HW\#1

Show all work for full credit!

0. Reading Exercise: Read the CourseNotes for the last two weeks
1. Obtain a realization (the A, B, C, D matrices) of the following transfer functions
(a) $G(s)=\frac{s^{2}+2 s+3}{s^{3}+3 s^{2}+4 s+5}$
(b) $G(s)=\frac{s^{3}+3 s^{2}+2 s+4}{2 s^{3}+2 s^{2}+3 s+2}$

Provide the analog computer simulation schematic also (in terms of adders, integrators and amplifiers).
2. A system with input $u(t)$ and output $y(t)$ is given by

$$
\dot{y}(t)=u(t), \quad y(0)=0 .
$$

Prove that this system is linear, time-invariant, and causal (Assume that for all inputs are causal signals, that is, $u(t)=0$ for $t<0)$.
3. A model for the inverted pendulum on a cart shown in figure below ...

... is described by the following set of equations

$$
\begin{aligned}
(M+m) \ddot{x}+m l \ddot{\theta} \cos \theta & =-b \dot{x}+m l \dot{\theta}^{2} \sin \theta+f \\
\left(J+m l^{2}\right) \ddot{\theta}+m l \ddot{x} \cos \theta & =-m g l \sin \theta
\end{aligned}
$$

Assume $M=m=1 \mathrm{Kg}, J=1 \mathrm{Kgm}^{2}, l=1 \mathrm{~m}$ and $b=1 \mathrm{Kg} / \mathrm{s}$.
(a) Obtain a four-dimensional nonlinear state-space representation with output $y=x$, input $u=f$, and states $\left[x_{1} x_{2} x_{3} x_{4}\right]=\left[\begin{array}{ll}x & \dot{x} \dot{\theta}\end{array}\right]$.
(b) An equilibrium point of a system of the form $\dot{x}=f(x, u)$ is obtained by solving for x that satisfies $f(x, 0)=0$. Determine equilibrium points of this system (You can revise the notes on equilibrium points).
(c) Linearize this system of equations around its around the trajectory about the equilibrium point $x_{e q}=\left[\begin{array}{llll}0 & \pi & 0 & 0\end{array}\right]($ when $f(t)=0)$. Write it in state-space form.
(d) Find the transfer function for the linear system obtained above.
4. Discrete-time systems. In class we have studied about continuous-time systems. We can make following analogous statements about the discrete-time systems. Read them and then solve the problem given below these statements.
(S1.) A nonlinear discrete-time system is described by a model of the form

$$
\begin{aligned}
x[k+1] & =f(x[k], u[k]]), x(0)=x_{0} \\
y(k) & =h(x[k], u[k]),
\end{aligned}
$$

where $k \in \mathbb{N}$ denotes the discrete time. A similar linearization scheme (as in the continuous time case) would lead to a linearized model

$$
\begin{aligned}
\tilde{x}[k+1] & =A[k] \tilde{x}[k]+B[k] \tilde{u}[k], \\
\tilde{y}[k] & =C[k] \tilde{x}[k]+D[k] \tilde{u}[k]
\end{aligned}
$$

where, again, the $\{A[k], B[k], C[k], D[k]\}$ are obtained by evaluating the Jacobian matrices about he nominal state $\left\{x_{\text {nom }}[k], u_{\text {nom }}[k]\right\}$.
(S2.) An equilibrium point of a discrete-time system of the form $x[k+1]=f(x[k], u[k])$ is obtained by solving for x that satisfies $f(x, 0)=x$.

Consider the logistics equation, which is a basic model used in studying population dynamics,

$$
x[k+1]=\alpha x[k]-\alpha x^{2}[k], x[0]=x_{0}, \alpha>1
$$

(a) Compute the two equilibrium points of this system.
(b) Determine the linearized system approximation about each equilibrium point.
(c) Let $\alpha=1.5$. Determine $\tilde{x}[10]$ for each linearized system in terms of $\tilde{x}[0]$. State about which equilibrium is the corresponding linearized system a better approximation of the nonlinear logistics equation.

5. Consider the quarter car model shown, r, y and z denote the road height, car position and the wheel position respectively. F is a force acting on the wheel. Obtain a state space realization of the quarter car model with input being $[r, F]^{T}$ and output being the car position y. Obtain the transfer functions from the input to the output.

