Nyquist Plots

e Plot |G(jw)|Z(G(jw)) as w goes from 0 to infinity, the Nyquist
plot is the locus of vectors represented

e Convention: positive phase angles are measured counter-
clockwise from the real axis
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Examples

Integrator: G(jw) = =

Jw

A

Im

Nyquist plot is the negative
imag. axis

Derivative: G(jw) = jw
G(jw)| = w, £(G(jw)) = tan~1 (£) = 00°
Nyquist plot is the positive

A\Am jw) =-90°
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" £G(jw)=90°
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Examples

e First order pole

Gjw)| = ——

\/1 -+ w272
/(G(jw)) = —tan YN (wr)

[

e Asymptotes (from Bode plot):
1
w << — |G(jw)| =1, Z(G(jw)) =0

o~ 11 G(jw)| = % £(G(jw)) = —45°
w>> |G(jw)| =0, L(G(jw)) = —90°




Example: First order zero

e First order zero: G(jw) =
jwl + 1

Gjw)| = V1 + w?r?
/(G(jw)) = tan Y (wr)

[

 Im
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e Asymptotes (from Bode plot):
1
w << o , |GGw)| =1, Z(G(jw)) =0
1
wr =, |GGw)| = V2, L(G(jw)) = 45°

w >> |G(jw)| = oo, Z(G(jw)) = 90°

1
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Example: second order poles

e Second-order poles:

1
G(jw) =
e+ 2<< ©) 41
/(G(jw)) = —tan~ <§>
1 (2)

3

e Asymptotes (from Bode plot):
w<<wn, |G@w)| =1, Z(G{Gw)) =0
w R wp, |Gw)| = 20 Z(G(jw)) = —90°
w>>wp, |GGw)| =0, Z(G(jw)) = —180°
e Frequency point whose dis-
tance from the origin is a max-

Imum corresponds to the res-
onant frequency




Example: second order poles

e MATLAB Example Nyauist Diagrams
* Note that MATLARB plots both ° ‘ ‘ ‘
positive and negative frequency
plots Ar
* T he negative-frequency plot is
ALWAYS a mirror of positive 2r
Nyquist plot about real axis i _
S ;; o +
g [
21
4+
MATLAB commands: % 2 1 0
for zeta=[0.10.20.30.50.7 1] Real Axis
nyquist(1,[1 2*zeta*1 1]);
hold on;

end



Examples: second order zeros/ Time delay

e Second-order zeros:

2
G(jw) = (g§> +2¢ (y§> +1

* very different from second orser
poles!

e Time delay

A Im
W=00 <
w/w_o
| >
Y Re
A Im
w=0

G(jw) = et
* From Euler Theorem

G(jw)| =1, LG(jw) = —wT
* Forms a circle that spirals for-
ever on top of itself.




Relative Degree

e Write system as:
bojw™ + byjw™ 1 4 -
agjw" + arjwn=—1+ ..
then the number (n-m) is the relative degree of the system.

e Relative degree determines the high-frequency asymptote on
the Bode plots and the axis the Nyquist plot will converge
to:




Cascaded time delay

e Note: MATLAB cannot plot time delays (yet)

e Must write code to create Nyquist plot

—-2S
G, = —— c
1 — Gz —
S+1 s+1
I\/IATLAB commands:
delay = °
fregs = logspace(— ,1.5,1000);
[mag,pha] = bode(l,[ 1], freqgs);
data no delay = []; 05}
data with delay = []; '
for 1 = 1l:length(fregs)
w o= freqs(');
G = ) *exp (pha (1) *pi/180%*7) ;

g (i
G delay = g(i)*exp ((pha (i) *pi/180-w*delay) *7j); %1

data no delay [data no delay; [real (G) imag(G)]];

data with delay = [data with delay; [real (G delay) imag (G delay)]];

end
plot (data no delay(:,1),data no delay(:,2),'b'); hold on;
plot (data with delay(:,1),data with delay(:,2),'r'); hold on;
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Conformal Mapping

e A contour drawn in the s-plane will correspond to a contour
drawn in the F(s) plane:

e [ he area enclosed by a contour, by definition, is the area to
the right as the contour is traversed in the clockwise direction
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Conformal Mapping

e The excess of poles of F(s) over zeros (n-m) enclosed by the
s-plane contour traversed CW corresponds to the number of

times F(s) contour encircles the origin CCW.
* assume we dont draw contour through pole or zero

e A consequence of the Argument Principle (Math 346)
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X s-plane — /N(s)—plane
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2 CCW encirclements



The Mapping Theorem

e Let F(s) be a ratio of polynomials in s, and P and Z are the
# of poles and zeros respectively of F(s) that lie inside some

closed contour in the s-plane

% The contour doesn’t pass through poles or zeros of F(s)

* T he contour gets traced out in the clockwise direction by a represen-
tative point s

% The s-plane contour gets mapped to another contour in F(s) plane
e [ he Mapping Theorem: The total number, N, of clockwise
encirclements of the origin in the F(s) plane is equal to Z —P;
I.e.,
N=/Z-P



The Mapping Theorem

e If choose contour correctly, can use Mapping Theorem to

determine stability

* Choose contour that encloses entire RHP of the s-plane

— Contour goes along jw-axis, then circles back with infinite-radius
half-circle in a clockwise direction.

— If any poles are in the RHP, they show up as CW encirclements of
F(s) at origin

Im s — plane

X w
—o—F———Re
assume no jo axis X s-plane is the plane
poles for now that we drew our
""" Root Locus in



Use of the Mapping Theorem

characteristic polynomial

-
e If F'(s) is defined as F(s) = 1+ G(s)H(s), then examining
stability of F'(s) is the same as examining the number of

encirclements of —1 4 j0 by G(s)H(s) contour.
* We are just shifting the axis.

e If we assume that the relative degree > 0, then we only have
to evaluate the contour along s = jw, because the semicircle
part at infinity drops out:

* since lims_. G(s)H(s) = 0 if n > m and a constant if n = m.

* The plot of 1 + G(s)H(s) will stay at the same point so we do not
have to consider it as a variable as w goes to o©



Nyquist Stability Criterion

T + Y

o @

e If the O.L. T.F. G(s)H(s) has k poles in the RHP and n > m
then, as w goes from —oco to +oo0, G(jw)H (jw) must encir-
cle the —1 point k times in the CCW direction for stability
Mathematically

N=/-—PFP
x Z = # of zeros of 1 + G(s)H(s) in RHP (i.e Closed Loop poles)

* P = # of poles of G(s)H(s) in RHP (Open Loop poles)
* N = # of CW encirclements of the —1 point by G(s)H(s)



Use of Nyquist Stability Criterion

e Q: How is Nyquist Stability Criterion Used?
e A: To find CL poles

VA N + P

- — -
#of unstable #of clockwise #of unstable
zerosof 1+GH encirclematsof openloop
(closedlooppoles) the-1point poles

e If the O.L. system is stable, then there must be no encir-
clements of —1 for the C.L. system to be stable

Im G(s)H(s)-plane

Re



Example: First-order system

Example: G(s) = 34%1

Nyquist plot: (MATLAB)

* #F£ encirclements = N =0

* # of Poles in RHP = P =20
* 4/ = N+ P =0 implies stable!

Matlab Command

G=tf(1,[1 1]);
nyquist(G) ;

Note that MATLAB plots
the -1 point for you
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Example: Unstable system

Example: G(s) = 331

Nyquist plot: (MATLAB)

* # encirclements = N = —1

* # of Poles in RHP = P =1
* /4 = N+ P =0 implies stable!

Matlab Command

G=tf(2,[1 -11);
nyquist (G) ;

If gain is reduced, N = 0, and
therefore z =1 =

system is unstable (as expected)

Imaginary Axis

ref—:T_—PE—l—by
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stability depends on gain

Nyquist Diagrams
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jw axis zeros and poles

e [ he s-plane contour that encircles the right-half plane is

called the Nyquist path. This path follows jw-axis:
* We previously considered case with no jw-axis poles

e What if there are jw-axis poles?

* Nyquist path must be modified to not pass through them we add a
jog around pole, usually a semi-circle of infinitely small radius

Nyquist
path |m s— plane

. . . .e)... K K _
s=¢-e’ =G(g-e)H(s-)) = K_(;Hg © )6 y——=—-e Y
g-e(l+e-e¥)... g6 ¢

e [ he semi-circle maps to an infinite- radius semi-circle in the
G(s)H(s) plane

e Following example will illustrate



Example 1

K
G(S)H(S) = —— m
S Ts+1 Approx. root locus
w=0 - — >
' Im Re
s— plane Always
-1 G s — plane stable
| >
"Re "= Re
w=0"

e Problem: How does plot close (MATLAB doesnt help)?
* Look at phase of GH as go around pole it goes from:
— 490 degrees at A (w = 0—) (Remember: Poles contribute negative

phase) WO~
— O degrees at B
— —90 degrees at C(w = 04) -1 “°' ‘
* In this case, plot must close in CW direction S w=o " Re
— N =0,P=0,Z =0 implies stable! G s —plane
w=0"



Example 2

A
Approx. root locus m
w=0" — -
' Im Re

G s — plane Always
> unstable
w=oe Re

e Problem: How does plot close?

* Look at phase of GH as go around pole ... ax
it goes from:
— 90 — 180 = —90 degrees at A (w =0-)
— 0—180 = —180 degrees at B
— 0—270 = —270 degrees at C(w = 0+4+)

* In this case, plot must close in CW direction
— N=1,P=1,7Z = 2 implies unstable!

' Im
G s —plane

" Re




Generalized Nyquist Stability

tIm
1 .\| G s —plane

W= "Re

e If the OL transfer fn. G(s)H(s) has k poles in the RHP, then
for stability the G(s)H(s) locus must encircle the —1 point &
times in the CCW direction as a representative point s traces
the modified Nyquist path in the CW direction

e See in Ogata for good examples



Example

1

* ) = 5

e Nyquist plot: (MATLAB)
* #£ encirclements: N =0
* # of Poles in RHP: P=0
* 4 = N+ P = 0 implies stable!

e MATLAB commands:

sys=tf([1],[1 1 01);
nyquist (sys)

Imaginary Axis
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Example

* G(o) = 5o

e Nyquist plot: (MATLAB)

* #£ encirclements: N =1
* # of Poles in RHP: P=1
* /4 =N+ P =2 implies unstable!

e MATLAB commands:

sys=tf([1],[1 -1 0]);
nyquist(sys)

Imaginary Lxis

ref—:rba—l—by

approx. root locus
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Iways unstable
Myquist Disgrarm
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Possible Scenarios for Stability

e [ hree possible Nyquist Stability Scenarios:

1. No encirclement of —1
* System is stable if there are no poles of G(s)H(s) in RHP
* Otherwise unstable

2. CCW encirclement of —1

* System is stable if # of CCW encirclements = # poles of G(s)H(s)
in RHP

* Otherwise unstable

3. CW encirclement of —1
* Unstable system



Relative Stability

e In general, the closer the Nyquist plot is to the -1 point, the
less stable the system will be:

Nyquist Diagrams
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Gain and Phase Margins

e Remember familiar notions of Gain and Phase margin

e Gain Margin - How much gain can be changed before insta-
bility

B 1

'_‘GH jw, |

1

frequency where /GH =—-180°

G.M

=—-20log,,|GH jw_

e Phase Margin - How much phase lag can be added before
instability

oo =180°+ ZGH jw, degrees

1

frequency where ‘GH ‘ =1



Gain and Phase Margins

Stable Systems Unstable Systems
G s — plane

phase margin




Purpose of Margins

e [ he gain and phase margins of a system are an indication of

how close the system is to instability
* Good Design Targets:
— PM: (Damping of .3 to .7 for 2nd order system: 30° < PM < 70°)

— GM: (Can account for gain uncertainty of a factor of 2. GM >
6 dB)



