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Nonlinear State Model

ẋ1 = f1(t, x1, . . . , xn, u1, . . . , up)

ẋ2 = f2(t, x1, . . . , xn, u1, . . . , up)

...
...

ẋn = fn(t, x1, . . . , xn, u1, . . . , up)

ẋi denotes the derivative of xi with respect to the time
variable t

u1, u2, . . ., up are input variables

x1, x2, . . ., xn the state variables
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ẋ = f(t, x, u)
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ẋ = f(t, x, u)

y = h(t, x, u)

x is the state, u is the input
y is the output (q-dimensional vector)

Special Cases:
Linear systems:

ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u

Unforced state equation:

ẋ = f(t, x)

Results from ẋ = f(t, x, u) with u = γ(t, x)
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Autonomous System:

ẋ = f(x)

Time-Invariant System:

ẋ = f(x, u)

y = h(x, u)

A time-invariant state model has a time-invariance property
with respect to shifting the initial time from t0 to t0 + a,
provided the input waveform is applied from t0 + a rather
than t0
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Existence and Uniqueness of Solutions

ẋ = f(t, x)

f(t, x) is piecewise continuous in t and locally Lipschitz in
x over the domain of interest

f(t, x) is piecewise continuous in t on an interval J ⊂ R if
for every bounded subinterval J0 ⊂ J , f is continuous in t
for all t ∈ J0, except, possibly, at a finite number of points
where f may have finite-jump discontinuities

f(t, x) is locally Lipschitz in x at a point x0 if there is a
neighborhood N(x0, r) = {x ∈ Rn | ‖x − x0‖ < r}
where f(t, x) satisfies the Lipschitz condition

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, L > 0
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A function f(t, x) is locally Lipschitz in x on a domain
(open and connected set) D ⊂ Rn if it is locally Lipschitz at
every point x0 ∈ D

When n = 1 and f depends only on x

|f(y) − f(x)|

|y − x|
≤ L

On a plot of f(x) versus x, a straight line joining any two
points of f(x) cannot have a slope whose absolute value is
greater than L

Any function f(x) that has infinite slope at some point is
not locally Lipschitz at that point
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A discontinuous function is not locally Lipschitz at the points
of discontinuity

The function f(x) = x1/3 is not locally Lipschitz at x = 0
since

f ′(x) = (1/3)x−2/3 → ∞ a x → 0

On the other hand, if f ′(x) is continuous at a point x0 then
f(x) is locally Lipschitz at the same point because
continuity of f ′(x) ensures that |f ′(x)| is bounded by a
constant k in a neighborhood of x0 ; which implies that
f(x) satisfies the Lipschitz condition L = k

More generally, if for t ∈ J ⊂ R and x in a domain
D ⊂ Rn, f(t, x) and its partial derivatives ∂fi/∂xj are
continuous, then f(t, x) is locally Lipschitz in x on D
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Lemma: Let f(t, x) be piecewise continuous in t and
locally Lipschitz in x at x0, for all t ∈ [t0, t1]. Then, there is
δ > 0 such that the state equation ẋ = f(t, x), with
x(t0) = x0, has a unique solution over [t0, t0 + δ]

Without the local Lipschitz condition, we cannot ensure
uniqueness of the solution. For example, ẋ = x1/3 has
x(t) = (2t/3)3/2 and x(t) ≡ 0 as two different solutions
when the initial state is x(0) = 0

The lemma is a local result because it guarantees existence
and uniqueness of the solution over an interval [t0, t0 + δ],
but this interval might not include a given interval [t0, t1].
Indeed the solution may cease to exist after some time
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Example:
ẋ = −x2

f(x) = −x2 is locally Lipschitz for all x

x(0) = −1 ⇒ x(t) =
1

(t − 1)

x(t) → −∞ as t → 1

the solution has a finite escape time at t = 1

In general, if f(t, x) is locally Lipschitz over a domain D
and the solution of ẋ = f(t, x) has a finite escape time te,
then the solution x(t) must leave every compact (closed
and bounded) subset of D as t → te
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Global Existence and Uniqueness

A function f(t, x) is globally Lipschitz in x if

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖

for all x, y ∈ Rn with the same Lipschitz constant L

If f(t, x) and its partial derivatives ∂fi/∂xj are continuous
for all x ∈ Rn, then f(t, x) is globally Lipschitz in x if and
only if the partial derivatives ∂fi/∂xj are globally bounded,
uniformly in t

f(x) = −x2 is locally Lipschitz for all x but not globally
Lipschitz because f ′(x) = −2x is not globally bounded
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Lemma: Let f(t, x) be piecewise continuous in t and
globally Lipschitz in x for all t ∈ [t0, t1]. Then, the state
equation ẋ = f(t, x), with x(t0) = x0, has a unique
solution over [t0, t1]

The global Lipschitz condition is satisfied for linear systems
of the form

ẋ = A(t)x + g(t)

but it is a restrictive condition for general nonlinear systems

– p. 12/18



Lemma: Let f(t, x) be piecewise continuous in t and
locally Lipschitz in x for all t ≥ t0 and all x in a domain
D ⊂ Rn. Let W be a compact subset of D, and suppose
that every solution of

ẋ = f(t, x), x(t0) = x0

with x0 ∈ W lies entirely in W . Then, there is a unique
solution that is defined for all t ≥ t0
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Example:
ẋ = −x3 = f(x)

f(x) is locally Lipschitz on R, but not globally Lipschitz
because f ′(x) = −3x2 is not globally bounded

If, at any instant of time, x(t) is positive, the derivative ẋ(t)
will be negative. Similarly, if x(t) is negative, the derivative
ẋ(t) will be positive

Therefore, starting from any initial condition x(0) = a, the
solution cannot leave the compact set {x ∈ R | |x| ≤ |a|}

Thus, the equation has a unique solution for all t ≥ 0
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Equilibrium Points

A point x = x∗ in the state space is said to be an
equilibrium point of ẋ = f(t, x) if

x(t0) = x∗ ⇒ x(t) ≡ x∗, ∀ t ≥ t0

For the autonomous system ẋ = f(x), the equilibrium
points are the real solutions of the equation

f(x) = 0

An equilibrium point could be isolated; that is, there are no
other equilibrium points in its vicinity, or there could be a
continuum of equilibrium points
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A linear system ẋ = Ax can have an isolated equilibrium
point at x = 0 (if A is nonsingular) or a continuum of
equilibrium points in the null space of A (if A is singular)

It cannot have multiple isolated equilibrium points , for if xa

and xb are two equilibrium points, then by linearity any point
on the line αxa + (1 − α)xb connecting xa and xb will be
an equilibrium point

A nonlinear state equation can have multiple isolated
equilibrium points .For example, the state equation

ẋ1 = x2, ẋ2 = −a sin x1 − bx2

has equilibrium points at (x1 = nπ, x2 = 0) for
n = 0, ±1, ±2, · · ·
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Linearization

A common engineering practice in analyzing a nonlinear
system is to linearize it about some nominal operating point
and analyze the resulting linear model

What are the limitations of linearization?

Since linearization is an approximation in the
neighborhood of an operating point, it can only predict
the “local” behavior of the nonlinear system in the
vicinity of that point. It cannot predict the “nonlocal” or
“global” behavior

There are “essentially nonlinear phenomena” that can
take place only in the presence of nonlinearity
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Nonlinear Phenomena

Finite escape time

Multiple isolated equilibrium points

Limit cycles

Subharmonic, harmonic, or almost-periodic oscillations

Chaos

Multiple modes of behavior
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