Proportional derivative Design.
Friday, November 20, 2009

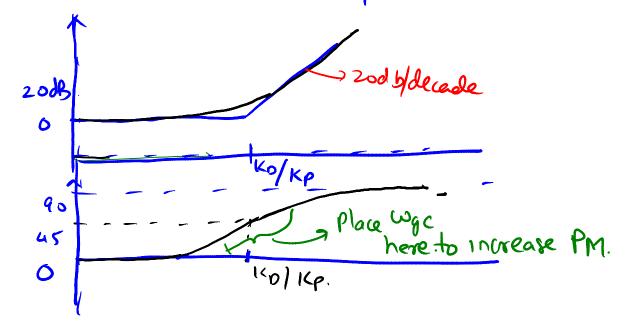
1 The PD controller has the form

KB)= Kp+ Ko8 where Kp and Ko one constants

(Transforming to the standard form

and thus, K18) has a loreak frequency at kp/k_D .

$$|K(n)| = 20 |y | |kp + 20 |y | |kp || |kp$$



PD Design Steps Friday, November 20, 2009

- 1. From Specifications obtain
 - (b) PMy = Phase Margin descred (b) Wgcd = The gain crossover descred
- 2. From Bode plot of G obtain

PMhove = 180+ [Gr(Twgrd) the phase already present at gain crossover doored.

3. Determine APM the defeat of phase margin to be provided by PD controller

DPM = PMd - PMhave

4. Note that DPM has to be phase of the PD controller at wind. Thus

APM=[K()wged) = tan (ko wged) > Ko = tan (APM)

KP Wged.

(5.) Let $Kp = \frac{1}{11 + \frac{K_D}{K_P}}$ at $k = \frac{1}{3}$ which well place would at $\frac{1}{K_P}$ which

PD design
Friday, November 20, 2009
1:01 PM

(5)

KD is determined in step 4 and kp Kp is determined in step 5 obtain $K_D = (K_D) K_P$

The PD controller is

K(8) = Kp + K08

$$(x(S) = 200)$$

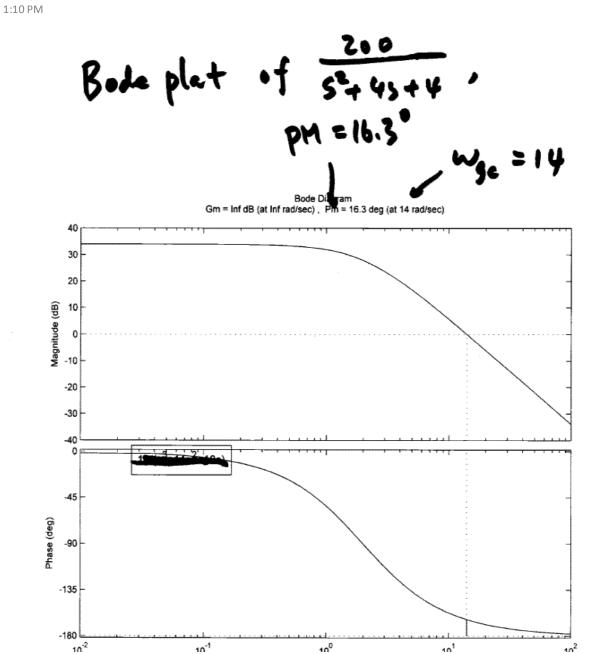
 $S^2 + 45 + 4$
with $k = 1$ we have

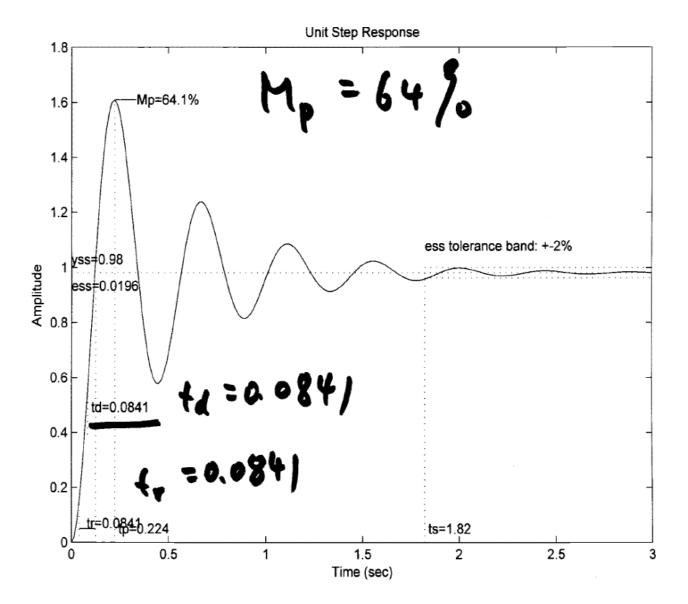
It is desired that a PD controller be designed to have the fellowing Specifications (a) Mp < 16%

> (b) wyed; the desired gain crossoner fremeny of

1. Thus, from @ we have PMd= 60 degrees

Bode plat of G(S) Friday, November 20, 2009

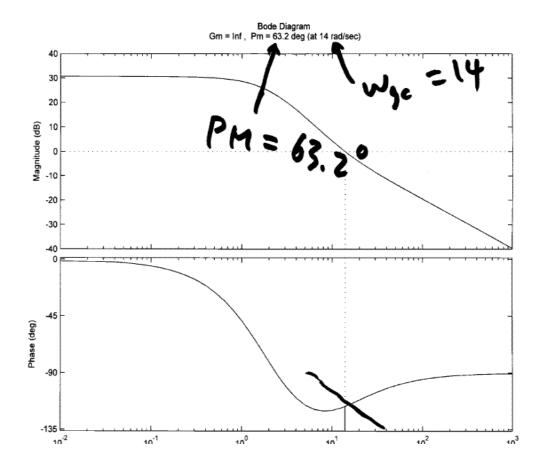




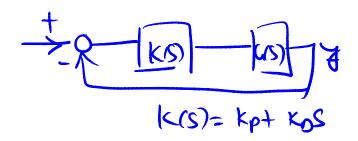
Bode of KIDGIS)

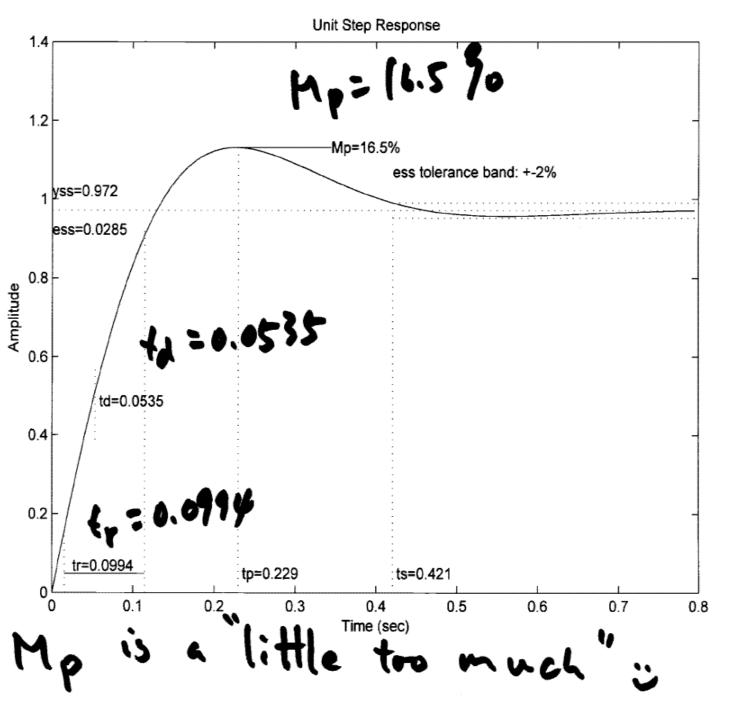
Friday, November 20, 2009 1:13 PM

Bode plot of c(s)G(s)with c(s) = 0.682 + 0.05325G(s) = 200/(52+45+4)



Step response
Friday, November 20, 2009
1:14 PM





Lead Controller

Monday, November 23, 2009 12:21 AM

G(2)=
$$k \frac{T_2+1}{\alpha T_2+1}$$

G(3)= $k \frac{T_2+1}{\alpha T_2+1} = k \frac{T_2(1-\alpha T_1)}{1+\alpha^2T^2\omega^2}$

= $k \frac{[1+3(\omega T_1-\alpha U_1)+\alpha \omega^2T^2]}{1+\alpha^2T^2\omega^2}$

= $k \frac{[1+\alpha \omega^2T^2]}{1+\alpha^2T^2\omega^2} + \frac{T_2(1-\alpha T_1)}{1+\alpha^2T^2\omega^2}$

= $k \frac{[1+\alpha \omega^2T^2]}{1+\alpha^2T^2\omega^2}$

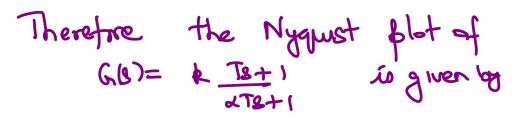
Thus, $(G(T_1\omega)) = k \frac{[1+\alpha U_1^2T^2]}{1+\alpha^2T^2\omega^2}$

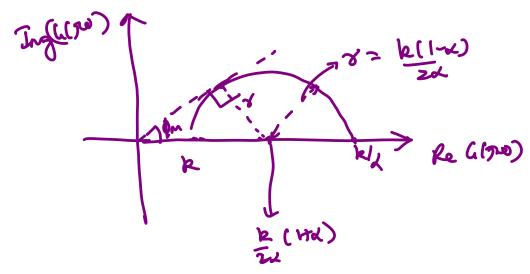
Let $T = k \frac{[1+\alpha \omega^2T^2]}{1+\alpha^2T^2\omega^2}$
 $T = k \frac{[1+\alpha \omega^2T^2]}{1+\alpha^2T^2\omega^2}$
 $T = k \frac{[1+\alpha \omega^2T^2]}{1+\alpha^2T^2\omega^2}$
 $T = k \frac{[1+\alpha U_1^2T^2]}{1+\alpha^2T^2\omega^2}$

Then it can be shown that
 $(T - \alpha)^2 + T^2 = T^2$

Nyquist of a lead controller

Monday, November 23, 2009 12:24 AM





maximum phase is
$$\phi_m$$
 then $2\pi \phi_m = \frac{\sigma}{\alpha} = \frac{1-2}{1+4}$.

Re alw) =
$$k (1+\alpha v_{mT}^{2}) = k / 1 + \alpha$$

 $1+\alpha^{2}T^{2}v_{m}^{2} = k / 1 + \alpha$
 $1+\alpha^{2}T^{2}v_{m}^{2} = k / 1 + \alpha$
 $1+\alpha^{2}T^{2}v_{m}^{2} = k / 1 + \alpha$

Maximum phase of a lead term

Monday, November 23, 2009 12:25 AM

and
$$Sin \frac{\ln(34m)}{\ln(34m)} = \frac{k}{\sqrt{2}} \frac{(1-c)^2}{1+c}$$

$$= \frac{k}{\sqrt{2}} \frac{(1-c)^2}{2} \frac{1-c}{\sqrt{(1+c)^2}}$$

$$= \frac{k}{\sqrt{2}} \frac{(1-c)^2}{1+c}$$

$$= \frac{1-c}{\sqrt{(1+c)^2}} \frac{1-c}{1+c}$$

$$= \frac{1-c}{\sqrt{(1+c)^2}} \frac{1-c}{1+c}$$
The frequency at which maximum phase is achieved is une $\frac{1}{\sqrt{1+c}}$
The magnitude at this frequency was is
$$= \frac{(2k)^2}{(1+c)^2} + \frac{k^2(1-c)^2}{c(1+c)^2} = \frac{k}{(1+c)^2} \frac{4c+(1-c)^2}{c(1+c)^2}$$

$$= \frac{k}{\sqrt{(1+c)^2}}$$

Summary

Monday, November 23, 2009 12:26 AM

Summary: The term

0 < x < 1 T70 k70

15 Called a lead term.

The phase of GHW) 70 for UE (0,00)

The maximum phase of (fru) is when $\omega = \omega_{m} = \frac{1}{\sqrt{2}}$ with $|G(J\omega_{m})| = \frac{k}{\sqrt{2}}$ and

orax phase 14thm) =: On Satisfies

lin On = 1-d

17d

The Nymist of GB) = k T8+1

is given by

Note to the control of the control of

Lead Compensator Design (steps)

- Step 1: Choose k to satisfy static error constants (K_v)
- Step 2: Using this k, draw a Bode diagram of $G_1(s) = kG(s)$, and evaluate the phase margin
- Step 3: Determine the necessary phase angle needed to meet design specs.
- Step 4: Let the extra phase needed be ϕ_{extra} . Then the phase that the controller should provide is given by $\phi_m = \phi_{extra} + (6^o 10^o)$. Determine α from $\sin \phi_m = \frac{1-\alpha}{1+\alpha}$.
- Step 5: Find the frequency ω_c where $|G_1(j\omega_c)| = -20\log\left(\frac{1}{\sqrt{\alpha}}\right)$. ω_c is the new gain cross over frequency. We design ω_m to be equal to ω_c . Therefore $\frac{1}{T\sqrt{\alpha}} = \omega_c$. Therefore $T = \frac{1}{\omega_c\sqrt{\alpha}}$
- Step 6: compensator is given by $G_c(s) = k \frac{Ts+1}{\alpha Ts+1}$
- Step 7: Check the design. If it is not satisfactory, one may have to iterate.

• For a given plant $G(s)=\frac{4}{s(s+2)}$ design a lead controller so that the resulting unity feedback closed loop system has GM>10, $PM>50^o$ and $K_v=20$.

Design Steps:

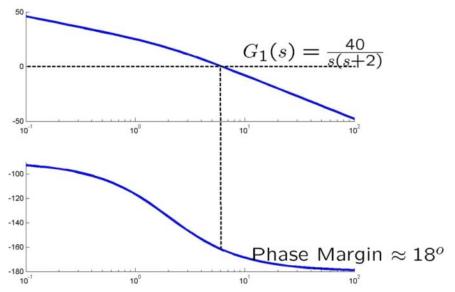
Step 1: Choose k to satisfy static error constants (K_v)

$$K_v = 20 \Rightarrow \lim_{s \to 0} sG_c(s)G(s) = 0$$

$$\Rightarrow \lim_{s \to 0} s\left(k\frac{Ts+1}{\alpha Ts+1}\right)\left(\frac{4}{s(s+2)}\right) = 20 \Rightarrow 2k = 20$$

$$\Rightarrow k = 10$$

Step 2: Draw Bode diagram of $G_1(s)=kG(s)$ and find PM



Step 3:
$$\phi_{extra} = 50 - 18 = 32^{o}$$
, Therefore $\phi_{m} \approx 32 + 6 = 38^{o}$

Step 4: Determine α from $\sin \phi_m = \frac{1-\alpha}{1+\alpha}$, i.e.,

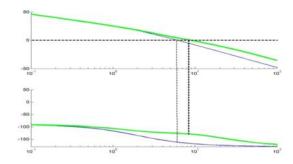
$$\sin(38^\circ) = \frac{1-\alpha}{1+\alpha} \Rightarrow \alpha = 0.24$$

Step 5: Find the frequency ω_c where $|G_1(j\omega_c)|=-20\log\left(\frac{1}{\sqrt{\alpha}}\right)=-6.2~dB$. From bode plot this occurs at $\omega_c=9~rad/s$. Then $T=\frac{1}{\omega_c\sqrt{\alpha}}=0.227$

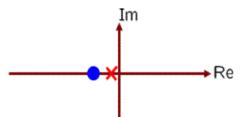
Step 6: Therefore

$$G_c(s) = k \frac{Ts+1}{\alpha Ts+1} = 10 \frac{0.227s+1}{0.054s+1}$$

Step 7: valid design: $PM = 50.7^{\circ}$, $GM = \infty$



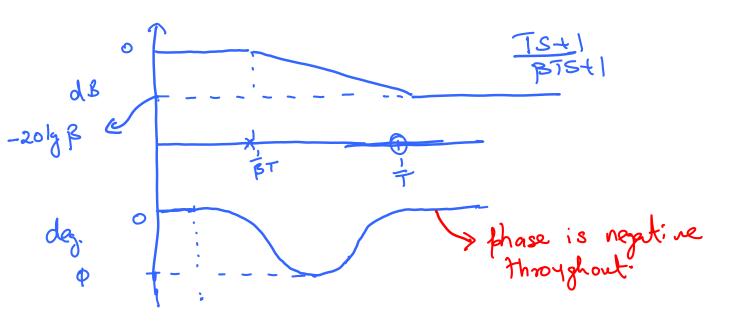
Frequency Domain Design (Lag Compensator)



General form of a Lag Compensator:

$$G_c(s) = k \frac{Ts+1}{\beta Ts+1} \quad \beta > 1$$

- The main use of the lag compensator is to drag the O.L. magnitude down so as to provide sufficient phase margin
- Compare to the lead, which pushed the O.L. phase plot up to get correct phase margin
- Both share similar structure, but note that different order of poles of zeros. A lead controller acts similar to a PD controller, a lag controller acts similar to a PI controller



Design

Friday, November 20, 2009 5:32 PM

Lag Compensator Design (steps)

- Step 1: Choose k to satisfy static error constants (K_v)
- Step 2: Using this k, draw a Bode diagram of $G_1(s) = kG(s)$, and determine the required phase margin. Required PM = PM specified $+10^o$. Find the frequency ω_c where $\angle(G_1(j\omega_c))$ is equal to required PM. ω_c is the new gain cross over frequency.
- Step 3: Choose the corner frequency of the zero
 - We want to change the magnitude plot without changing the phase plot at the new crossover frequency
 - \star Therefore, choose the zero at 1/T to be around 1 decade below the new corner frequency ω_c
- Step 4: Determine β and the pole location...
 - * We now examine $|G_1(j\omega_c)|$ to find out how much it is greater than 0 dB. This is equal to $20\log\beta$ i.e.

$$0 (dB) - |G_1(j\omega_c)| (dB) = -20 \log \beta$$

$$||G(Jw_i)|| = 1$$

$$||G(Jw_i)|| = 1$$

$$||F_{Jw_i+1}|| = 1$$

$$||k(Jw_i)|| ||F_{Jw_i+1}|| = 1$$

$$||A(Jw_i)|| ||F_{Jw_i+1}|| = 1$$

$$||A(Jw_i)|| + 20 ||F_{Jw_i+1}|| = 0$$

Friday, November 20, 2009 5:35 PM

Example

• For a given plant $G(s)=\frac{1}{s(s+1)(0.5s+1)}$ design a last controller so that the resulting unity feedback closed loop system has GM>10, $PM>40^o$ and $K_v=5$.

Design Steps:

Step 1: Choose k to satisfy static error constants (K_v)

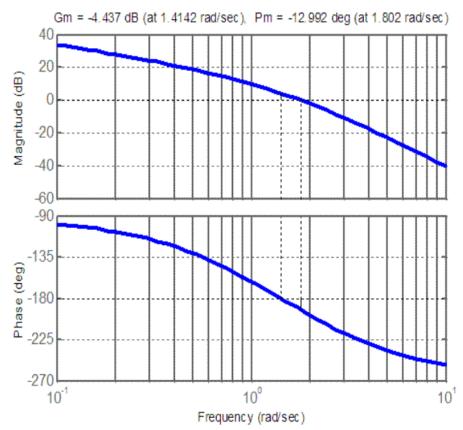
*

$$K_v = 5 \Rightarrow \lim_{s \to 0} sG_c(s)G(s) = 0$$

$$\Rightarrow \lim_{s \to 0} s\left(k\frac{Ts+1}{\beta Ts+1}\right)\left(\frac{1}{s(s+1)(0.5s+1)}\right) = 5 \Rightarrow k = 5$$

$$\Rightarrow k = 5$$

Step 2: Draw Bode diagram of $G_1(s) = kG(s)$



- Required PM = $40^{\circ} + 10^{\circ} = 50^{\circ}$
- ω_c is that frequency where $\angle(G_1(j\omega_c) = PM 180 = -130^o$. Therefore $\omega_c = 0.5 \ rad/s$ (from the bode plot)

Steps 3 and 4

Friday, November 20, 2009

Step 3: Choose the corner frequency of the zero

* Choose the zero at 1/T to be around 1 decade below the new corner frequency ω_c ; i.e. $\frac{1}{T} = 0.05$ which implies T = 20.

Step 4: Determine β

* $|G_1(j\omega)| = 20 \ dB$ at $\omega = \omega_c = 0.5 \ rad/s$ Therefore $20 \log \beta = 20 \Rightarrow \beta = 10$

$$G_c(s) = \frac{5(20s+1)}{200s+1}$$

Results

Friday, November 20, 2009 5:40 PM

