Lead Controller

Monday, November 23, 2009

G(s)= k
$$\frac{T_{s+1}}{\alpha T_{s+1}}$$
; $O(\alpha < 1; T) O(\alpha < 0)$

G(5w)= k $\frac{T_{s+1}}{\alpha T_{s+1}} = k \frac{T_{s}(\frac{1+n\omega T}{1+\alpha^2 T^2 \omega^2})}{1+\alpha^2 T^2 \omega^2}$

= k $\frac{[1+3(\omega T-\alpha \omega T)+\alpha \omega^2 T^2}{1+\alpha^2 T^2 \omega^2}$

= k $\frac{[1+\alpha \omega^2 T^2}{1+\alpha^2 T^2 \omega^2} + \frac{T_s \omega T(1-\alpha)}{1+\alpha^2 T^2 \omega^2}$

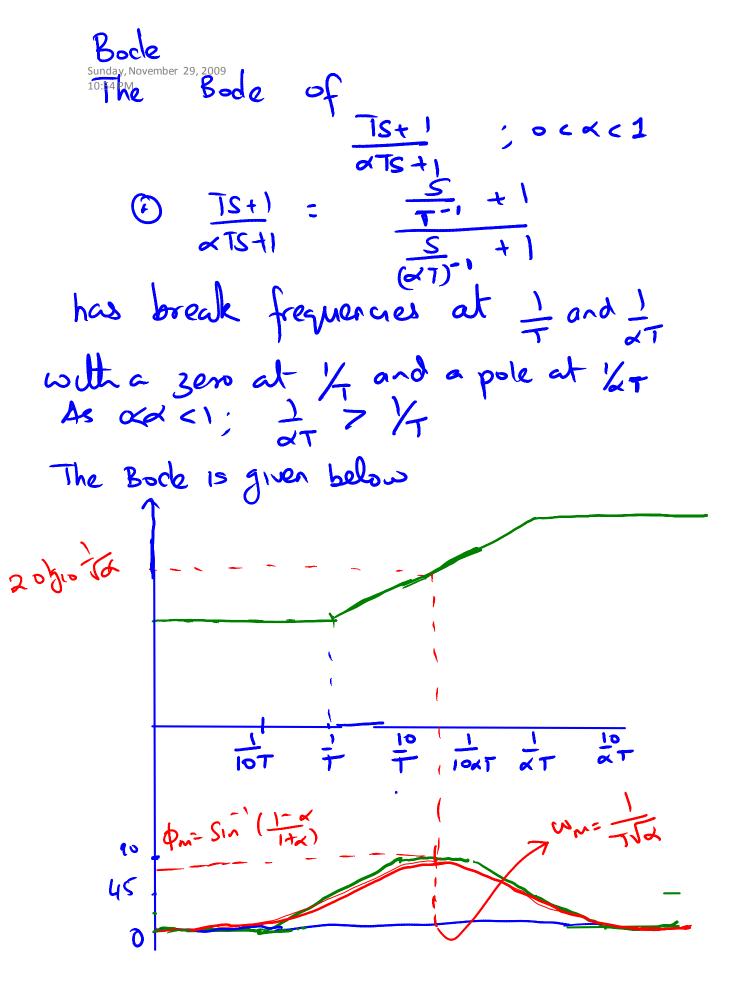
= Real(G(Tw))= k $\frac{1+\alpha \omega^2 T^2}{1+\alpha^2 T^2 \omega^2}$

Try (G(Tw)= k $\frac{\omega T(1-\alpha c)}{1+\alpha^2 T^2 \omega^2}$

Let $x = k (\frac{1+\alpha \omega^2 T^2}{1+\alpha^2 T^2 \omega^2})$
 $y = k \frac{\omega T(1-\alpha c)}{1+\alpha^2 T^2 \omega^2}$
 $x = k (\frac{1+\alpha c}{1+\alpha^2 T^2 \omega^2})$

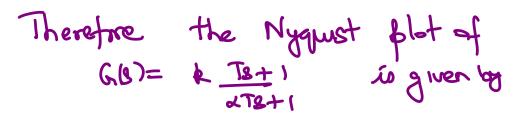
Then it can be shown that

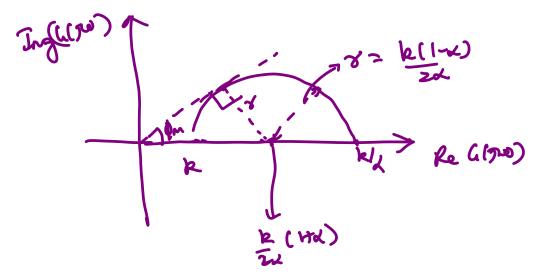
 $(x-a)^2 + y^2 = y^2$



Nyquist of a lead controller

Monday, November 23, 2009 12:24 AM





maximum phase is
$$\phi_m$$
 then $\delta_m \phi_m = \frac{\sigma}{\alpha} = \frac{1-2}{1+\alpha}$.

Re (1) =
$$k \cdot (1+\alpha \omega_{mT}^{2}) = k \cdot 2$$

 $1+\alpha^{2}T^{2}U^{2}$ $1+\alpha$
 $1+\alpha^{2}T^{2}U^{2}$ $1+\alpha$
 $1+\alpha^{2}T^{2}U^{2}$ $1+\alpha$

Maximum phase of a lead term

Monday, November 23, 2009 12:25 AM

and
$$Sin \frac{\ln(32m)}{\ln(1+x)} = \frac{k}{\sqrt{2}} \frac{(1-x)^2}{1+x}$$

$$\int \frac{3k^2}{(1+x)^2} + \frac{k^2}{\sqrt{2}} \frac{(1-x)^2}{(1+x)^2}$$

$$= \frac{k}{\sqrt{2}} \frac{(1-x)}{1+x}$$

$$= \frac{k}{\sqrt{2}} \frac{(1-x)^2}{1+x}$$

$$= \frac{1-x}{\sqrt{1+x^2}} = \frac{1-x}{1+x}$$
The frequency at which maximum phase is achieved is une $\frac{1}{\sqrt{1+x}}$
The magnitude at this frequency was is
$$\int \frac{(2k)^2}{(1+x)^2} + \frac{k^2(1-x)^2}{x(1+xx)^2} = \frac{k}{(1+x)^2} \sqrt{4x+(1-x)^2}$$

$$= \frac{k}{\sqrt{1+x^2}}$$

Summary

Monday, November 23, 2009

Summery:

The term

0<2<1 770 k70

15 Called a lead term.

The phase of GHW) 70 for UE (0,00)

The maximum phase of (fw) is when $\omega = \frac{1}{\sqrt{\alpha}}$ with $|G(Jw_n)| = \frac{k}{\sqrt{\alpha}}$ and

orax phase (150m) =: On Satisfies

lin On = 1-d

170

The Nymist of GB) = k T8+1

Lead Compensator Design (steps)

- Step 1: Choose k to satisfy static error constants (K_v)
- Step 2: Using this k, draw a Bode diagram of $G_1(s) = kG(s)$, and evaluate the phase margin
- Step 3: Determine the necessary phase angle needed to meet design specs.
- Step 4: Let the extra phase needed be ϕ_{extra} . Then the phase that the controller should provide is given by $\phi_m = \phi_{extra} + (6^o 10^o)$. Determine α from $\sin \phi_m = \frac{1-\alpha}{1+\alpha}$.
- Step 5: Find the frequency ω_c where $|G_1(j\omega_c)| = -20\log\left(\frac{1}{\sqrt{\alpha}}\right)$. ω_c is the new gain cross over frequency. We design ω_m to be equal to ω_c . Therefore $\frac{1}{T\sqrt{\alpha}} = \omega_c$. Therefore $T = \frac{1}{\omega_c\sqrt{\alpha}}$
- Step 6: compensator is given by $G_c(s) = k \frac{Ts+1}{\alpha Ts+1}$
- Step 7: Check the design. If it is not satisfactory, one may have to iterate.

• For a given plant $G(s)=\frac{4}{s(s+2)}$ design a lead controller so that the resulting unity feedback closed loop system has GM>10, $PM>50^o$ and $K_v=20$.

Design Steps:

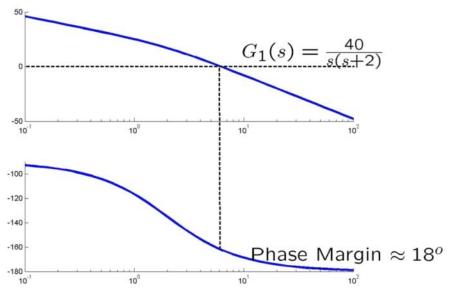
Step 1: Choose k to satisfy static error constants (K_v)

$$K_v = 20 \Rightarrow \lim_{s \to 0} sG_c(s)G(s) = 0$$

$$\Rightarrow \lim_{s \to 0} s\left(k\frac{Ts+1}{\alpha Ts+1}\right)\left(\frac{4}{s(s+2)}\right) = 20 \Rightarrow 2k = 20$$

$$\Rightarrow k = 10$$

Step 2: Draw Bode diagram of $G_1(s)=kG(s)$ and find PM



Step 3:
$$\phi_{extra} = 50 - 18 = 32^{o}$$
, Therefore $\phi_{m} \approx 32 + 6 = 38^{o}$

Step 4: Determine α from $\sin \phi_m = \frac{1-\alpha}{1+\alpha}$, i.e.,

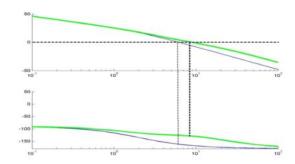
$$\sin(38^\circ) = \frac{1-\alpha}{1+\alpha} \Rightarrow \alpha = 0.24$$

Step 5: Find the frequency ω_c where $|G_1(j\omega_c)|=-20\log\left(\frac{1}{\sqrt{\alpha}}\right)=-6.2~dB$. From bode plot this occurs at $\omega_c=9~rad/s$. Then $T=\frac{1}{\omega_c\sqrt{\alpha}}=0.227$

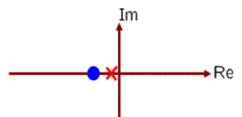
Step 6: Therefore

$$G_c(s) = k \frac{Ts+1}{\alpha Ts+1} = 10 \frac{0.227s+1}{0.054s+1}$$

Step 7: valid design: $PM = 50.7^{\circ}$, $GM = \infty$



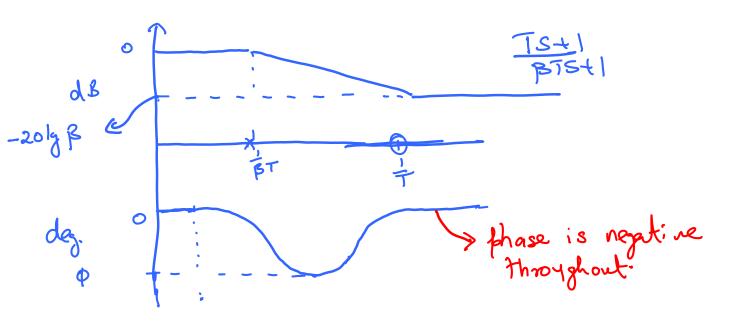
Frequency Domain Design (Lag Compensator)



General form of a Lag Compensator:

$$G_c(s) = k \frac{Ts+1}{\beta Ts+1} \quad \beta > 1$$

- The main use of the lag compensator is to drag the O.L. magnitude down so as to provide sufficient phase margin
- Compare to the lead, which pushed the O.L. phase plot up to get correct phase margin
- Both share similar structure, but note that different order of poles of zeros. A lead controller acts similar to a PD controller, a lag controller acts similar to a PI controller



Design

Friday, November 20, 2009 5:32 PM

Lag Compensator Design (steps)

- Step 1: Choose k to satisfy static error constants (K_v)
- Step 2: Using this k, draw a Bode diagram of $G_1(s) = kG(s)$, and determine the required phase margin. Required PM = PM specified $+10^o$. Find the frequency ω_c where $\angle(G_1(j\omega_c))$ is equal to required PM. ω_c is the new gain cross over frequency.
- Step 3: Choose the corner frequency of the zero
 - We want to change the magnitude plot without changing the phase plot at the new crossover frequency
 - \star Therefore, choose the zero at 1/T to be around 1 decade below the new corner frequency ω_c
- Step 4: Determine β and the pole location...
 - * We now examine $|G_1(j\omega_c)|$ to find out how much it is greater than 0 dB. This is equal to $20\log\beta$ i.e.

$$0 (dB) - |G_1(j\omega_c)| (dB) = -20 \log \beta$$

$$\Rightarrow |G(Jw_i)| = 1$$

$$\Rightarrow |G(Jw_i)| |J_{Jw_i+1}| = 1$$

$$\Rightarrow |K(Jw_i)| |J_{Jw_i+1}| = 1$$

$$\Rightarrow 20|g(G_1(Jw_i)) + 20|g(J_{W_i+1})| = 0$$

Friday, November 20, 2009 5:35 PM

Example

• For a given plant $G(s)=\frac{1}{s(s+1)(0.5s+1)}$ design a last controller so that the resulting unity feedback closed loop system has GM>10, $PM>40^o$ and $K_v=5$.

Design Steps:

Step 1: Choose k to satisfy static error constants (K_v)

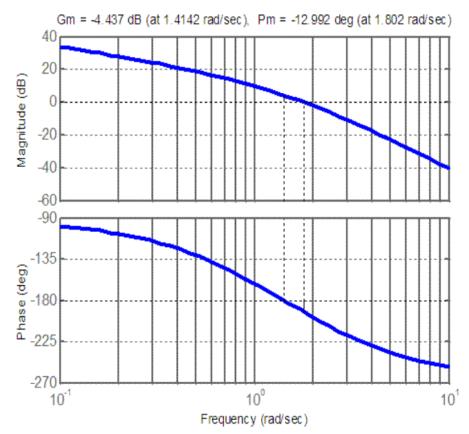
*

$$K_v = 5 \Rightarrow \lim_{s \to 0} sG_c(s)G(s) = 0$$

$$\Rightarrow \lim_{s \to 0} s\left(k\frac{Ts+1}{\beta Ts+1}\right)\left(\frac{1}{s(s+1)(0.5s+1)}\right) = 5 \Rightarrow k = 5$$

$$\Rightarrow k = 5$$

Step 2: Draw Bode diagram of $G_1(s) = kG(s)$



- Required PM = $40^{\circ} + 10^{\circ} = 50^{\circ}$
- ω_c is that frequency where $\angle(G_1(j\omega_c) = PM 180 = -130^o$. Therefore $\omega_c = 0.5 \ rad/s$ (from the bode plot)

Steps 3 and 4

Friday, November 20, 2009

Step 3: Choose the corner frequency of the zero

* Choose the zero at 1/T to be around 1 decade below the new corner frequency ω_c ; i.e. $\frac{1}{T} = 0.05$ which implies T = 20.

Step 4: Determine β

* $|G_1(j\omega)| = 20 \ dB$ at $\omega = \omega_c = 0.5 \ rad/s$ Therefore $20 \log \beta = 20 \Rightarrow \beta = 10$

$$G_c(s) = \frac{5(20s+1)}{200s+1}$$

Results

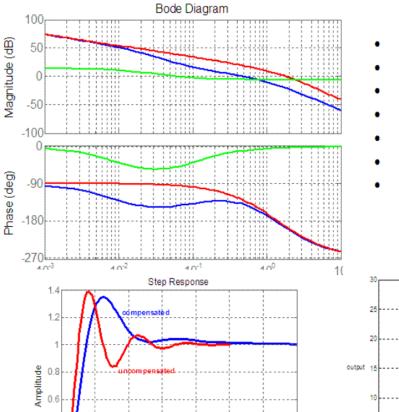
0.4 0.2

10

15

20 Time (sec)

Friday, November 20, 2009 5:40 PM



30

- Frequency Response
- Gain Margin = 14.3dB
- Phase Margin = 42 deg
- Specifications met.
- Green = $G_c(s)$
- Red = $G_1(s)$
- Blue = $G_cG_1(s)$

