HW \#2

Show all work for full credit!

1. Let $G_{1}(s)=\frac{s-1}{s+1}$ and $G_{2}(s)=\frac{s+3}{(s-1)(s+2)}$.
(a) Obtain state space realizations of G_{1} and G_{2} such that the corresponding state dimension is equal to the degree of the denominator of the transfer function.
(b) Determine the transfer function $G=G_{1}(s) G_{2}(s)$ and determine the induced realization obtained from the realizations of G_{1} and G_{2} obtained in the question above
(c) Determine a realization of G such that the state dimension is equal to the degree of the denominator of the transfer function G.
2. Determine the state space representation of a generalized feedback interconnection from the state space realization of individual components (see course notes for the description of generalized feedback interconnection).
3. Let $A=\left[\begin{array}{cr}-1 & 0 \\ 0 & -2\end{array}\right], \quad B=\left[\begin{array}{l}0 \\ 1\end{array}\right], C=\left[\begin{array}{ll}1 & 0\end{array}\right], D=0$ be a state space realization. Determine the transfer function. Determine $e^{A t}$ and determine the step response of the state from the variation of parameters formula and the output from the transfer function.
4. Let $V=\mathbb{R}^{3}$ be the vector space (with regular vector addition and scalar multiplication on real scalars). Then show that $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}7 \\ 8 \\ 8\end{array}\right]\right\}$ is a linearly independent set. Show that $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$ is a linearly dependent set.
5. Let $A \in \mathbb{R}^{n \times n}$. Show that the set $\mathcal{V}=\{x(t)$ such that $\dot{x}(t)=A x(t)\}$ is a vector space. The $(+)$ and (\cdot) operators are respectively defined by $\left(x_{1}+x_{2}\right)(t)=x_{1}(t)+x_{2}(t)$ and $(\alpha . x)(t)=$ $\alpha x(t)$. Assume the scalar field to be real numbers.
6. Suppose $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is a linearly dependent set. Then show that one of the vectors must be a linear combination of the others.
