
Robust Control: HW 7 and solutions

Problem 1: Find the poles and zeros of the following transfer matrix[
s
s+1

1
(s+1)(s+2)

1
s+3

−1
s+1

1
(s+1)(s+2)

1
s

]

Solution: First we will describe how to obtain the Smith-McMillan form
easily. Given a proper rational transfer matrix G(s) with the (ij)th element
being Gij

1. first write
G(s) =

1
d(s)

P (s)

where d(s) be the least common multiple of all the denominators of
Gij(s).

For our example the least common multiple of the denominators is

d(s) = s(s+ 1)(s+ 2)(s+ 3)

and thus P (s) is given by

P (s) =

(
s2(s+ 2)(s+ 3) s(s+ 3) s(s+ 1)(s+ 2)
−s(s+ 2)(s+ 3) s(s+ 3) (s+ 1)(s+ 2)(s+ 3)

)
.

2. Determine ξi(s) the monic greatest common divisor of all the i × i
minors of P (s). Let ξ0(s) = 1.

Note that for our example the 1×1 minors of P (s) are all the individual
elements of P (s) given by s2(s+2)(s+3), s(s+3), s(s+1)(s+2), −s(s+
2)(s+ 3), s(s+ 3), (s+ 1)(s+ 2)(s+ 3). Thus

ξ1(s) = gcd{s2(s+ 2)(s+ 3), s(s+ 3), s(s+ 1)(s+ 2),−s(s+ 2)(s+ 3), (s+ 1)(s+ 2)(s+ 3)}
= 1

The 2× 2 minors are given by

ξ2(s) = gcd{s2(s+ 3)2(s+ 2)(s+ 1), s2(s+ 1)(s+ 2)2(s+ 3)(s+ 4), 3s(s+ 1)(s+ 2)(s+ 3)}
= s(s+ 1)(s+ 2)(s+ 3)
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3. Determine
ε̄i(s) =

ξi(s)
ξi−1(s)

.

For the example

ξ1(s) = 1
ξ2(s) = s(s+ 1)(s+ 2)(s+ 3)

The Smith form is given by

Σ =



ε1
ψ1

0 . . . 0
. . .

...
. . .

...
εr
ψr

0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
... 0 . . . 0

0 . . . 0 0 . . . 0


.

Thus
G(s) = UΣV

where εi
ψi

is the coprime representation of ε̄i
d(s) .

For our example

ε1
ψ1

= 1
s(s+1)(s+2)(s+3)

ε2
ψ2

= s(s+1)(s+2)(s+3)
s(s+1)(s+2)(s+3) = 1

Thus the poles polynomial is given by ψ1(s)ψ2(s) = s(s+1)(s+2)(s+3)
and thus the poles are at s = 0,−1,−2,−3 and the zeros polynomial
is ε1(s)ε2(s) = 1. Thus there are no zeros.

2



Problem 2: Prove that Suppose G1 and G2 have a state space realizations

Figure 1:[
A1 B1

C1 D1

]
and

[
A2 B2

C2 D2

]
respectively. Then

•

G1G2 =

 A1 B1C2

0 A2

B1D2

B2

C1 D1C2 D1D2

 =

 A2 0
B1C2 A1

B2

B1D2

D1C2 C1 D1D2

.
Solution: Refer to Figure 1. Let y = G1G2u. Let G2u = y2 then
using the state space representation of G2 and G1 we have

ẋ2 = A2x2 +B2u
y2 = C2x2 +D2u

ẋ1 = A1x1 +B1y2 = A1x1 +B1C2x2 +B1D2u = A1x1 +B1C2x2 +B1D2u
y = C1x1 +D1y2 = C1x1 +D1C2x2 +D1D2u

Thus with x = [x1 x2]T we have

ẋ =

(
A1 B1C2

0 A2

)(
x1

x2

)
+

(
B1D2

B2

)
u

and
y = [C1 D1C2]x+D1D2u

The other realization is obtained by taking x = [x2 x1]T .
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•

G1 +G2 =

 A1 0
0 A2

B1

B2

C1 C2 D1 +D2


Solution: Refer to Figure 1(b). Let y = G1G2u. LetG2u = y2, G1u =
y1 and y = y1 + y2 then using the state space representation of
G2 and G1 we have

ẋ2 = A2x2 +B2u
y2 = C2x2 +D2u

ẋ1 = A1x1 +B1u
y = y1 + y2 = C1x1 + C2x2 + (D1 +D2)u.

Thus with x = [x1 x2]T we have

ẋ =

(
A1 0
0 A2

)(
x1

x2

)
+

(
B1

B2

)
u

and
y = [C1 C2]x+ (D1 +D2)u

• Suppose G(s) =

[
A B

C D

]
is square and D is invertible then

G−1 =

[
A−BD−1C BD−1

−D−1C D−1

]
.

Solution: Let u be the input to G and y be its output. Then G−1 will map
y (the input to G−1 ) to u. G is described by

ẋ = Ax+Bu
y = = Cx+Du

u = −D−1Cx+D−1y
ẋ = Ax+B(D−1y −D−1Cx) = (A−BD−1C)x+BD−1y
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Problem 3: Prove that(
I −K
−G22 I

)−1

=

(
(I −KG22)−1 (I −KG22)−1K
(I −G22K)−1G22 (I −G22K)−1

)
︸ ︷︷ ︸

H(G22,K)

.

+

+

+
G

u

yK
+

v1

v2

22

Figure 2:

Solution: Note that(
I −K
−G22 I

)(
(I −KG22)−1 (I −KG22)−1K
(I −G22K)−1G22 (I −G22K)−1

)

=

(
(I −KG22)−1 −K(I −G22K)−1G22 (I −KG22)−1K −K(I −G22K)−1

−G22(I −KG22)−1 + (I −G22K)−1G22 −G22(I −KG22)−1K + (I −G22K)−1

)

Note that

(I −KG22)−1K −K(I −G22K)−1

= (I −KG22)−1[K(I −G22K)− (I −KG22)K](I −G22K)−1

= (I −KG22)−1[K −KG22K −K +KG22K](I −G22K)−1 = 0

Therefore
(I −KG22)−1K = K(I −G22K)−1.

(I −KG22)−1 −K(I −G22K)−1G22 = (I −KG22)−1 − (I −KG22)−1KG22

= (I −KG22)−1(I −KG22) = I
.

Switching the roles of G22 and K one can prove that

−G22(I−KG22)−1+(I−G22K)−1G22 = 0, −G22(I−KG22)−1K+(I−G22K)−1 = I.
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Problem 4: Consider Figure 2. Suppose G22 and K have minimal state

space realizations

[
A B2

C2 D22

]
and

[
AK BK
CK DK

]
. Let

T =



A1︷ ︸︸ ︷
A 0
0 AK

B︷ ︸︸ ︷
B2 0
0 BK

0 −CK
−C2 0︸ ︷︷ ︸

−C

I −DK

−D22 I︸ ︷︷ ︸
D


.

Thus

T−1 =

[
A1 +BD−1C BD−1

D−1C D−1

]
=:

[
A B

C D

]

where

D = D−1 =

(
I −DK

−D22 I

)−1

=

(
I + (I −D22DK)−1D22 DK(I −D22DK)−1

(I −D22DK)−1D22 (I −D22DK)−1

)

=

(
I 0
0 0

)
+

(
(I −D22DK)−1D22 DK(I −D22DK)−1

(I −D22DK)−1D22 (I −D22DK)−1

)

=

(
I 0
0 0

)
+

(
DK

I

)
(I −D22DK)−1

(
D22 I

)
Thus

A = A1+BD−1C =

(
A B2CK
0 AK

)
+

(
B2DK

BK

)
(I−D22DK)−1

(
C2 D22CK

)
Prove that the following are equivalent

1. (A,B,C,D) is stabilizable and detectable.

2. (A,B2, C2, D22) and (AK , BK , CK , DK) are stabilizable and detectable.

Solution: (1)⇒ (2)
Suppose (A,C) is not detectable. Then there exists a x = (xG xK)T 6=

0 partitioned according to the dimensions of A and AK such that Ax =
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λx with Cx = 0 with λ in rhp. This implies that (A1 + BD−1C)x =
0 and D−1Cx = 0. Thus A1x = 0withCx = 0. Thus(

A 0
0 AK

)(
xG
xk

)
= λ

(
xG
xk

)
,

(
0 −CK
−C2 0

)(
xG
xk

)
= 0.

Thus
AxG = λxG, C2xG = 0, AKxK = λxK , CKxK = 0.

As x 6= 0 atleast one of the vectors xG, xK have to be nonzero. WLOG
assume that xG 6= 0. Then it follows that (A,C2) is not detectable.

Suppose (A,B) is not stabilizable. Then there exists a x∗ = (x∗G x∗K) 6= 0
such that x∗A = λx∗, x∗B = 0 with λ in rhp. This implies that x∗(A1 +
BD−1C) = λx∗ and x∗BD−1 = 0. Thus x∗A1 = 0 and x∗B = 0. Thus

(
x∗G x∗K

)( A 0
0 AK

)
= λ

(
x∗G x∗K

)
,
(
x∗G x∗K

)( B2 0
0 BK

)
= 0.

Thus
x∗GA = λx∗G, x

∗
GB2 = 0, x∗KAK = λx∗K , x∗KBK = 0.

As x∗ 6= 0 at least one of the pairs (A,B2), (AK , BK) is not stabilizable.
Thus we have shown (1) ⇒ (2). (2) ⇒ (1) follows by similar line of

argument.
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Problem 5: Consider Figure 2.

1. Show that a realization of L = G22K is given by

[
AL BL
CL DL

]
where

AL =

(
A B2CK
0 AK

)
, BL =

(
B2DK

BK

)
, CL = (C2 D22CK), DL = D22DK .

2. Show that a realization of

S = (I − L)−1 =

[
AS BS
CS DS

]
where

AS = A =

(
A B2CK
0 AK

)
+

(
B2DK

BK

)
(I −D22DK)−1

(
C2 D22CK

)
BS =

(
B2DK

BK

)
(I −D22DK)−1

CS = (I −D22DK)−1
(
C2 D22CK

)
DS = (I −D22DK)−1

3. Prove that the following are equivalent:

(a) (AS , BS , CS , DS) is stabilizable and detectable
(b) (AL, BL, CL, DL) is stabilizable and detectable

Solutions: (1) from Problem 2.

(2) Note that I−L = I− [CL(sI−AL)−1BL+DL] = −CL(sI−AL)−1 +(I−

DL). Thus a realization of I−L is given by

[
AL BL
−CL I −DL

]
. Using Prob-

lem (2), a realization of (I−L)−1 is given by

[
AL +BL(I −DL)−1CL BL(I −DL)−1

(I −DL)−1CL (I −DL)−1

]
.

Substituting the realizations of L we obtain the result.

(3) Note that AS = AL + BL(I − DL)−1CL, BS = BL(I − DL)−1, CS =
(I −DL)−1CL and DS = (I −DL)−1. Thus it follows that

ASx = 0 and CSx = 0 ⇔ ALx = 0 and CLx = 0
z∗AS = 0 and z∗BS = 0 ⇔ z∗AL = 0 and z∗BL = 0

The result follows from the above observation.
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Problem 6: Prove that

1. If K is stable then the closed loop interconnection is stable if and only
if G22(I −KG22)−1 is stable.

2. If G22 is stable then the closed loop interconnection is stable if and
only if K(I −G22K)−1 is stable.

Solution: Note that the closed loop is internally stable if and only if(
(I −KG22)−1 (I −KG22)−1K
(I −G22K)−1G22 (I −G22K)−1

)

is stable

(2) Note that in Problem (3) we have shown that

(I −KG22)−1K = K(I −G22K)−1.

If the interconnection is stable then (I −KG22)−1K is stable and therefore
K(I −G22K)−1 is stable.

If G22 is stable and K(I − G22K)−1 are stable then (I −KG22)−1K is
stable. Note that (I − KG22)−1 = I + (I − KG22)−1KG22 which is also
stable as G22 is stable. Note that

(I −G22K)−1G22 = G22(I −KG22)−1.

As both G22 and (I −KG22)−1 are both stable (I −G22K)−1G22 is stable.
Finally (I −G22K)−1 = I +G22(I −KG22)−1K and therefore stable.

(1) can be proven by switching the roles of K and G22 in the proof above.
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