Partial fractions
Wednesday,
10:40 AM
Consider a polynomial

$$
d(s)=s^{m}+a_{m-1} 8^{m-1}+\cdots+a_{0}
$$

(*) Then the above polynomial has m-zeros or m-roots. Let these roots be $8_{1}, 8_{c} \ldots$ Sm. . . Some of these $^{\text {. }}$ roots can be complex.
(1) Suppose the coefficients $a_{0}, a_{1} \ldots, a_{m-1}$ are real number. then, et follows that is $\quad \delta_{i}=\alpha+J \beta$ is a root then $\overline{8}_{c}=\alpha_{i}-j \beta$ is also a root.
Proof: Suppose $8 i$ is a root of $d(s)$

$$
\text { ie. } d\left(s_{i}\right)=0
$$

Then

$$
s_{i}^{m}+a_{m-1} s_{i}^{m-1}+\cdots+a_{0}=0
$$

This implies

$$
\begin{aligned}
& \overline{d\left(s_{i}\right)}=0 \\
& \Rightarrow \quad \overline{b_{i}^{m}+a_{m+1} b_{i}^{m-1}+\cdots+a_{0}}=0 \\
& \Rightarrow \quad \overline{s_{i}^{m}}+\overline{a_{n-1} s_{i}^{m-1}}+\cdots+\bar{a}_{0}=0[\because \overline{x+y}=\bar{x}+\bar{y}] \\
& \Rightarrow\left(\bar{s}_{i}\right)^{m}+\left(\bar{a}_{m-1}\right)\left(\bar{s}_{i}\right)^{m-1}+\cdots+\bar{a}_{0}=0[\because \overline{x y}=\bar{x} \bar{y}] \\
& \Rightarrow\left(\bar{b}_{l}\right)^{m}+a_{m-1}\left(\bar{b}_{1}\right)^{m-1}+\cdots+a_{0}=0 \quad\left[\because a_{\text {a are }}\right. \\
& \left.a_{c}=\bar{a} \bar{u}\right] \\
& \Rightarrow d\left(\bar{s}_{c}\right)=0
\end{aligned}
$$

$\therefore \quad \overline{s i}_{i}$ is also a root.

This completes the proof.
Complex Roots
Example:

$$
G(s)=\frac{1}{s^{2}+s+1}
$$

Roots of the polynomial $a s^{2}+b s+c$ where a, b, c are real are given by

$$
\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Thus the roots of $s^{2}+s+1$ are given by

$$
\begin{array}{rlrl}
8_{1} & =\frac{-1+\sqrt{1-4}}{2} \text { and } f_{2}=-\frac{1-\sqrt{1-4}}{2} \\
\Rightarrow \delta_{1} & =\frac{-1+\sqrt{3}}{2} \mathrm{~J} \text { and } 8_{2} & =\frac{-1-\sqrt{3}}{2} \mathrm{~J} \\
& =-\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{~J} & & =-\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{~J}
\end{array}
$$

Let $\alpha=-1 / 2$ and $\beta=\sqrt{\frac{3}{2}}$.
Thus,

$$
\begin{aligned}
& G(s)=\frac{1}{s^{2}+s+1}=\frac{1}{\left(s-s_{1}\right)\left(s-s_{2}\right)} \\
& \therefore G(s)=\frac{A}{s-s_{1}}+\frac{B}{s-s_{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
A & =\left.G(8)\left(8-s_{1}\right)\right|_{s=s_{1}} \\
& =\left.\frac{\left(8-s_{1}\right)}{\left(8-s_{1}\right)\left(s-s_{2}\right)}\right|_{s=-8_{1}}=\left.\frac{1}{8-s_{2}}\right|_{s=8_{1}} \\
& =\frac{1}{8_{1}-S_{2}}=\frac{1}{\alpha+5 \beta-(\alpha-J \beta)} \\
& =\frac{1}{\alpha+\tau \beta-\alpha+T \beta}
\end{aligned}
$$

$$
=\frac{1}{25 \beta}
$$

Similarly

$$
\begin{aligned}
B & =\left.G(s)\left(s-s_{2}\right)\right|_{s=s_{2}} \\
& =\left.\frac{1}{s-s_{1}}\right|_{s=s_{2}} \\
& =\frac{1}{s_{2}-s_{1}}=-\frac{1}{25 \beta}
\end{aligned}
$$

$$
\therefore G(s)=\frac{1}{2 \pi \beta} \frac{1}{\left(s-s_{1}\right)}-\frac{1}{2 \pi \beta} \frac{1}{\left(s-s_{2}\right)}
$$

$$
\therefore g(t)=\frac{1}{2 \pi \beta}\left[e^{8_{1} t}-e^{\delta_{2} t}\right]
$$

$$
=\frac{1}{2 J \beta}\left[e^{(\alpha+J \beta) t}-e^{(\alpha-j \beta) t}\right]
$$

$$
=\frac{1}{25 \beta} e^{\alpha t}\left[e^{5 \beta t}-e^{-5 \beta t}\right]
$$

$$
\left.=\frac{1}{\beta} e^{\alpha t} \frac{\left[e^{j \beta t}-e^{-j \beta t}\right.}{2 J}\right]
$$

$$
=\frac{1}{\beta} e^{\alpha t}(\operatorname{Sin} \beta t)=\frac{2}{\sqrt{3}} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right)
$$

Another Method
We will first complete the squares Indeed

$$
\begin{aligned}
8^{2}+8+1 & =8^{2}+2 \cdot \frac{1}{2} \cdot 8+\frac{1}{4}-\frac{1}{4}+1 \\
& =\left(8+\frac{1}{2}\right)^{2}+\frac{3}{4} \\
& =\left(8+\frac{1}{2}\right)^{2}+\left(\sqrt{\frac{3}{4}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad G(s) & =\frac{1}{s^{2}+s+1} \\
& =\frac{1}{\left(s+\frac{1}{2}\right)^{2}+\left(\sqrt{\frac{3}{4}}\right)^{2}} \\
& =\frac{2}{\sqrt{3}} \frac{\sqrt{3 / 4}}{\left(s+\frac{1}{2}\right)^{2}+\left(\sqrt{\frac{3}{4}}\right)^{2}} \\
& =\frac{1}{\beta} \frac{\beta}{(s-\alpha)^{2}+\beta^{2}}
\end{aligned}
$$

Note that $\quad \mathcal{S i n} \omega t=\frac{\omega}{s^{2}+\omega^{2}}=: F(s)$
and $\quad \int e^{\text {att }} \sin \omega t=F(s-a)=\frac{\omega}{(s-0)^{2}+\omega^{2}}$

$$
\begin{aligned}
\therefore \quad \mathcal{L}^{-1} G(s) & =\frac{1}{\beta} \mathcal{L}^{-1} \frac{\beta}{(s-\alpha)^{2}+\beta^{2}} \\
& =\frac{1}{\beta} e^{\alpha t} \sin \beta t \\
& =\frac{2}{\sqrt{3}} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{3}}{2}\right) t
\end{aligned}
$$

Frequency Response of LTI System
uss)

we will assume $H(8)$ is stable.

$$
\begin{aligned}
U(s) & =\frac{\omega}{s^{2}+\omega^{2}} \\
Y(s) & =\frac{H(8) \omega}{s^{2}+\omega^{2}} \\
& =\sum_{i=1}^{n} \frac{A i}{8-s i}+\frac{A}{s-3 \omega}+\frac{B}{8+\infty \omega}
\end{aligned}
$$

(shoo. S, \& 8... Sn are all holes of H18)
where $s_{1}, s_{1}, s_{3} \ldots S_{n}$ are all fores of $H(8)$ with negative real parts.

$$
\begin{aligned}
& A=Y(8)(s-3 \omega))_{s=3 \omega} \\
& =\left.\frac{H(s) \omega}{s^{2}+\omega^{2}}(8-\omega)\right|_{s=50} \\
& =\frac{H(\pi \omega) \omega}{s+j \omega}=\frac{H(J \omega) \omega}{2 J \omega} \\
& \left.B=\left.Y(s)(s+\sigma)\right|_{s=-5 \omega}=\frac{H(s) \omega}{s^{2}+\omega^{2}}(s+5 \omega)\right]_{s=-j \omega} \\
& =\left.\frac{H(s)}{s-3 \omega} \cdot \omega\right|_{s=\pi \omega}=\frac{H(-\overline{3}) \omega}{-2 \sqrt{3} \omega} \\
& \therefore Y(s)=\sum_{l=i}^{n} \frac{A_{i}}{8-8 i}+\frac{H(\pi \omega) \omega}{2 \pi \omega} \frac{1}{s-5 \omega}+\frac{H(-\pi \omega) \omega \frac{1}{-25 \omega} s+3 \omega t}{} \\
& y(t)=\sum_{i=1}^{n} A_{c} e^{t 8 i t}+\frac{H(\pi \omega)}{25} e^{j \omega t}+\frac{H(-\sigma \omega)}{-25} e^{-\pi i t} \\
& y_{8}(t)=\left[\frac{H(\pi \omega)}{2 \pi} e^{j \omega t}+\frac{H(-\pi \omega)}{-2 \pi} e^{-j \omega t}\right] \\
& .=\frac{H(\tau) e^{j \omega t}}{25}+\frac{\overline{H(J \omega)} e^{j \omega t}}{25} \\
& =2 \text { Real }\left[\frac{H(\sigma \omega) e^{j \omega t}}{2 \tau}\right] \\
& =\frac{\text { Leal } \frac{|H(\pi)| e^{j H(x \omega)} e^{j \omega t}}{3}}{3} \\
& =|H(\omega)| \operatorname{Re}\left[\frac{e^{5(\omega t+t H(\omega))}}{5}\right] \\
& =|H(\omega)| R_{e} \frac{1}{\tau}[\cos (\omega t+L H(\omega))
\end{aligned}
$$

$$
=\left|H\left(v_{0}\right)\right| \sin \left(\omega t+\left[H \sin \left(\omega t+\left[H\left(\pi \omega^{2}\right)\right)\right]\right.\right.
$$

Thus a LTI system that is stable has a steady state response to since given by

$$
|H(\tau \omega)| \sin (\omega t+H+(\gamma \omega))
$$

Whose $H(s)$ is the Laplace transform of system's impute response.
© Note that an arbivary sInusoid has the form

$$
A \sin (\omega t+\theta)
$$

(i) The steady-state response of a stable LTI system to a Sinusoid of the form above is

$$
A|H(\omega)| \operatorname{Sin}(\omega t+\angle H(\omega)+\theta)
$$

Stability
(4) Consider an input-output system S that is Linear-time-invanant and causal.
(-) Suppose the impulse response of the System is given by $h(t) ; t \geqslant 0$.
(1) Then for an input $u(t)$ the output is $(S u)(t)=(h \circ u)(t)$

$$
=\int_{0}^{t} u(\tau) h(t-\tau) d \tau
$$

(N) Define the maximum magnitude of a Signal by

$$
\|u\|_{\infty}=\max _{0 \leq t<\infty}|u(t)|
$$

\|u loo

Theorem: System S is bounded-input bounded output stable if and only if

$$
\int_{0}^{\infty}|h(t)| d t=M<\infty
$$

Proof: (Sketch)
Suppose the input is bounded.

$$
\text { 1.e. } \quad\|u\|_{\infty}=\alpha<\infty
$$

Then the opput y is given by

$$
\begin{aligned}
& y(t)=\int_{0}^{\infty} h(t-z) u(z) d z \\
& \Rightarrow|y(t)|=\int_{0}^{\infty} h(t-z) u(z) d z \mid \\
& \leq \int_{0}^{\infty}|h(t-z)||u(z)| d z \\
& \leqslant \int_{0}^{\infty}|h(t-z)| \max _{0 \leq \infty}|u(z)| d z \\
&=\int_{0}^{\infty}|h(t-z)|\|u\|_{\infty} d r \\
&=\|u\|_{\infty} \int_{0}^{\infty}|h(t-z)| d r \\
&=\|u\|_{\infty} \int_{0}^{\infty}|h(z)| d z \\
& \leqslant \alpha M=\beta \quad \text { for all } t .
\end{aligned}
$$

Thus, $\quad|y(t)| \leq \beta<\infty \forall t$
$\therefore \quad y(t)$ remains uniformly bounded by
\therefore If the impulse response is absolutely integrable the Ster is BI BO (bounded-inpet-bounded-ripput)
stable.
Suppose $\quad \int_{0}^{\infty}|h(t)| d t=\infty \quad n$
Another way of stating" * is that given any constant M, there exists a time T such that

$$
\int_{0}^{T}|h(t)| d t \geqslant M
$$

Given any constant M; Let

$$
U_{T}(z)=S_{g n} h(T-z)
$$

Then the oueppet when the input is

$$
\begin{aligned}
u_{T}(z) \text { is } & =\int_{0}^{\infty} h(T-z) U_{T}(z) d z \\
& =\int_{0}^{\infty} h(T-z) \operatorname{sgn}(h(T-z)) d z \\
& =\int_{0}^{\infty}|h(T-z)| d z \\
& \geqslant \int^{T}(h(t) \mid d t \geqslant M
\end{aligned}
$$

$$
\geqslant \int_{0}^{T}(h(t)) d t \geqslant M
$$

\therefore given any constant M; we confind $U_{T}(z)$ with $\max _{0 \leq z<\infty}\left|U_{T}(z)\right|=1$
time T and the outset magnitude sat

$$
\left|y_{T}(T)\right| \geqslant M
$$

That means there is no constant β.
for which $\|u\|_{\infty} \leq 1 \Rightarrow\|y\|_{\infty} \leq \beta$
This completes the proof.
(1) We have been that the output Laplace transform is given by

$$
Y(s)=H(s) U(s)
$$

and if

$$
H(s)=E \frac{8^{m}+a_{m-1} s^{m-1} \cdots+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}}
$$

and $\quad d(s)=s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}$ has no zeros in the right half plane then has the form

$$
H(s)=\sum_{i} \frac{A_{i}}{\left(s-s_{i}\right)^{k_{i}}}
$$

and as $\mathrm{Re}\left(\mathrm{s}_{1}\right)<0$ it follows
and as $\mathrm{Re}\left(\mathrm{s}_{1}\right)<0$ it follows that

$$
h(t)=\sum_{i} t^{k_{i}} e^{+8_{i} t}
$$

and $h(t)$ is absolutely integrable
This leads to the following therm
Theorem: Suppose $h(t)$ is the impulse response of the system S and

$$
L h(t)=H(s)=E \frac{s^{n}+a_{m-1} g^{m-1}+\cdots+a_{0}}{s^{n}+b_{n-1} s^{n-1} \cdots+b_{0}}
$$

with all roots of the denominator polymal in the strut $\operatorname{RHP}(\operatorname{Re}(s)<0)$ then
$h(t)$ is absolutely integrable and the System is BI BO stable.
(a) Definition: Transfer function

The Laplace transform of the impulse response of a LTI causal system is called the "transfer function" of the System.
(A) Suppose the transfer function of a System is given by

$$
H(s)=E \frac{g_{m}^{m}+a_{m-1} s^{m-1}+\cdots+l_{0}}{\left(s-s_{1}\right)\left(s-s_{2}\right) \cdots\left(s-s_{n}\right)}
$$

then
$S_{i=1}=1 . n$ are the finite poles of the transter function
(1) Thus, if the poles of the bansfer function are in the L-H.P then system is BI BO stable

There are a couple of tests that allow for assessing whether the boles of a branster function are in
poles of a transfer function are in the L.H.P or not without explicitly evaluating the rooks of the denominator The first one we will develop is the Routs Hurwits Criteria.

Rout Hurwitz:
Consider a polynomial of the form

$$
F(s)=a_{n} s^{n}+a_{n-1} s^{n-1} \cdots+a_{0}=0
$$

We will demonstrate the main concept by working on the polynomial

$$
a_{6} s^{6}+a_{5} 8^{5}+\cdots+a_{0}
$$

The first row of the Rout table is formed by the leading weffcient followed by every alternate coeffuent. Thus the first row is written as

Skipply 1^{5}
The second row is formed by staring with the coeffuent of the second highest power of \& and every other alternate term.
$\begin{array}{lllll}85 & a_{5} & a_{3} & a_{1} & 0\end{array}$
coeftivent of
second highest
term.
Thus, the first two rows are given by

ROUTH Cr TERION:
The rooks of the polynomial are
in the strict 'eff tall'f plane if all the elements in the first column are of the lane sign. The $\#$ of Bisnchanges egeals the $\#$ of roots in the RHP.

Example:

$$
\text { Consider } F(s)=2 s^{4}+8^{3}+3 s^{2}+5 s+10
$$

(1) The leader pourer is 4; the first two rows and the table are

s^{4}	2	3	10
$8^{3} \quad 1$	5	0	
s^{2}	$\frac{(1)(3)-5(2)}{1}=-7$	$\frac{\pi(0)-2(0)}{1}=10$	0
8	$\frac{(-7)(5)-(1)(10)=6.43}{-7}$	0	0
$s^{0} \quad \frac{(6.43)(10)}{6.43}=10$	0	0	

Thus, the frost column entries are

$$
\left(\begin{array}{c}
2 \\
1 \\
-7 \\
6.43 \\
10
\end{array}\right)
$$

where there are twos Sign
changes. Therefore, there ar two roots in the RHP.

Special Cases:
(1) The fires element in any row of the Routs tabulation is zero but the whole row is not zero.

Example:
Consider $s^{4}+s^{3}+2 s^{2}+2 s+3$
The Rout table is

s^{4}	1	2	3
s^{3}	1	2	0
s^{2}	0	3	

τ There is a zero, here. Cannot gensute 8^{1} as we have to divide by
modify the table as follows and proceed

s^{4}	1	2	3
s^{3}	1	2	0
s^{2}	ε	3	0
8	$\frac{2(\varepsilon)-1(3) \cong-\frac{3}{\varepsilon}}{\varepsilon}$	0	0
$s^{0}-\frac{(3 / \varepsilon)(3)}{-3 / \varepsilon}=3$	0	0	

where the 3 eos in the 8^{2} row is replaced by a small number $\varepsilon>0$.
is replaced by a small number $\varepsilon>0$.
Because there are two Sign changes in $\left(\begin{array}{c}1 \\ 1 \\ \varepsilon \\ -3 / \varepsilon \\ 3\end{array}\right)$ there are two roots in the RHP.
(*) An Entire row in the Rout table is zero.

Example:
Consider the polynomial

$$
s^{5}+4 s^{4}+8 s^{3}+8 s^{2}+7 s+4
$$

The louth table is

s^{5}	1	8	7
s^{4}	4	8	4
s^{3}	6	6	0
s^{2}	4	4	0
s	0	0	0

S°
To obtain the nextrow form the auxiliary polynomial. from the
previous row (in the example the s^{2} row) that is nonzero
The auxiliary polynomial is given by

$$
A(s)=4 s^{2}+4 s^{\operatorname{cosifingent} \text { of }}
$$

differentiate the auxiliary polynomial

$$
\begin{aligned}
& \frac{d A(s)}{\text { Is }}=8 s+0 \\
& \text { of first' coefficient second coefrient } \\
& \text { of the }
\end{aligned}
$$

Thus, the Rout table is

s^{5}	1	8	7
s^{4}	4	8	4
s^{3}	6	6	0
s^{2}	4	4	0
s	8	0	0
so	4	0	0

The first Columais $\left(\begin{array}{l}1 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4\end{array}\right)$
The conclusion is that there are
no roots in the regin $\{s \mid \operatorname{Re}(s)>0\}$ but as an entire row was so the roots on the imaginary axis are obtained by Astul four for $A(s)=0$ ce.

$$
\begin{aligned}
& 4 s^{2}+4=0 \\
\Rightarrow \quad & s_{1}=+5 \quad \text { and } s_{2}=-5 \text { are }
\end{aligned}
$$

two roots on the imaginary axes that have Re (s) $=0$.

The routs Hurwit 3 Criterion is best suited for selecting parameters for stability. Consider a transfer function where denominator polynomial is

$$
s^{3}+3408.3 s^{2}+1204000 s+1.5 \times 10^{7} k .
$$

The Rout table is given by
$\left.\begin{array}{cc}s^{3} & 1\end{array}\right] 1204000$
so $\quad 1.5 \times 10^{7} \mathrm{~K}$
The first column is given by

$$
\left[\begin{array}{l}
1 \\
3408.3 \\
1204000-\frac{1.5 \times 10^{7}}{3408.3} \mathrm{~K} \\
1.5 \times 10^{7} \mathrm{~K}
\end{array}\right]
$$

For all elements in the above column to have the Save Sign we $m \rightarrow t$ have

$$
\begin{equation*}
1204000-\frac{1.5 \times 10^{7}}{3408.3} k>0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1.5 \times 10^{7} \mathrm{~K}>0 \tag{2}
\end{equation*}
$$

from (1) due have.

$$
K<\frac{(3408.3)(1204000)}{1.5 \times 10^{7}}
$$

and from (2)

$$
k>0
$$

$$
\therefore \quad k<273.57 \text { and } k>0
$$

Therefore for stability

$$
0<K<273.57
$$

Interconnections Monday, Oct
11:54 AM
*) We have been that a Linear time-invanant and Causal System LTIC with input u has an output

$$
y(t)=(h * u)(t)=\int_{0}^{t} h(t-r) u(r) d r
$$

where h is the impulse response of the System.
(4) We have seen that

$$
\max _{u \neq 0} \quad \frac{\|y\|_{\infty}}{\|u\|_{\infty}}=M<\infty
$$

(Which is also the definition of bounded-input hounded (BIBO) stable) if and only if the impulse response is absolutely integrable ie.

$$
\int_{0}^{\infty}|h(t)| d t=N<\infty
$$

(o) We have Seen that witt the Laplace transform of the impulse response (called the "transfer function") of the form

$$
E \frac{s^{m}+a_{m-1} s^{m-1}+\cdots+a_{0}}{l^{n}+a_{n-1} s^{n-1}+\cdots+b_{0}}
$$

$$
=\overline{s^{n}}+b_{n-1} s^{n-1}+\cdots+b_{0}
$$

where $m \leq n$; a_{i} and b_{i} are real the System is BIBO stable if and only if all the roots of the denominator polynomial (also called the poles of the transfer function) are in the stunt kef half plane (Ie. they he in the set

$$
\{s \mid \operatorname{Re}(s)<0\})
$$

Now we study Bouncled-input Bounded output stability of intercomectuns

We will assume throughout that when a real-rational transfer function $G(B)$ is given with

$$
G(s)=\frac{n(s)}{d(s)} \text { where }
$$

$n(s)$ and $d(s)$ are polynomials in s, then $n(s)$ and $d(s)$ have no common factors. (i.e. they are Coprome polynomids).

Examples:

Examples:
Consider

$$
\begin{aligned}
G(s) & =\frac{s-1}{s^{2}+2 s+1} \\
\text { here } n(s) & =(s-1) \\
d(s) & =s^{2}+2 s+1=(s+1)^{2}
\end{aligned}
$$

Note that there are no common factors between $n(s)$ and $d(s)$ and therefore they are co-prome.
Example:
Consider

$$
G(8)=\frac{(s-1)}{s^{2}-28+1}
$$

Here $n(s)=(8-1)$

$$
\begin{aligned}
d(8) & =s^{2}-28+1 \\
& =(s-1)^{2}
\end{aligned}
$$

$n(s)$ and $d(s)$ have a common factor in $(1-1)$. Thus, the representation (*) is not a coprnme representation. Note that

$$
G(s)=\frac{1}{(s-1)} \text { which is }
$$

a coprime representation.
a coprime representation.

Series Interconnection:
consider turd lineor-time-invanant Systems that are interconnected in a Series manner.

Note that

$$
\begin{aligned}
& \text { that } y_{1}(t)=\left(h_{1} * u\right)(t) \\
& \text { and } y(t)=\left(h_{2} * y_{1}\right)(t)
\end{aligned}
$$

where $h_{1}(t)$ is the impulse response of S_{1} and $h_{2}(t)$ is the impulse response of S_{2}.
Thus

$$
y_{1}(t)=\left(h_{2} *\left(h_{1} * u\right)\right)(t)
$$

which is an unwieldy expression.
In the Laplace domain

$$
\mathcal{L}(h+u)(t)=H(8) U(8)
$$

where $H(s)=L h(t)$ and

$$
v(s)=L u(t) \text {. }
$$

Lets consider the Bounded-input Bounded-output stability of the huatran.

System.

* Suppose S_{1} is BI BO stable and S_{2} is BIBO stable. Then
$H_{1}(8)=\frac{n_{1}(s)}{d_{1}(8)} \quad\left(w\right.$ th $n_{1}(s)$ and di (s) being (o-prime) with no poles of $H_{1}(s)$ (which are the zeros of $\left.d, 18\right)$) in the rho.
similarly
$H_{2}(8)=\frac{n_{2}(8)}{d_{2}}(8)$ with no poles
in the rho.
Then at follows that for the entire interconnection with $u(t)$ as the input and $y(t)$ as the output the transfer function is

$$
H(s)=H_{1}(s) H_{2}(s)=\frac{n_{1}(s) n_{2}(s)}{d_{1}(s) d_{2}(s)}
$$

Let $n^{\prime}(s)=n_{1}(s) n_{2}(s)$

$$
d^{\prime}(s)=d_{1}(s) d_{2}(s) .
$$

Its possible that $r^{\prime}(s)$ and $d^{\prime}(s)$ have common factors and therefore $H(s)=\frac{n^{\prime}(s)}{d^{\prime}(s)}$ need not be a coprome representation of $11 / 8$)
a coprome representation of $\$ 1 / 8$) as $n_{1}(s)$ and $d_{2}(s)$ can have common factors and/or $n_{2}(s)$ and di (s) can have common factors
Nevertheless, as
$H_{1}(s)$ and $H_{2}(s)$ are
stable it follows that d_{1} (8) has no roots in the rhp and $d_{2}(s)$ also has no roots in the ola. and

$$
\begin{aligned}
& d_{1}(s)=\left(8-s_{1}\right) \cdots\left(s-s_{m}\right) \\
& d_{2}(s)=\left(8-s_{1}^{\prime}\right) \cdots\left(s-s_{n}^{\prime}\right)
\end{aligned}
$$

where $\operatorname{Re}\left(8_{i}\right)<0$ and $\operatorname{Re}\left(s_{i}^{\prime}\right)<0$

$$
\begin{aligned}
d^{\prime}(s) & =d_{1}(s) d_{2}(s) \\
& =\left(s-s_{1}\right) \cdots\left(s-s_{m}\right)\left(s-s_{1}^{\prime}\right) \ldots\left(s-s_{p}^{\prime}\right)
\end{aligned}
$$

Thus, even if some of the factor in $d^{\prime}(s)$ are cancelled by the numerator $n^{\prime}(s)$ the remaining poles will be in the rap and thus, the transfer function $H(8)$ w ll be BIBO stable.
Summary: If $H_{1}(s)$ and $H_{2}(s)$ are both stable then $H(s)=H_{1}(s) H_{2}(1)$
are both stable then $H(s)=H_{1}(s) H_{2}(s)$ wal be stable

Is it possible that $H(s)$ is BIBO stable with at least one of the systems S_{1} or S_{2} being BTBO unstable?
Anear: Yes; Consider

$$
\begin{aligned}
& H_{1}(s)=\frac{s-1}{s+1} \\
& \text { and } H_{2}(s)=\frac{1}{s^{2}-1} \\
& \text { clearly, } H_{1}(s) \text { is stable and } \\
& H_{2}(s)=\frac{1}{s^{2}-1}=\frac{1}{(s-1)(8+1)} \text { is }
\end{aligned}
$$

unstable; with poles 1 and -1 .
Now the transfer function between input u and output y is given by

$$
\begin{aligned}
H(s) & =H_{1}(s) H_{2}(s) \\
& =\left(\frac{s-1}{s+1}\right) \frac{1}{s^{2}-1} \\
& =\frac{(s-1)}{(s+1)} \frac{1}{(s-1)(s+1)} \\
& =\frac{1}{(s+1)^{2}}
\end{aligned}
$$

Note that $\frac{1}{1.1,2}$ is a coprime

Note that $\frac{1}{(s+1)^{2}}$ is a coprime representation and thus
$H(s)$ is a stable transfer function.
Thus,
H / s) is stable (BIBO) but $H_{2}(s)$ is not (BIBO) stable!
This is caused by "unstable pole-zero cancellation"; the unstable zero of the transfer function $H,(s)=\frac{s-1}{s+1}$ Cancels the unstable pole of the transfer function $H_{2}(s)=\frac{1}{(s-1)(s+1)}$.
Thus, unstable pole-zero cancellations can hide instabilities in a system.

Parallel Interconnection:
Cons, der two systems S_{1} and S_{2} with impulse responses h_{1} and h_{2} respectively and transfer functions $H_{1}(S)$ and $H_{2}(8)$ respectively. Suppose, S_{1} and S_{2} are interconnected

Suppose, S_{1} and S_{2} are interconnected in a parallel architecture

In the transfer function domain

and

$$
\begin{aligned}
Y(s) & =H_{1}(s) U(s)+H_{2}(s) U(s) \\
& =\left[H_{1}(s)+H_{2}(s)\right] U(s)
\end{aligned}
$$

Suppose $H_{1}(s)=\frac{n_{1}(s)}{d_{1}(s)}$ and

$$
H_{2}(s)=\frac{n_{2}(s)}{d_{2}(8)} \text { are two }
$$

coprome representations of H_{1} and H_{2} respectively clearly if S_{1} and S_{2} are BIBO stable then $d_{1}(s)$ has no roots in the RHP and $d_{2}(8)$ has no roots in the RHP and therefore

$$
\begin{aligned}
H_{1}(s)+H_{2}(s) & =\frac{n_{1}(s)}{d_{1}(s)}+\frac{r_{2}(s)}{d_{2}(s)} \\
& =\frac{n_{1} d_{2}+d_{1} n_{2}}{d_{1}(s) d_{2}(s)}
\end{aligned}
$$

that has $d_{1}(s) d_{2}(s)$ as a denominator cannot have roots in the RHP.
Thus, if $H_{1}(s)$ and $H_{2}(s)$ are both BIBO stable then

So is the transfer function obtained by $H_{1}(\beta)+H_{2}(8)$.

Thus, we have shown that if $H_{1}(8)$ has no poles in R up and $H_{2}(8)$ has no poles in RHP then
$H_{1}(8)+H_{2}(8)$ will have nopoles in RHO

Question: is A possible that $H_{1}(s)+H_{2}(s)$ has no poles in RHP but at least one of $H_{1}(s)$ or $\mathrm{H}_{2}(\mathrm{~s})$ admits a poler in RHP? ?

Answer: Consider

$$
\begin{aligned}
& H_{1}(s)=\frac{1}{s-1}+\frac{1}{s+1}=\frac{2 s}{(s-1)^{2}} \\
& H_{2}(s)=\frac{-1}{s-1}+\frac{1}{(s+3)}=\frac{-s-3+s-1}{(s-1)(s+3)}=\frac{-4}{(s-1)(s+3)}
\end{aligned}
$$

Note that

$$
\begin{aligned}
H_{1}(s)+H_{2}(s) & =\frac{2 s}{(s-1)^{2}}-\frac{4}{(s-1)(s+3)} \\
& =\frac{1}{s-1}+\frac{1}{s+1}-\frac{1}{s-1}+\frac{1}{s+3} \\
& =\frac{1}{(s+1)}+\frac{1}{(s+3)} \\
& =\frac{2 s+4}{(s+1)(s+3)}
\end{aligned}
$$

Which is stable.
Thus, it is possible to have $H_{1}(s)+H_{2}(s)$ being unstable transfer function witt both $H_{1}(s)$ and $H_{2}(s)$ being unstable. transfer functions.

Is it possible to have $H_{1}+H_{2}=H(s)$ be a stable trunsferfuncteon with only one of the transfer functions H_{1} or H_{2} being unstable?
Answer: NO.
Suppose $H_{1}+H_{2}=H(s)$ is stable and Suppose $H_{2}(s)$ is stable also 3.
then

$$
H(s)=\frac{n(s)}{j(8)}
$$

wilt dis) having no zeros in up.

$$
H_{2}(s)=\frac{r_{2}(s)}{d_{2}(s)} \quad \text { witt } d_{2}(s)
$$

having no 3 sos in roup.
Thus,

$$
\begin{aligned}
H_{1}(s) & =H(s)-H_{2}(s) \\
& =\frac{n(s)}{d(s)}-\frac{n_{2}(s)}{d_{2}(s)} \\
& =\frac{n(s) d_{2}(s)-n_{2}(s) d(s)}{d(s) d_{2}(s)}
\end{aligned}
$$

and as $d(s) d_{2}(s)$ have no zero in the rap; $H_{1}(s)$ cannot hove any poles in the rhp and thus $H_{1}(s)$ is also stable.
$\frac{\text { Unity Negative feedback }}{\text { inter }}$ interconnections

$$
y(s)=G(8) u(8)
$$

$$
\begin{array}{rlrl}
& u(s)=k(s) e(s) \\
& e(s)=r(s)-y(s) \\
\therefore & u(s)=k(s)[\gamma(s)-y(s)] \\
\Rightarrow & y(s)=G(s) K(s)[\gamma(s)-y(s)] \\
\Rightarrow & (1+G(s) K(s)) y(s)=G(s) k(s) \gamma(s) \\
\Rightarrow & & y(s)= & \frac{G(s) K(s)}{1+G(s) \mid(s)} \gamma
\end{array}
$$

\therefore The input $r(s)$ and output $y(s)$ transfer function is

$$
\frac{G(s) K(s)}{1+G(s) K(s)}
$$

(x) Let $G=\frac{1}{(S-1)(s+1)} \quad K(s)=\frac{S-1}{s+1}$

Then

$$
\begin{aligned}
\frac{G(s) K(s)}{1+G(s) K(s)} & =\frac{\frac{1}{(s-7(s+1))^{s-1}} 1+\frac{1}{(s+1)}}{1\left(s-1(s+1)^{(s+1)}\right.} \\
& =\frac{\frac{1}{(s+1)^{2}}}{\frac{(s+1)^{2}+1}{(s+1+2}} \\
& =\frac{1}{1+(s+1)^{2}}
\end{aligned}
$$

which has poles at

$$
\begin{aligned}
& 1+(s+1)^{2}=0 \\
\Rightarrow & (s+1)^{2}=-1 \\
\Rightarrow & (s+1)= \pm 5
\end{aligned}
$$

$$
\Delta_{1}=-1+1
$$

$S_{2}=-1-5$ are the twopole and $\frac{G K}{1+G_{1} k}$ is stable.

