alpha^{2}+\omega^{2}}-J \frac{\omega}{\alpha^{2}+\omega^{2}} \\
& \Rightarrow|H(\omega)|^{2}=\frac{\alpha^{2}}{\left(\alpha^{2}+\omega^{2}\right)^{2}}+\frac{\omega^{2}}{\left.\alpha^{2}+\omega^{2}\right)^{2}} \\
&= \frac{1}{\left(\alpha^{2}+\omega^{2}\right)} \\
& \therefore S_{n o w} \quad S_{n n}(\omega)=1 \\
& \therefore S_{Y(\omega)}|H(\tau)|^{2} S_{n n}(\omega)=\frac{1}{\alpha^{2}+\omega^{2}}
\end{aligned}
$$

Example

Thus, X has a Spectral density

$$
S_{Y Y}(\omega)=\frac{1}{\alpha^{2}+\omega^{2}}=\frac{1}{\alpha^{2}} \frac{1}{\left(\frac{v}{\alpha}\right)^{2}+1}
$$

$$
\begin{aligned}
20 \log _{10}\left|S_{Y \gamma}(\omega)\right|^{1 / 2} & =+20 \lg _{10} \sqrt{\left.\frac{1}{\alpha^{2}\left(\frac{\omega}{\alpha}\right)^{2}}+1\right)} \\
& =20 \lg _{10} \frac{1}{\alpha}-20 \lg \sqrt{(\omega / \alpha)^{2}+1}
\end{aligned}
$$

\therefore for $\omega \ll \alpha$

$$
\begin{aligned}
& \text { a } \lg _{10}\left|S_{Y_{\gamma}}(\omega)\right|^{1 / 2}=-20 \operatorname{tg} \alpha \quad \text { slope } \\
& 20 \lg _{10}\left|S_{r_{\gamma}}(\omega)\right|^{1 / 2}=-20 \lg \alpha-20 \lg \omega
\end{aligned}
$$

α Can be easily determined from the corner frequency.

