Robust Control: HW 7 and solutions

Problem 1: Find the poles and zeros of the following transfer matrix

S 1 1

s+11 (s+1)1(s+2) i@+3
s+1  (s+1)(s+2) s

Solution: First we will describe how to obtain the Smith-McMillan form
easily. Given a proper rational transfer matrix G(s) with the (ij)™* element

being G;;
1. first write 1
=——P
G(s) = g P
where d(s) be the least common multiple of all the denominators of

Gij(s).

For our example the least common multiple of the denominators is
d(s) = s(s +1)(s +2)(s + 3)

and thus P(s) is given by

P()_<32(s—|—2)(s—|—3) s(s+3) s(s+1)(s+2) )
T s+ 2(s+3) s(s+3) (s+D(s+2)(s+3) )

2. Determine &;(s) the monic greatest common divisor of all the ¢ x 4
minors of P(s). Let {(s) = 1.

Note that for our example the 1x 1 minors of P(s) are all the individual
elements of P(s) given by s2(s+2)(s+3), s(s+3), s(s+1)(s+2), —s(s+
2)(s+3), s(s+3), (s+1)(s+2)(s+3). Thus

&i(s) = ged{s*(s +2)(s +3),5(s +3),8(s + 1)(s +2), =s(s +2)(s +3), (s + 1)(s + 2)(s + 3)]
=1
The 2 x 2 minors are given by

E2(s) = ged{s*(s +3)*(s +2)(s + 1), s*(s +1)(s +2)*(s +3)(s +4), 3s(s +1)(s +2)(s +3)
= s(s+1)(s+2)(s+3)



3. Determine

_ &i(s)
€(S) = .
(s) i—1(s)
For the example
G(s) = 1
&(s) = s(s+1)(s+2)(s+3)
The Smith form is given by
ﬁ 0 . 0
5 % 0O ... 0
0 0 0 ... 0
: 0 ... 0
0 0 0 ... 0
Thus
G(s)=UxV

where % is the coprime representation of dZ 3

For our example

€1 1

— s(s+1)(s+2)(s+3

_ sgs-&-l;gs-&—Q;Es-‘rB; -1
— s(s+H1)(s+2)(s+3) T

Thus the poles polynomial is given by 91 (s)2(s) = s(s+1)(s+2)(s+3)

and thus the poles are at s = 0, —1, —2, —3 and the zeros polynomial
is €1(s)ea(s) = 1. Thus there are no zeros.



Problem 2: Prove that Suppose G1 and G5 have a state space realizations

Cy | Dy

(a) (b)
Figure 1:
By Az | By .
] d [ o, 1Dy ] respectively. Then
Ay B1Cy B1D, Ao 0 B,
G1G2: 0 AQ BQ = Bng A1 BlDQ
Ci DiCy | DDy D\Cy Ci | DiD,

Solution: Refer to Figure 1. Let y = G1Gou. Let Gou = yo then
using the state space representation of G and G; we have

To = Aoxo+ Bou

y2 = Csxa+ Dau

1 = Az + By = A1z + B1Coxy + B1Dou = Ay + B1Chxa + B1Dou
Y = Cix1 + Dlyg = Ciz1 + D1Cyz9 + D1Dou

Thus with z = [z1 22]7 we have

- A1 B102 I + BlDQ u
o 0 AQ i) BQ
y =[C1 D1Cs)x + D1Dyu

The other realization is obtained by taking z = [z2 1

and

.



A 0 By
G+ Gy = 0 As By
Cy Cy | Di+D,

Solution: Refer to Figure 1(b). Let y = G1Gau. Let Gou = y2, Giu =
y1 and ¥y = y1 + yo then using the state space representation of
Go and G we have

Li’g = AQJIQ + Bzu

y2 = Chxs + Dou

1 = Aijxz1+ Biu

y = y1+y2 = Ciz1 + Coxa + (D1 + Da)u.
Thus with 2 = [z1 22]7 we have

. Al 0 T + Bl
= 0 A2 T2 BQ v
y=[C1 Colz + (D1 + D2)u

e Suppose G(s) = l é, IB; ] is square and D is invertible then

o-1_ | A-BD'C|BD!
N -D7'c | D' |

and

Solution: Let u be the input to G and y be its output. Then G~! will map
y (the input to G=! ) to u. G is described by

T = Ax+ Bu

y= = Czx+ Du

U = —-D'Cx+Dly

i = Az+B(D'y-D71Cz)=(A-BD 'C)z+ BD 1y



Problem 3: Prove that

I K\ [ (I-KGw)™' (I-KGp) 'K
—G22 I o (I — G22K)71G22 (I — GQQK)il )

H(G22,K)

+| V.
2
' K -

y +

Figure 2:

Solution: Note that
I -K (I — KGQQ)il (I — KGQQ)ilK
—Goy 1 (I— GQQK)_IGQQ (I— GQQK)_I
( I—=KGn)™' — K(I - GpuK) Gy (I — KGy2) 'K — K(I — Goo K)~!
- —GQQ(I — KG22)71 + (I — GQQK)ilGQQ —GQQ(I — KGQQ)ilK + (I — GQQK)il
Note that

(I - KGa2) 'K — K(I — Gy K)~!
= (I — KGQg)il[K(I — GQQK) — (I — KGQQ)K](I — GQQK)il
= (I — KG9) 'K — KGyoK — K + KGooK|(I — G2 K)~1 =0

Therefore
(I — KGo) 'K = K(I — GooK) ™.

(I — KGQQ)il — K(I — GQQK)ilGQQ = (I — KG22)71 — (I — KGQQ)ilKGQQ
= (I -KGoa) ' (I -KGg)=1 ‘

Switching the roles of (Goo and K one can prove that

—Gog(I—KGoo) '+ (I-GoK) 'Goy =0, —Go(I-KGay) ' K+(I-GoK) ! =1.



Problem 4: Consider Figure 2. Suppose G2 and K have minimal state

space realizations 4| B, and Ax | Bx Let
p 02 D22 CK DK .

_ A B .
—_—— —
A0 By 0
T 0 Ag 0 Bg
- 0 —Ck I —Dy
—Cy 0 —Doy T
L —C D i
Thus
-1 Ai+BD™'C|BD' | | A|B
p'c | bt | | C|D
where
I Dr \
D=D = Dy I
— I+ (I - D22DK>71D22 DK(I — D22DK)71
(I — Dy Dg) ™' Do (I — DyDg)™*
_ (I 0 N (I — DoaDp) ' Doy Dy (I — DagDp )™t
0 0 (I — DQQDK)iIDQQ (I — DQQDK)il
I 0 D
= 0 0 + IK>(I—D22DK)_1<D22 I)
Thus

A=A+BD'C = ( A BaCx >+< BaDi

0 Ag Bg >(I_D22DK)1( C2 DnCk )

Prove that the following are equivalent
1. (A, B,C, D) is stabilizable and detectable.
2. (A, By, Cq, D99) and (Ak, Bi, Ck, D) are stabilizable and detectable.

Solution: (1) = (2)
Suppose (4, C) is not detectable. Then there exists a x = (zg rx)! #
0 partitioned according to the dimensions of A and Ax such that Az =



Ar with Cx = 0 with X in thp. This implies that (4; + BD1C)z =
0 and D~'Cxz = 0. Thus A;z = OwithCz = 0. Thus

(35 () () (e o) ()

Thus
Axg = g, Coxg =0, Axrg = xrg, Crrg = 0.

As x # 0 atleast one of the vectors z¢, xx have to be nonzero. WLOG
assume that zg # 0. Then it follows that (A, C2) is not detectable.
Suppose (4, B) is not stabilizable. Then there exists a * = (2§ 2%) #0
such that #*A = Ar*, 2*B = 0 with X in thp. This implies that x*(A; +
BD7'C) = \z* and 2*BD~! = 0. Thus 2*A; = 0 and 2*B = 0. Thus

(o i) (o 0 ) =2 (e mic) (o2 wic) (2 5, ) =0

Thus
rGA = xg, 6By =0, 2 Ak = Ay, 2 Br =0.

As x* # 0 at least one of the pairs (A, Bs), (Ax, Bg) is not stabilizable.
Thus we have shown (1) = (2). (2) = (1) follows by similar line of
argument.



Problem 5: Consider Figure 2.

1. Show that a realization of L = G92 K is given by Ar | Br where
Cp | Dg,

A ByC BsD
Ap = R BL=| 227K |, Cp=(Ce DnCk), Dp = DynDkg.
0 Ag By

2. Show that a realization of

S=(I-10)"= l As | Bs ]

Cs | Ds
where
— A ByC BsD

Ag = A_<0 A1K> <Bj{ K)(I—DQQDK) 1(02 D2QCK)

B>D
BS = ( B2 K > (I—DQQDK)_l

K

Cs = (I_D22DK)71( Cy DyCk )
Ds = (I —DypDk)™!

3. Prove that the following are equivalent:

(a) (As, Bs,Cg, Dg) is stabilizable and detectable
(b) (A, Br,Cyp, Dy) is stabilizable and detectable

Solutions: (1) from Problem 2.

(2) Note that [ —L = I —[Cp(sI —Ar) 'Bp+ D) = —Cr(sI —Ap) "'+ (I —

A B
Dy). Thus a realization of I — L is given by L ‘ L . Using Prob-
~Cp | I-Dg
_ -1 _ -1
lem (2), a realization of (I—L)~! is given by AL T_TBL% )_DILC) Cr B(LI(I DD)L_)l
— YL L — YL

Substituting the realizations of L we obtain the result.

(3) Note that Ag = A, + BL(I — DL)*lCL, Bg = BL(I — DL)fl, Cg =
(I — Dp)"*Cp and Dg = (I — D)t Thus it follows that

Agr =0and Cgx =0 & Apr=0and Crz =0
z*Ag=0and z2*Bs =0 < 2z*Ap=0and z*B;, =0

The result follows from the above observation.



Problem 6: Prove that

1. If K is stable then the closed loop interconnection is stable if and only
if GQQ(I — KGQQ)_I is stable.

2. If G9o is stable then the closed loop interconnection is stable if and
only if K(I — GaK)™! is stable.

Solution: Note that the closed loop is internally stable if and only if

(I-KGp)™'  (I-KG») 'K
(I~ GnK) Gy (I - GopK)™!

is stable

(2) Note that in Problem (3) we have shown that
(I — KGo2) 'K = K(I — Gy K)7 1.

If the interconnection is stable then (I — KGg) 'K is stable and therefore
K(I — GooK)™! is stable.

If Goo is stable and K (I — G2K)™! are stable then (I — KGg) 1K is
stable. Note that (I — KGQQ)il =71+ (I — KGQQ)ilKGQQ which is also
stable as (G9o is stable. Note that

(I — GQQK)_1G22 = GQQ(I — KGQQ)_I.

As both G and (I — KGa2)~! are both stable (I — Gao k) 1Gas is stable.
Finally (I — G22K)™! = I + Ga2(I — KG22) 'K and therefore stable.

(1) can be proven by switching the roles of K and Gaz in the proof above.



