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ABSTRACT

In this paper, we propose automated algorithmic error re-
silience based on outlier detection. Our approach exploits
the characteristic behavior of a class of applications to cre-
ate metric functions that normally produce metric values
according to a designed distribution or behavior and pro-
duce outlier values (i.e., values that do not conform to the
designed distribution or behavior) when computations are
affected by errors. For a robust algorithm that employs such
an approach, error detection becomes equivalent to outlier
detection. As such, we can make use of well-established,
statistically rigorous techniques for outlier detection to effec-
tively and efficiently detect errors, and subsequently correct
them. Our error-resilient algorithms incur significantly lower
overhead than traditional hardware and software error re-
silience techniques. Also, compared to previous approaches
to application-based error resilience, our approaches param-
eterize the robustification process, making it easy to auto-
matically transform large classes of applications into robust
applications with the use of parser-based tools and mini-
mal programmer effort. We demonstrate the use of auto-
mated error resilience based on outlier detection for struc-
tured grid problems, leveraging the flexibility of algorithmic
error resilience to achieve improved application robustness
and lower overhead compared to previous error resilience ap-
proaches. We demonstrate 2×−3× improvement in output
quality compared to the original algorithm with only 22%
overhead, on average, for non-iterative structured grid prob-
lems. Average overhead is as low as 4.5% for error-resilient
iterative structured grid algorithms that tolerate error rates
up to 10E-3 and achieve the same output quality as their
error-free counterparts.
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1. INTRODUCTION
As technology scaling continues, variability increases with

every process generation, leading to significant reliability
challenges for current and future computing systems. These
reliability challenges are compounded by the ever-increasing
device counts in modern processors and processor counts
in high-performance computing systems. Ensuring reliabil-
ity is already a challenge in current-generation computer
systems [11, 5] and will pose an even greater challenge in
future-generation systems [10, 2]. While many hardware
and software-based error resilience schemes have been pro-
posed in the past [15], their heavy reliance on redundancy,
worst case design, and conservative correctness guarantees
becomes increasingly impractical, given the extreme energy
and performance constraints targeted by current- and future-
generation systems [10, 2]. Compared to more conventional
approaches to error resilience, algorithmic error resilience,
wherein an algorithm is replaced by a robust version of the
same algorithm, offers the potential for greater flexibility, re-
duced overheads, and application- and algorithm-aware ap-
proaches to error resilience [17, 16, 8, 18].

Previous work on algorithmic error resilience has demon-
strated opportunities and potential benefits. Application
robustification [16] proposes to transform applications into
numerical optimization problems that can be solved with
stochastic optimization techniques. Since these optimiza-
tion techniques converge to the correct result even when
computations are noisy, robustified applications are natu-
rally error tolerant. As static and dynamic non-determinism
become more common and more prominent in current and
future technologies, application robustification may be a use-
ful means of achieving acceptable results on hardware that
is necessarily stochastic by nature [8, 16]. Algorithmic er-
ror resilience has also been demonstrated in the context of
specific application classes. Huang and Abraham [8] pro-
pose algorithm-based fault tolerance for dense linear alge-
bra, while Sloan et al. [17] propose algorithmic techniques
that reduce the overhead of fault detection for sparse linear
algebra, based on the well-structured (e.g. diagonal, banded
diagonal, etc.) nature of many sparse problems.

In [18], algorithm-based error localization and recomputa-
tion has been proposed as an alternative to a checkpoint and
rollback scheme. The localization and recomputation ap-
proach is shown to be effective for iterative linear solvers for
parallel experiments involving multi-node processors. The
work in [18] also shows the viability of scaling algorithmic
error resilience techniques for parallel systems.

While the application-based error resilience approaches
proposed in previous work show promise, they also have
several limitations. First, the proposed techniques are only



applicable for select applications and must be applied on
an application-by-application basis, since the transformation
process is different for every application. Also, it is unclear
how to perform robustification for a given application using
the previously-proposed techniques, and furthermore, it is
uncertain which applications can be robustified by the tech-
niques. The techniques also must be applied manually by a
programmer who is an expert in application-based error re-
silience, making the implementation and adoption of robust
applications a difficult process.

In contrast to previously-proposed approaches for appli-
cation robustification, the automated algorithmic error re-
silience techniques we propose are generally applicable to
large classes of applications and are designed in a param-
eterized fashion such that any application that fits into a
covered application class can be robustified by our error-
resilient algorithms. In addition to being more general, our
error resilience approaches are easier to apply to programs,
due to their parameterized nature, and can be applied au-
tomatically with minimal programmer effort and expertise.
We have developed a parser-based tool that enhances the
error resilience of applications automatically.1 To the best
of our knowledge, this is the first work to provide an algo-
rithmic error resilience framework that is both general and
automated. In this paper, we make the following contribu-
tions.

• We introduce novel approaches for algorithmic error
resilience based on outlier detection.

• We demonstrate how application robustification can be
automated for large classes of applications and provide
a parser-based tool that performs application robusti-
fication.

• We apply outlier detection-based algorithmic error re-
silience to an important class of applications – struc-
tured grids – and demonstrate equivalent error resilience
at significantly lower overhead compared to conven-
tional software and hardware error resilience techniques
(e.g., TMR [15]). To the best of our knowledge, no
previous works have demonstrated error-resilient algo-
rithms for this class of applications.

• We show 2×−3× improvement in output quality com-
pared to the original algorithm with only 22% over-
head, on average, for non-iterative structured grid prob-
lems. Average overhead is as low as 4.5% for error-
resilient iterative structured grid algorithms that tol-
erate error rates up to 10E − 3 and achieve the same
output quality as their error-free counterparts. Perfor-
mance overhead is lower for lower fault rates.

2. CHARACTERIZING STRUCTURED GRID

ALGORITHMS
Structured grid problems represent an important class of

algorithmic methods that are prevalent in scientific and en-
gineering problems [1]. They are characterized by a distinct
pattern of communication and computation, in which data
are represented as a multi-dimensional grid with regular re-
lationships between grid points, and computation consists
of making updates to the grid. During updates, each data

1
Our automated algorithmic error resilience tool

is available for download at the following link:
http://www.ece.umn.edu/users/jsartori/tools.html

point in the grid is influenced by a neighborhood of sur-
rounding data points. Structured grid applications can be
classified into two categories – iterative and non-iterative
– based on the nature of updates to the grid. Below, we
describe this dichotomy of structured grid problems.

2.1 Non-iterative Structured Grid Applications
In non-iterative structured grid applications, each data

point in the grid is updated only once. Grid updates are
performed using a kernel or characteristic function that de-
scribes how each point is influenced by its neighbors in the
grid. A common form of computation in non-iterative struc-
tured grid applications is convolution, in which a kernel is
applied at each grid point to overlap the neighborhood of in-
terest around the grid point. Kernel coefficients weight the
influence of each neighboring point on the update to the cur-
rent grid point, and a scalar product is computed between a
kernel function and the neighborhood around a point to ob-
tain the output for a location in the grid. For example, the
grid in a non-iterative structured grid problem might rep-
resent image or video data, and the kernel might represent
some transformation or classifier applied to the grid, such as
sharpening, blurring, or feature detection.

We identify and exploit two important characteristics of
non-iterative structured grid problems in our outlier-based
error resilience approaches.

Significant data reuse: Since each grid point is influ-
enced by its neighbors, the neighborhood influencing a grid
point overlaps with the neighborhoods influencing neighbor-
ing grid points. For example, consider a m × n rectangular
kernel. The neighborhoods of two adjacent points share ei-
ther (m − 1) × n or m × (n − 1) common grid locations.
Thus, many common data points are used when updating
neighboring grid points.

Constant kernel / characteristic function: The co-
efficients of the kernel or characteristic function are con-
stant and are used in the computation at every grid point.
Often, kernel values are also distributed symmetrically or
according to a deterministic pattern. We will explain in
Section 3.1.1 how we exploit these two characteristics of
non-iterative structured grid algorithms to implement error-
resilient structured grid algorithms.

2.2 Iterative Structured Grid Applications
Iterative structured grid applications are those that make

repeated updates to the grid over a number of iterations.
The data points in the grid can represent physical quanti-
ties, function coefficients, or values over a surface or volume.
Computations frequently take the form of a numerical opti-
mization that iterates over the data points, updating the so-
lution of a system of differential equations until convergence
is reached. Further classification of iterative structured grid
applications is possible, based on whether the problem is
time-dependent or time-independent.

Time-independent applications describe physical phenom-
ena that have no dependence on time. The phenomena mod-
eled by these problems are represented by systems of equa-
tions. For example, the Laplacian equation can be used to
describe a physical relationship over a spatial region, such as
the relationship between electric potential and charge den-
sity in a conductor. In this case, the partial differential
equations (PDEs) describing a phenomenon are classified as
elliptic PDEs [7]. Obtaining a solution to the PDEs pro-
vides a measurement of the physical quantity in the region
of interest.

To solve a representative system of PDEs for a particular



application, the structured grid that represents the region
of interest is first initialized with a probable solution. The
initial solution is iteratively updated, according to the finite
difference method (FDM) to advance the region of inter-
est toward convergence. The grid is said to converge if the
L2 norm error, which describes the difference between suc-
cessive iterations, is zero or negligible. Equation 1 shows
the calculation of L2 norm error between two vectors x and
y. The same relation can be applied to points in a grid to
quantify the difference between grid values in successive it-
erations. As the grid approaches convergence, the L2 norm
continues to decrease monotonically. As we will show in
Section 3.1.2, we can create a metric function that char-
acterizes the expected behavior of L2 norm for iterative
structured grid problems for the purpose of outlier detec-
tion. Since the L2 norm is already computed by the orig-
inal (non-error-resilient) algorithm, the overhead required
to implement outlier detection-based error resilience in this
manner can be kept low.

p

(x1 − y1)2 + (x2 − y2)2 + .... + (xn − yn) (1)

Time-dependent PDEs are classified as either hyperbolic
or parabolic and like time-independent PDEs, are solved by
initializing the grid with a probable solution and applying
FDM. Unlike time-independent problems however, an ap-
propriate number of grid updates for these problems can be
decided without measuring a metric that tracks convergence
(e.g., L2 norm error). For problems in which the boundaries
of the grid do not have active time-dependent sources (e.g.,
an active voltage source in a wave propagation problem), the
grid updates are only influenced by the initial state of the
grid, and the result is expected to converge to some steady
state. For such time-dependent problems, the L2 norm error
is also expected to decrease monotonically and as such can
be used to design a metric function with predictable behav-
ior for the purpose of outlier detection. For problems involv-
ing active sources, monotonic behavior of metric functions
like L2 norm cannot be assumed, and a different approach
is needed to allow outlier detection. Error-resilient algo-
rithms for time-dependent structured grid problems with
active sources are a subject of ongoing work. Hyperbolic
PDEs exhibit metric function behavior that oscillates at a
well-defined and predictable frequency, but does not nec-
essarily converge to any particular steady state value. For
such problems, alternative metric functions could be defined
in terms of the well-defined frequency domain components
of other metric functions, such as L2 norm. Since the fre-
quency components follow an expected distribution, any ob-
served spectral analysis that does not fit the expected dis-
tribution can be classified as an outlier. We expect this
technique to work much the same as the metric-based ap-
proaches described above, with the addition of a frequency
domain transform (e.g., FFT).

3. OUTLIER DETECTION IN STRUCTURED

GRIDS
An outlier is an observation (or subset of observations)

that deviates markedly from the rest of the data in its sample
set. Outliers naturally arise in sample sets due to changes
in system behavior, fraudulent behavior, errors, or simply
through natural but unusual deviations in populations. Out-
lier detection can identify system faults, fraud, etc. before
they escalate with potentially catastrophic consequences [6].
A familiar example of outlier detection is the 3σ rule, based

Figure 1: For solving of Poisson equations, the
monotonically decreasing behavior of the L2 norm
error metric function as the grid is updated can be
exploited to perform outlier detection.

Figure 2: For solving of Laplacian equations, the L2
norm error metric function decreases monotonically.

on the principle that 99% of a normal distribution’s data
fall within three standard deviations from the mean [14]. To
detect outliers accurately and efficiently, a designer should
select an outlier detection scheme that is suitable for the
sampled data set in terms of the correct distribution model,
the correct attribute types, scalability and speed of the ap-
proach, any incremental capabilities to allow exemplars to
be updated dynamically, and model accuracy. Outlier de-
tection is frequently performed by using statistical, neural,
and machine learning techniques [6].

Our error resilience approach derives from characterizing
applications in different classes to identify algorithmic in-
variants that can be used to validate their computations.
The algorithmic invariants are used to design metric func-
tions that produce metric values according to a designed
distribution or behavioral pattern. The metric functions are
also designed to produce outliers when the underlying algo-
rithm is affected by errors. As an example, consider struc-
tured grid applications where partial differential equations
(PDEs) are solved using techniques such as FDM. In ap-
plications governed by Laplacian equations, the metric L2
norm is expected to monotonically decrease. This invariant
behavior is violated when an application is affected by er-
rors. Thus, algorithmic invariant metrics like L2 norm error
can be used to perform outlier detection. In Figures 1- 5 we



Figure 3: For heat dissipation equations, the L2
norm error metric function decreases monotonically.

Figure 4: For wave propagation equations with
no time-dependent source at the boundary, the L2
norm error metric function oscillates within a small
envelope, but the overriding behavior is monotoni-
cally decreasing.

Figure 5: For wave propagation equations with
a time-dependent source at the boundary, the L2
norm error metric oscillates at a deterministic fre-
quency. The frequency distribution of the L2 norm
can be used to create a metric function for outlier
detection.

for(i = 0, i < 2m)
quotient = (int) kernel[0][i] / kernel[0][i + 1]
maxremainder = 0
for(j = 0, j < (2n + 1))

remainder = (((int)kernel[j][i]/kernel[j][i + 1])
−quotient)

if(remainder > maxremainder)
maxremainder = remainder

Cmax[i] = quotient + maxremainder

Cmin[i] = quotient − maxremainder

Figure 6: For kernel-based non-iterative structured
grid problems, the values computed for one column
in the grid can be bounded by the values computed
for another.

illustrate the behavior of an L2 norm error metric for several
different types of structured grid applications governed by
PDEs. Results are shown for a grid size of 192 x 192. De-
pending on the underlying modeling characteristics of the
application, the expected behavior of the metric is different.
Below, we describe examples of metrics and how they are
used to perform outlier detection.

The L2 norm error for applications based on elliptic PDEs,
such as Poisson (Figure 1) and Laplacian (Figure 2) equa-
tions, decreases monotonically as the grid is updated. The
L2 norm error for parabolic PDEs, such as those used in
heat dissipation problems (Figure 3), also decreases mono-
tonically as the grid is updated. Deviation from this char-
acteristic behavior is used to detect outliers (details in Sec-
tion 3.1.2).

The L2 norm error for hyperbolic PDEs, such as those
used in wave propagation problems, does not behave mono-
tonically. However, it does oscillate (from monotonically
increasing to monotonically decreasing) at a deterministic
frequency. As shown in Figure 4, the overriding behavior
is monotonically decreasing, with oscillations confined to a
small envelope. In such cases, we can refine the tolerance
of our outlier detection threshold to account for the oscil-
lation envelope. Figure 5, demonstrates a different case of
wave propagation problems where there may be no overrid-
ing behavior. However, we can potentially use the frequency
distribution of L2 norm error as a metric function to detect
outliers in such cases, since deviation from the characteristic
frequency indicates an error.

For a well-designed metric function, error detection is akin
to outlier detection, and statistically rigorous techniques for
outlier detection [6] can be used to detect the occurrence of
errors in an algorithm. Outlier detection can also be em-
ployed to aid in localization and correction of errors that
have been detected (Section 3.1).

3.1 Error-Resilient Structured Grid Algorithms

3.1.1 Non-iterative Structured Grid Applications
Non-iterative applications can be represented as some form

of convolution or stencil operation over the grid.

Convolution[i][j] =
2n

X

k=0

2m
X

l=0

Kernel[k][l]∗Grid[i−n+k][j−m+l]

(2)
As described in Section 2.1, we observe characteristics of

non-iterative structured grid applications that can be ex-
ploited to develop outlier-based error detection, and subse-
quently, error correction schemes. Given the large amount of
data reuse between computations for neighboring grid points
(both in the kernel and the grid), the range of possible values



for a neighboring computation can be constrained in terms
of the computed value for the current grid point. These
constraints can be used to perform outlier detection. I.e.,
an error may cause a neighboring computation to be classi-
fied as an outlier, according to the expected range of values
it might assume. We have developed an error resilience ap-
proach wherein a column (row) of a kernel is written as a
linear combination of another column (row). From this for-
mulation, we can place a range on possible values computed
in a column (row) based on the value computed in another
column (row) and identify outliers based on their location
in (or outside of) the expected value distribution. We have
automated the process of formulating a column in terms of
another column, as described in Figure 6.

krnl = 1/159

2

6

6

6

4

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

3

7

7

7

5

(3)

krnl[][3]T =
ˆ

4 9 12 9 4
˜

krnl[][2]T =
ˆ

5 12 15 12 5
˜

krnl[][2] = 1 · krnl[][3] +

2

6

6

6

4

(0.25 ∗ krnl[0][3])
(0.33 ∗ krnl[1][3])
(0.25 ∗ krnl[2][3])
(0.33 ∗ krnl[3][3])
(0.25 ∗ krnl[4][3])

3

7

7

7

5

Cmax[2] = 1 + 0.33

Cmin[2] = 1 − 0.33

min(abs(grid[][k] · krnl[][2])) = abs(0.66 ∗ grid[][k] · krnl[][3])

max(abs(grid[][k] · krnl[][2])) = abs(1.33 ∗ grid[][k] · krnl[][3])

Equation 3 provides an example for Canny edge detec-
tion [3] that demonstrates how to derive an expected range
of values for the dot product involving column k of the grid
and column i of the kernel, based on the computation for a
neighboring column. In a horizontal sweep of the grid, the
dot product involving column k of the grid and column i+1
of the kernel is computed before the dot product involving
columns k and i. Thus, we represent column i as a linear
combination of column i + 1. If the maximum coefficient in
the linear combination function relating columns i and i+1 is
Cmax[i], we can bound the range of values produced by i by
±Cmin[i] to ±Cmax[i] times the result for i+1. The bounds
used in outlier detection are tighter when all coefficients in
the same column (or row) of a kernel are of the same order
of magnitude. Absolute value is used in Equation 3 to ac-
commodate both positive and negative numbers. The range
can be cut in half if all grid or kernel values are positive
(or negative), as may be the case in several structured grid
problems. For example, the values in a grid representing a
grayscale image must fall within the range [0,255].

3.1.2 Iterative Structured Grid Applications
To create error-resilient algorithms for iterative structured

grid applications, we rely on metric functions that are cal-
culated during grid updates. We design metric functions
with expected behaviors or output distributions, based on
application invariants. For example, in solving Poisson or
Laplacian equations we can define a metric function based
on the L2 norm (that is already computed by the applica-
tions) that is expected to always increase or decrease at a
certain rate α as the grid is updated. The metric is compared

Figure 7: The grid is decomposed into multiple lev-
els to reduce the overheads for error detection, lo-
calization, and recovery.

between successive grid updates to check whether the rate of
change of the metric conforms to the expected distribution.
A relaxation factor τ is used to distinguish the threshold
between acceptable metric values and outliers. Observed
metric values outside the range of α ± τ are classified as
outliers. The relaxation factor can be determined based on
some established rule (e.g., 3σ) or empirically. Observation
of an outlier indicates that the update at one or more grid
points was faulty. When an outlier is observed, the site of
the fault should be localized to allow recovery.

The relaxation factor also negotiates a tradeoff between
computation accuracy and overhead computations for error
checking. A larger value of τ results in more false negative
errors (since more errors are deemed too insignificant to be
detected as outliers) and thus, less accuracy but also less
overhead, since some small errors are ignored. For many
of the applications we study, small errors can be tolerated
(e.g., perhaps resulting in more iterations to convergence),
while larger errors cannot (e.g., preventing convergence).

In order to reduce the overhead of error detection, local-
ization, and recovery, we decompose the grid into three levels
– level-1 (L1) blocks (coarsest), level-2 (L2) blocks, and tiles
(finest), as shown in Figure 7. The metric function for the
grid at a given iteration i is calculated across all grid points,
and the metric value of a tile is the sum of metric values at
each point within the tile. Likewise, the metric value for an
L2 (L1) block is the sum of metric values for each tile (L2
block) within the L2 (L1) block. The metric value for the
entire grid is the sum of metric values of the L1 blocks. Our
automated algorithmic error resilience tool performs grid de-
composition automatically based on grid dimensions. The
user only needs to use a preprocessor directive to identify
the variables that define the grid size (see Section 4.2 and
Appendix A).

To reduce the overhead of outlier detection, we do not per-
form checks for every location in the grid. Instead, initial
comparisons for outlier detection take place at the coarsest
granularity of the grid (L1). Metric values are compared to
the metric values from the previous iteration to detect out-
liers, localize them at the current level, and trace them to the
finest level of the grid (tile) for correction. Grid decomposi-
tion also reduces the overhead of localization and recovery,
since only a subset of tiles need to be checked and recov-
ered when an outlier is detected. After localizing an outlier
to a tile, the tile is re-computed and re-checked up to two
additional times in case an error occurs during recovery. If
an outlier is still detected after two rollbacks, the relaxation
factor is increased and the metric is compared against the
value in iteration i − 2 rather than the value in i − 1. This
allows forward progress in case a slightly erroneous value



Figure 8: Flowchart describing error detection, lo-
calization, and recovery for iterative structured grid
applications. Steps denoted with dotted lines can be
eliminated in certain cases when the fault model is
known.

was accepted in i − 1, resulting in false positive detections
in iteration i. The algorithm used for fault detection, local-
ization, and recovery is shown in Figure 8. For simplicity of
exposition, Figure 8 assumes a metric value that is expected
to decrease after each grid update. Our automatic error re-
silience tool instantiates and inserts a function that imple-
ments these error resilience functionalities into the code of
a structured grid application. Instantiation and placement
are based on key variable names identified by preprocessor
directives (see Section 4.2 and Appendix A). This is akin to
a library-based approach for algorithmic error resilience.

The procedure described in Figure 8 is generalized to pro-
vide error resilience against many different types of faults
(see Section 5); however, the procedure can be optimized to
reduce overhead in certain scenarios when the fault model is
known. Certain fault distributions, such as bimodal faults,
can result in two faults of nearly equal and opposite magni-
tudes masking in a coarse-level metric (e.g., L1 block). Ad-
ditional fine-grain checks are necessary in the general case
to ensure that such faults are detected. However, if knowl-
edge of the fault model precludes the possibility of such fault
masking, the steps represented by dotted blocks in Figure 8
can be forgone, significantly reducing the overhead of error
resilience (see Section 6).

4. AUTOMATIC PROGRAM

TRANSFORMATION

4.1 Motivation
Previous approaches for application robustification [16]

consist of reformulating applications as stochastic optimiza-
tion problems. An application must first be expressed as
a constrained optimization problem, manually transformed
to an unconstrained exact penalty form, and then solved
using stochastic gradient descent and conjugate gradient al-
gorithms. Transforming an application into a stochastic op-
timization problem is non-trivial, and must be performed for
each application individually. The transformation involves
the following considerations.

• The application must be reformulated into a stochastic
optimization problem. Only certain types of applica-
tions are amenable to being transformed into stochas-
tic optimization problems, and even the process of
identifying such applications is performed manually on
a case-by-case basis.

• Manual robustification requires intimate knowledge of
algorithms such as stochastic gradient descent or con-
jugate gradient, as well as the application being trans-
formed.

• Each application is transformed manually and individ-
ually, and the approach for transforming an applica-
tion is different for each application.

Manual robustification of applications requires significant
programmer effort. For application robustification to be eas-
ily adoptable, it should involve minimal programmer effort
and expertise. To ease the burden on the programmer, we
provide automatic program transformation tools that can
perform robust transformations for large classes of applica-
tions. Our techniques require relatively unobtrusive changes
to the application, rather than a paradigm shift in the cod-
ing of the application. We have parameterized our error
resilience algorithms and metric functions so that required
application information can be easily extracted by a parser
through preprocessor directives. Other than marking a few
key variables in the original code, the entire process of appli-
cation robustification is automated. The only reason vari-
ables must be marked by the programmer is that different
programmers use different variable names. E.g., one pro-
grammer may call the grid “grid” while another calls it “ma-
trix”. Alternatively, a library-based approach could be used
to standardize the naming of key variables and eliminate the
need for any variable marking. This infrastructure eases the
programmer’s effort in adopting error resilient algorithms.
The implementation of automatic program transformation
for structured grids is explained in the following section.

4.2 Automated Algorithmic Error Resilience
for Structured Grid Applications

Our automated algorithmic error resilience tool requires
the following information to be marked with preprocessor
directives in structured grid applications.

• Size and Layout – These directives identify the vari-
ables that define the size of the grid in each dimension
and the dimensionality of the grid data structure. This
information is required to determine how to decompose
the grid to improve the efficiency of error localization.



• Current and Previous arrays – These directives iden-
tify the variable names for the arrays that are used as
input and output during grid updates. Grid data are
used during outlier detection to calculate the change
in the grid between grid updates.

• End of grid update code. A template function is in-
serted into the code, immediately following the grid
update code. The function is responsible for grid de-
composition and error detection and correction (see
Figure 8 for details). The template function is instan-
tiated with the values of other variables marked by
preprocessor directives (i.e., size, layout, current, pre-
vious), and this directive is used to determine where
to insert the function call.

Appendix A provides a code example showing how to mark
key variables in a program in preparation for automatic ro-
bustification by our tool.

5. METHODOLOGY

5.1 Fault Model
Our evaluation focuses on transient faults that affect the

outputs of numerical computations. Other manifestations
of transient faults, such as memory corruption, deviations
of control flow, or memory access errors are assumed to be
accounted for using simple low-overhead techniques, unless
they manifest as numerical data errors that the proposed
techniques cover. This is a widely used fault model [9, 12,
19, 17]. Note that our error resilience techniques can detect
and correct silent data corruptions that result in outliers.

The methodology for injecting errors has been adopted
from previous work [17]. When a fault occurs, it is modeled
by drawing a value from one of the fault distributions below
and adding it to the target operation. These distributions
are selected to model the arithmetic effects of circuit-level
faults at a high level, making it possible to parametrize them
to represent multiple low-level fault models.

Symmetric Faults: The following distributions model
faults that affect the outputs of circuits and that have equal
probability of being positive or negative.
1: Bimodal: Distribution with two Gaussian modes centered
at ±1E5, each with variance 1E2.
2: Bimodal: Distribution with two Gaussian modes centered
at ±1E10, each with variance 1E5.
3: Unimodal: Gaussian distribution with mean 0 and vari-
ance 100.

Memory Faults:
4: Bitflip: An exponential distribution represents a single
bit flip in the binary representation of a number.

Non-Symmetric Faults:
5: Unsymmetric: Gaussian distribution centered at 1E5 and
with variance 100: represents a one sided error distribution
(e.g. unsigned representation).
6: Trimodal: Mixture of models 1 and 2, each sampled half
the time: models timing errors in functional circuit units,
which are biased toward most and least significant digits.

5.2 Fault Injection
Fault injection is performed at a selected rate using Pin

tool for binary instrumentation. Binary instrumentation
provides an opportunity to instrument a fault at the most
native level of instruction execution. To inject faults, float-
ing point instructions are perturbed at the selected rate by
reading the register contents of the processor and changing

one of the operand register values according to the selected
fault model.

5.3 Benchmarks

5.3.1 Non-iterative Applications
Non-iterative structured grid applications in our test set

include Gaussian image blurring [13] and Canny edge detec-
tion. Three types of images were used.
Image-1 : Synthetic image with Gaussian-distributed data
centered at 0 with variance 1. Data points are scaled from
[0,1] to the range [0,255].
Image-2 : Synthetic image with Gaussian-distributed data
centered at 0 with variance 1.
Real world example images: We use a collection of sam-
ple images of size 32x32, 64x64, 128x128, and 256x256.

Output quality is represented in terms of the average de-
viation between the computed (Xi) and pristine (X ′

i) pixel

values: (1/N)
PN

i=1
|Xi − X ′

i |/Xi. The overhead in terms
of extra operations performed for both iterative and non-
iterative applications is defined as
OF LOPs = FLOPserror injected run/FLOPspristine run, where
FLOPs is the number of floating point operations.

5.3.2 Iterative Applications
Iterative applications in our test set include the follow-

ing time-independent (†) and time-dependent (‡) structured
grid problems.
Poisson equation†, solved using Jacobi method
Laplacian equation†, solved using explicit finite difference
method
Heat dissipation‡, solved using explicit finite difference
method

Iterative structured grid applications may use grids with
sizes on the order of 10E6 or greater and are often imple-
mented for distributed systems, where the grid is distributed
between multiple processing nodes. Since we tested our ap-
proach on a single processor system, we used grid sizes that
can fit in a single processor’s memory, equivalent to a chunk
that would be distributed to a node in a distributed sys-
tem. We show the error resilience afforded by our tech-
niques by quantifying, for the fault models in Section 5.1,
the error rate that can be tolerated by our error-resilient
structured grid algorithms. All the applications have been
run for 1000 iterations and the value of the output quality
metric at the end of 1000 iterations is compared between
the pristine, error injection, and error injection + error re-
silience runs. Since errors may increase the number of itera-
tions required to reach convergence, we also count the num-
ber of iterations (Niter differ) required for a non-pristine
run to achieve the same output quality (accuracy) as in
the pristine run. Iteration overhead is defined as Oiter =
OF LOPs ∗ (Niter pristine/(Niter pristine − Niter differ)).

6. RESULTS

6.1 Non-iterative applications
Tables 1 and 2 show the output quality, error resilience,

and performance of our error resilient algorithms for image
blurring and edge detection. We show detailed evaluations
for bitflip and unimodal faults, since error magnitude may
be comparable to signal magnitude, making outlier detec-
tion more challenging. Compared to the pristine run, av-
erage overhead (OF LOPs) is 22.75% and average deviation



Table 1: Average deviation for non-iterative appli-
cations for different grid dimensions (GD×GD), test
images (Img), and fault models (Unimodal=3, Bit-
flip=4).

GD Img Canny (3) Canny (4) Gauss (3) Gauss (4)
64 1 0.001990 0.001692 0.001701 0.001794
64 2 0.001962 0.001962 0.001829 0.001648
128 1 0.002215 0.001688 0.002083 0.001638
128 2 0.002139 0.002139 0.002118 0.002109

Table 2: Comparison of output quality (average de-
viation (AD)) and overhead (OF LOPs) with respect
to pristine run for Canny edge detection with and
without error resilience for different grid sizes; Uni-
modal fault model, fault rate=1E-2.

Metric Error Resilience? 64x64 128x128 256x256

AD
No 0.00468 0.00461 0.00451
Yes 0.00199 0.00221 0.00206

OF LOPs
No 1.245 1.350 1.345
Yes 1.187 1.191 1.303

is 0.0019064. Compared to the error injected run, output
quality is improved by 2× on average. For bimodal, tri-
modal, and unsymmetric faults, error magnitudes are of the
order ±10E5 or ±10E6 and produce large outliers that are
easily detected and corrected by our techniques.

6.2 Iterative Applications
The parameters of the grid decomposition orchestrate a

tradeoff between accuracy and overhead for outlier detec-
tion, localization, and recovery. Table 3 compares overhead
and error resilience for several grid decompositions. We find
that a smaller L2 block size results in lower overhead, due
to reduced error recovery overhead. Figure 9 compares over-
head (Oiter) for different applications with various L2 block
sizes. As described in Section 3.1.2, knowledge of the fault
model can enable use of a lower-overhead error resilience ap-
proach in some cases. On average, overhead is reduced by
21% for the fault model-aware error resilience approach.

Figure 10 shows the fault rate that can be tolerated by our
error-resilient heat dissipation algorithm for different fault
models, as well as the overhead introduced in each case.
Average overhead is higher than for other iterative applica-
tions because the L2 norm error is not used by the original
algorithm but must be computed by the error-resilient algo-

Table 3: We compare overhead (Oiter) for several dif-
ferent grid decompositions and fault rates. Results
are shown for Poisson equation solver with bitflip
fault model.

(Grid-size,#L1,#L2,L2-Size) Fault Rate Oiter

(320x320,1,25,64x64) 1E − 3 1.83787
(384x384,1,36,64x64) 1E − 3 2.00794
(384x384,1,16,96x96) 1E − 3 1.53335
(480x480,1,25,96x96) 1E − 3 1.96161
(576x576,3,9,64x64) 1E − 3 1.48059
(576x576,3,9,64x64) 1E − 4 1.24327
(576x576,2,9,96x96) 1E − 4 1.23814
(768x768,4,9,64x64) 1E − 4 1.27950
(768x768,3,9,96x96) 1E − 4 1.27810

Figure 9: Overhead for different applications with
different L2 block sizes, #L1 = 1, #L2 = 1 tile-
dim=4, bitflip fault-model, fault-rate=1E-3.

Figure 10: This figure shows the fault rate tolerated
and overhead introduced by our error-resilient heat
dissipation algorithm for different fault models on a
192 × 192 grid.

rithm. Even so, overhead of our error-resilient algorithm is
significantly less than that of traditional hardware and soft-
ware error resilience schemes, which employ spatial and/or
temporal redundancy to achieve error resilience [15].

Figure 11 compares the L2 norm error metric for Pois-
son equation solving between the pristine run (top blue),
the error-injected run with the original algorithm (bottom
blue), and the error-injected run with our error-tolerant al-
gorithm (top green). Our error-resilient algorithm detects
outliers, tolerates errors, and achieves a similar convergence
rate as in the pristine run. Without our error resilience
techniques, however, the algorithm is unable to achieve con-
vergence, and error magnitude blows up as the grid is up-
dated. Figure 12 shows the fault rate that can be tolerated
by our error-resilient Laplacian and Poisson solver for differ-
ent fault models, as well as the overhead introduced in each
case. Our error-resilient algorithm has significantly lower
overhead than traditional hardware and software error re-
silience schemes [15].

7. CONCLUSION AND FUTURE WORK
Future high-performance and energy-efficient computing

systems will likely be prone to errors and severely energy
constrained. Error resilience may be required to ensure that



Figure 11: These figures show the behavior of the
L2 norm error metric for Poisson equation solver on
a 192 × 192 grid with bitflip errors injected at a rate
of 1E−3. Top: Our error-resilient algorithm detects
outliers and achieves convergence at a similar rate as
in the pristine run. Bottom: The original algorithm
is unable to tolerate errors, and convergence is not
achieved.

Figure 12: This figure shows the fault rate toler-
ated and overhead introduced by our error-resilient
Laplacian and Poisson solvers for different fault
models on a 192 × 192 grid.

applications can use these systems productively. In this pa-
per, we propose automated algorithmic error resilience based
on outlier detection. Our approach employs metric func-
tions that exploit the characteristic behavior of algorithms
– normally producing metric values according to a designed
distribution or behavior and producing outlier values when
computations are affected by errors, causing uncharacteris-
tic behavior. Thus, for a robust algorithm that employs such
an approach, error detection becomes equivalent to outlier
detection. Compared to previous approaches to application-
based error resilience, our approaches parameterize the ro-
bustification process, facilitating the automatic transforma-
tion of large classes of applications into robust applications
with the use of parser-based tools and minimal program-
mer effort. We demonstrate automated algorithmic error
resilience for structured grid problems. Our error-resilient
algorithms have significantly lower overhead than traditional
hardware and software error resilience techniques [15].

• Our error-resilient algorithms show 2 ×−3× improve-
ment in output quality compared to the original algo-
rithm with only 22% overhead, on average, for non-
iterative structured grid problems.

• Average overhead (across fault models) is 4.5% to 15%
for error-resilient iterative structured grid algorithms
that tolerate error rates up to 10E−3 and achieve the
same output quality as their error-free counterparts.
Performance overhead is lower for lower fault rates.

7.1 Learning from Outlier Detection-based
Error Resilience

Through our study of outlier detection-based algorithmic
error resilience, we have identified the following approaches
as being particularly amenable to efficient algorithmic error
resilience.

• Using native features of an algorithm can reduce the
overhead of providing error resilience. For example,
time-independent structured grid problems, such as
solving Poisson and Laplacian equations, calculate the
L2 norm between grid updates. An error resilience
scheme that exploits this native feature may have less
overhead than a more generic approach.

• Utilizing native features of algorithms also enables sim-
ple methods for extracting necessary information from
applications, facilitating automated robustification. For
example, in our robust structured grid algorithms, the
programmer only needs to identify a few key features of
the application (using preprocessor directives), rather
than manually creating an entirely new application
with a new algorithmic structure. This eases the adop-
tion of error-resilient applications by minimizing pro-
grammer effort and required expertise.

While we have demonstrated the effectiveness of outlier
detection-based algorithmic error resilience for structured
grid applications, such approaches may not be applicable
for all classes of applications. Future work should draw draw
upon the design principles highlighted above to develop new
automated algorithmic error resilience strategies that will
provide robustness for a wide range of application classes.

7.2 General Guidelines for Invariant Selection
Outlier detection is a generic technique, which is applica-

ble to different types of applications. This section provides



guidelines that can aid in designing a robust algorithm based
on outlier detection. The guidelines, which are based on our
experience in applying outlier detection to different types of
applications, can aid in identifying suitable invariant met-
rics that can be used for outlier detection. The guidelines
are indicative of existing knowledge but are not exhaustive.
Future work in this area should be able to utilize these guide-
lines to build upon existing work.

• Variables (either natural or contrived) that character-
ize the majority of data and/or computations in an
application or algorithm are good candidates to be ex-
ploited for metric creation. Such variables are even
more suitable for metric creation when they naturally
conform to a certain behavioral pattern. For example,
computing the L2 norm error metric used in applica-
tions that solve PDEs using FDM involves data for the
entire grid and is affected by all grid update compu-
tations. Thus, the metric is sensitive to errors in grid
data and computations. Expected monotonic behav-
ior at a calculable rate makes the metric particularly
useful for outlier detection.

• Data structures comprised of members that have bounded
values are good candidates to be exploited for met-
ric creation. Such structures are even more suitable
for metric creation when their values are further con-
strained due to algorithmic dependencies. For exam-
ples, pixel values computed in many image processing
applications are constrained to fall within a bounded
range. Features such as data reuse (e.g., the constant
kernel in convolution-based applications) can further
constrain the range of possible values a pixel may take,
improving the precision of outlier detection.

7.3 Extending Outlier Detection-based Error
Resilience

The principles and guidelines for using outlier detection
provided in Sections 7.1 and 7.2 are not exhaustive. We have
demonstrated the application of outlier detection-based al-
gorithmic error resilience for a class of application that pri-
marily involves arithmetic operations. Additional classes of
applications should be surveyed to determine the generality
of outlier detection-based algorithmic error resilience and to
provide a more comprehensive guide for leveraging outlier
detection-based approaches for error resilience.

One potential direction in which outlier detection can be
applied to new classes of applications is to use dynamic in-
variant detection tools [4], that provide invariants for a pro-
gram based on dynamic analysis. An invariant is a property
that holds at a certain point or points in a program; exam-
ples include constant variables (x = a), non-zero (x 6= 0),
value range (a ≤ x ≤ b), linear relationships (y = ax + b),
ordering (x ≤ y), and sortedness (x is sorted) [4]. Dy-
namic invariant detection runs a program, observes the val-
ues that the program computes, and then reports properties
that were true over the observed executions [4]. Hence, dy-
namic invariant detection tools can be used to determine
algorithmic invariants for an application that could poten-
tially be converted into metric functions and exploited for
outlier detection-based error resilience.

Dynamic invariant detection tools must profile an appli-
cation through multiple runs in order to infer invariants.
This process can be time consuming. The techniques we
propose for structured grids are based on static analysis of
invariants and do not require profiling to determine invari-
ants. Static invariant detection is also more reliable than

dynamic invariant detection, since static analysis is based
on program characteristics and not necessarily on dynamic
execution behavior, which can be different for different in-
put cases. Invariants determined through dynamic invariant
detection will hold for the set of profiled inputs but may not
be generally applicable. Thus, before relying on dynamic
invariant detection, these requirements and concerns should
be evaluated.

7.4 Automatic Program Transformation
While algorithmic error resilience may prove to be an ef-

ficient means of tolerating non-determinism in computing
systems, one drawback of previous approaches for applica-
tion “robustification” is that they have been applied manu-
ally to applications on a case-by-case basis. Consequently,
previous approaches require significant expertise in appli-
cation robustification as well as substantial manual effort.
Also, it is non-trivial to determine which applications can be
robustified using previous approaches and how to perform
the robustification for a given application [16]. To facili-
tate the process of robustification for application developers
and ease the adoption of robust algorithms, we have pro-
posed automated techniques for application robustification
that transform an application into a robust version of the
same application with minimal programmer effort.

We have demonstrated how outlier detection is amenable
to automatic program transformation by providing auto-
matic program transformation tools for structured grid prob-
lems. Through this work, we wish to highlight the need for
automatic program robustification. Along this vein, other
future work directions include the following.

• Providing robust libraries, similar to the Standard Tem-
plate Library of C++, would provide a convenient
method to incorporate robust algorithms and data struc-
tures in applications. With a library-based approach,
incorporating robust algorithms into applications could
be as simple as specifying a compiler flag that directs
the compiler to use the robust version of a library,
rather than the standard version.

• Transforming existing application robustification tech-
niques into a format that supports compiler-based au-
tomation. The adoption of existing application robus-
tification approaches could be facilitated by creating
tools, similar to our a tools that use parsers and pre-
processor directives, to perform robust program trans-
formations automatically.
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APPENDIX

A. PROGRAMMER’S GUIDE
The following code example shows how to mark key vari-

ables with preprocessor directives in the code for a non-
robust iterative structured grid application (Figure 13) and
how the marked variables are used as inputs to a function
that implements error resilience in the robust version of
the code produced by our tool (Figure 14). Due to space
limitations, several code details have been omitted in Fig-
ures 13 and 14. Figure 8 describes the code for grid de-
composition and error detection and correction in greater
detail, and Section 4.2 describes the preprocessor directives
that mark key variable names in the code. For more details
on our automated algorithmic error resilience tool and ex-
ample usage, please download the tool and documentation
(see footnote 1).

#define ROWS 1000000
#define COLS 1000000
#define STENCIL_LENGTH 1
#define PADDED_ROWS ROWS+2*STENCIL_LENGTH
#define PADDED_COLS COLS+2*STENCIL_LENGTH
#define DATA_LAYOUT 1

// Variable declarations
int m = ROWS;
int n = COLS;
int sl = STENCIL_LENGTH;
int dl = DATA_LAYOUT;
float heat_mat1[PADDED_ROWS*PADDED_COLS];
float heat_mat2[PADDED_ROWS*PADDED_COLS];

// Programmer-inserted preprocessor directives
#pragma struct_grid size m,n
#pragma struct_grid curr_array heat_mat1
#pragma struct_grid prev_array heat_mat2
#pragma struct_grid stencil_length sl
#pragma struct_grid data_layout dl
#pragma struct_grid iterator t
for (int t = 0; t < num_iters; t++)
{

...
// Beginning of grid update code
for(int row_idx = STENCIL_LENGTH;
row_idx < (PADDED_ROWS - STENCIL_LENGTH);
row_idx++){

for(int col_idx = STENCIL_LENGTH;
col_idx < (PADDED_COLS - STENCIL_LENGTH);
col_idx++){

int index = row_idx*PADDED_COLS + col_idx;
#pragma struct_grid equation

heat_mat1[index] =
0.125*(heat_mat2[index+PADDED_COLS]
- 2.0*heat_mat2[index]
+ heat_mat2[index-PADDED_COLS])
+ 0.125*(heat_mat2[index+1]
- 2.0*heat_mat2[index]
+ heat_mat2[index-1])+heat_mat2[index];

}
}
// End of grid update code
#pragma struct_grid end_grid_update

}

Figure 13: The original code for a typical iterative
structured grid application with preprocessor direc-
tives inserted to identify key variables.

#include "RobustSG.h"
...
for (int t = 0; t < num_iters; t++)
{

...
// Beginning of grid update code
for (int row_idx = STENCIL_LENGTH;
row_idx < (PADDED_ROWS - STENCIL_LENGTH);
row_idx++){

for(int col_idx = STENCIL_LENGTH;
col_idx < (PADDED_COLS-STENCIL_LENGTH);
col_idx++){

// ...grid update equation...
}

}
// End of grid update code
// Error detection and correction function
grid_outlier_based_resilience(heat_mat1,

heat_mat2,
m, n, sl, dl, t);

}

Figure 14: Our automated tool transforms an ap-
plication into a robust version that employs error-
resilient algorithms.


