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Part 1: Large dynamic networks

FUNDAMENTAL PERFORMANCE LIMITATIONS

e Network coherence
*= can local feedback provide robustness to external disturbances?

¢ Roles of topology and spatial dimension
* 1D vs 2D vs 3D

OPTIMAL DESIGN

e Sparsity-promoting optimal control
*~ performance vs sparsity



Part 2: Fluids

DYNAMICS AND CONTROL OF SHEAR FLOWS

e The early stages of transition

= initiated by high flow sensitivity Key issue:

_ high flow sensitivity
e Controlling the onset of turbulence

» simulation-free design for reducing sensitivity |

SUMMARY AND OUTLOOK



Consensus by distributed averaging
e CHALLENGE

= how to quantify performance of large dynamic networks

RELATIVE INFORMATION EXCHANGE WITH NEIGHBORS

* simplest distributed averaging algorithm

Bilt) = = 3 (wilt) — 7))

JjEN;



Convergence and convergence rate
e NETWORK DYNAMICS

x diffusion on a graph with Laplacian L = L'

EAGHE I 1 [ zu(t) ]
| = L :

i azM(t) | i 1 L xM(t) |

* e-values of L: 0= XA < X < -0 < Ay
connected network convergence to the average
— o 1
Ao(L) > 0 zi(t) 2222 Z(t) = Min(t)

convergence time 1

Y

(network time constant) Ao(L)




Consensus with stochastic disturbances

) = = Y (nl) - w0) + i)

jEN;
l

white noise
e NETWORK AVERAGE

* undergoes random walk

each z;(t) fluctuates around z(¢)

)\Q(L) > 0 = {

deviation from average: 2z;(t) = z;(t) — z(¢)



Variance of the deviation from average

tli)ﬂéo E(z7(t) = Z 2)\1(L)
n#1 "

e AS NETWORK SIZE GROWS

*x spectrum clusters towards stability boundary

ASYMPTOTICS OF VARIANCES

*= determined by accumulation of e-values around zero
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rate at which:

unpredictable only from

network time constant

e SCALING DEPENDS ON NETWORK’S TOPOLOGY

asymptotic scaling for regular lattices:

Spatial d-d.imensional
dimension lattice (d > 4)
Time
M? M M2/3 MN2/d
constant
Varian
arlance M log (M) bounded bounded

(per node)




Questions
e CAN WE DO BETTER BY

*x going deeper into the lattice?

------ O—O—O—0 o—0—0—0-

* optimizing edge weights?
Bilt) = = > Ky (nlt) — 2,(0) + dit)
jEN;

e ROLES OF
* hode dynamics

* spatial dimension



Cooperative control of formations

e Coherence: similarity between large formation and solid object

snow geese formation herd migration fish schools



An example: Vehicular strings

AUTOMATED CONTROL OF EACH VEHICLE
tight spacing at highway speeds

0 Ud
< > -
070 o}e 070 070
T1,Uy TN, UN

KEY ISSUES (also in: control of swarms, flocks, formation flight)
* |s it enough to only look at neighbors?
* How does performance scale with size?

* Fundamental limitations?

FUNDAMENTALLY DIFFICULT PROBLEM

* scales poorly with size
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Problem formulation in 1d

Ty = Uy, + d,
control disturbance
desired trajectory deviations
Tn(t) == vgt + nd Pu(t) = zu(t) — Zp(t)

constant velocity vy vn(t) == Tp(t) — vg




e OPEN-LOOP DYNAMICS

p1

PN

e STATE-FEEDBACK CONTROLLER

e CLOSED-LOOP SYSTEM

p
0

u(t)

- - pp(t)

— Kyv(t)

c
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nearest neighbor feedback
e AN EXAMPLE: _
relative measurements

* e.g., use a simple strategy:
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Incoherence phenomenon

trajectories of every other vehicle:
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time
local feedback

_ —> meandering large-scale motion
relative measurements



///x\

e
O
r— 1 7
MM
O
s | LN
o 6
i) e
—
3 S
e (&)
© Q O
s E | me
@ - 3.m
v = =
= o)
m ®
= e
2 o | i
(@) LN
r0| N 08
S
P
O O O
a c O

000000000
I w29 o o o o o o oM
aaaaaaaaaaa
O = = = =



Poor design or fundamental limitation?
= Optimal centralized design

* not immune to some of these issues!
minimize / Z ((pn(t) — a1 (D) + V2(t) + ui(t)) dt
O n

e ORIGINAL FORMULATIONS
x Levine & Athans, IEEE TAC '66

* Melzer & Kuo, Automatica 71

e REVISITED
*x Jovanovic & Bamieh, IEEE TAC 05
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Closed-loop spectrum with K

1

=
n

imaginary part

-i -0.5 0
real part
e FOR LARGE FORMATIONS

*~ e-values accumulate towards imaginary axis

PROBLEMATIC MODES

*~ slow temporal scale

*x long spatial wavelength
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Spatially invariant lattices

e EXPLICIT RESULTS FOR
x d-dimensional torus Z4¢, with M/ = N? vehicles

STRUCTURAL FEATURES Val alvalva Vel
=~ spatially-localized feedback _;')f )f 7/7J 7,:_
Dl i o

~ mirror symmetry in feedback gains

relative vs absolute measurements:

un(t) = =K, (pn(t) — pn-1(t)) — K (pn(t) — pngi(t))

— K, (0n(t) — vpa(t)) — K (vn(t) — vnsa(t))

[V

— KY p,(t) — KYwv,(t)




Performance measures

e Microscopic: local position deviation

Vmicro L= lim & (Z (pn(t) o pnl(t))2>

t — oo
n

e Macroscopic: deviation from average

Vmacro ‘= lim & <Z (pn(t) o p(t))2>

t — oo
n

How does variance per vehicle scale with system size?

Vmicro Vmacro

VS
M M
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Performance in 1D

------ O—O—O—0 —0—0—0

asymptotic scaling (per vehicle):

Microscopic Macroscopic

Feedback type
performance performance

absolute position

_ bounded bounded
absolute velocity
relative position
P : bounded M
absolute velocity
relative position 5
M M

relative velocity




local feedback
_|_

relative position
measurements

0

=

large coherent formations:
impossible in 1D!
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Role of dimensionality: variance per vehicle
e Lower bounds for any spatially-invariant stabilizing local feedback with:

» bounded control effort at each vehicle: &£ (u2) < Upax

asymptotic scaling:

Feedback type | Microscopic performance | Macroscopic performance
absolute position 1 1
absolute velocity Ummax Umax
. . ( M d=1
relative position 1 1
bsolute velocit U o | L8 M) d =2
absolute velocity max max | d>3
M3 d=1
relative position 1 r M-d =1 1 M d =2
relative velocity | 2| &) 4= U2 MYPd =3
y max | 1 d>3 max | oo (M) d = 4
1 d>5

Bamieh, Jovanovic, Mitra, Patterson, IEEE Trans. Automat. Control '12



Connections
e SIMILAR SCALING TRENDS OBSERVED IN
% distributed estimation from relative measurements
% effective resistance in electrical networks
* global mean first-passage time of random walks
x statistical mechanics of harmonic solids

* Wiener index of a molecule
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e RESISTIVE NETWORK ANALOGY

1D : L_____j

Net resistance = R M

2D :

Net resistance = O (log(M))

3D : J. ... .‘ '' 2

Net resistance is bounded!
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e STATISTICAL MECHANICS OF HARMONIC SOLIDS

x a d-dimensional lattice of masses and springs %

physics: short range interactions vs long range order

! |

networks: local feedback vS hetwork coherence

WITH SHORT RANGE INTERACTIONS impossible in 1D and 2D
LONG RANGE ORDER IS: achievable in 3D




DESIGN OF NETWORKS
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Sparsity-promoting optimal control

minimize J(K) + Y Z Wi | K,
! Tl
variance sparsity-promoting
amplification penalty function
* v > 0 — performance vs sparsity tradeoff

x W;; > 0 — weights (for additional flexibility)
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Lin, Fardad, Jovanovi¢, IEEE TAC ’'13 (also: arXiv:1111.6188)


http://arxiv.org/abs/1111.6188

Design of undirected networks

dynamics: = d + u

objective function: J :

tli}m E(z"(t)Qx(t) + u'(t) Ru(t))
performance weights: @ = 0, R = 0

can be formulated as an SDP:

minimize trace (X + RK) + ~v1'Y 1
X Q1/2
subject to >~ 0
Q/? K+117/N
-Y < WoK <Y
K1 =20




e SPARSITY-PROMOTING CONSENSUS ALGORITHM

local performance graph:

identif

10

led communication gra
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Structured distributed control
« Blue layer: distributed plant and its interaction links

memoryless structured controller

KEY CHALLENGE:

identification of a sighal exchange network
performance vs sparsity
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Parameterized family of feedback gains

K(y) := argmin (J(K) + vg(K))

K
A ——

=

<

ﬁ
>
,7/

/'

= — >/ - ~/

CENTRALIZED LOCALIZED FULLY
DECENTRALIZED

ALGORITHM: alternating direction method of multipliers

Boyd et al., Foundations and Trends in Machine Learning ’11
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DYNAMICS AND CONTROL OF FLUIDS

e Objective

* controlling the onset of turbulence

e Transition initiated by

= high flow sensitivity

e Control strategy

*= reduce flow sensitivity

Al

Jovanovic¢ & Bamieh, J. Fluid Mech.

Moarref & Jovanovic, J. Fluid Mech.

05
10
Lieu, Moarref, Jovanovic, J. Fluid Mech. 10

Moarref & Jovanovic, J. Fluid Mech. ’12

Al
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Transition to turbulence
e LINEAR STABILITY
x* Re > Re. = exp.growing normal modes

corresponding e-functions

_ o exp. growing flow structures
(Tollmien-Schlichting waves)

streamwise streaks

e EXPERIMENTAL ONSET OF TURBULENCE
= much before instability

= ho sharp value for Re.

spanwise direction

streamwise direction

Matsubara & Alfredsson, J. Fluid Mech. 01



34

Bypass transition
e Triggered by high flow sensitivity

% large transient responses
* large noise amplification

*= small stability margins

TO COUNTER THIS SENSITIVITY: must account for modeling imperfections

TRANSITION = STABILITY <+ RECEPTIVITY + ROBUSTNESS

! |

flow unmodeled
disturbances dynamics

Farrell, loannou, Trefethen, Henningson, Schmid, Kim, Bewley, Bamieh, etc.




Tools for quantifying sensitivity

e INPUT-OUTPUT ANALYSIS: spatio-temporal frequency responses

[ Free-stream turbulence
d ¢ Surface roughness

35

| Neglected nonlinearities | | jnearized Fluctuating velocity field v
Dynamics
it - 0.d, % | amplification | Y
— —— w, d}}»ful,dl d2 > U
“ 1l L v d, L d,
A%

IMPLICATIONS FOR:

transition: insight into mechanisms

control: control-oriented modeling
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Response to stochastic forcing

white intandy . R
o = d(x,y,2,t) = d(ks,y, k., t)e =" e=*
harmonic inxz and z

e LYAPUNOV EQUATION

+ propagates white correlation of d into colored statistics of v

Ak)X(rk) + X(k) A% (k) = —1

% variance amplification

1

E(r) = tli)moo _15(0*(&,y,t)f7(&,y,t))dy
= trace (X(k))

k = (ks k)
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Variance amplification

channel flow with Re = 2000:

TS waves

5.5
5}

4.5

14

streamwise wavenumber

streamwise
P> streaks

spanwise wavenumber

e Dominance of streamwise elongated structures
streamwise streaks!

Jovanovic¢ & Bamieh, J. Fluid Mech. ‘05



Amplification mechanism

e STREAMWISE-CONSTANT MODEL

non-normal i
-wlt-:c Aos 11w +[ By 33]
I {upY | I ReAcp  Asq 1L (5 ] ds
u | i Cu 1 - _
N 3

( .
transient responses

E-VALUES: misleading measure of { noise amplification

\ stability margins




e HIGHEST AMPLIFICATION: (ds,d3) — u

‘glorified
diffusion’

(d2, d3)

1 (sT — AT1A2)1

——————————————————————————————

vortex

tilting dissipation

viscous

Yor = APy + ReAq i

|

source

“Re Acp

1 (sI — A)~!

______________________________

+» dynamics of normal vorticity

/ spanwise
E . . ]
\_ variations

\_/’
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background

Jovanovi¢ & Bamieh, J. Fluid Mech. ‘05



FLOW CONTROL

40
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Sensor-free flow control

Geometry modifications Wall oscillations Body forces
riblets N oscillatory forces
: transverse oscillations .
super-hydrophobic surfaces traveling waves

ComMMON THEME: PDEs with spatially or temporally periodic coefficients



pressure
gradient
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Blowing and suction along the walls

Y

¢ > 0 downstream
/ L c < 0 upsiream

<

q
downstream

BOUNDARY CONDITION:  V(y ==£1) = Facos (wy(z — ct))

NOMINAL VELOCITY:  (U(z,y), V(z,y), 0)
steady in a traveling wave frame

periodicinz := =z — ct

Min, Kang, Speyer, Kim, J. Fluid Mech. 06
Heoepffner & Fukagata, J. Fluid Mech. '09
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e NOMINAL VELOCITY

= small amplitude blowing/suction
a <€ 1 = weakly-nonlinear analysis

parabola mean drift oscillatory: no mean drift
~ —~S 7 & : -
U(z,y) = Uoly) + o Usply) + o (Uie(y)cos(wyZ) + Uss(y)sin (w,z))

I (Uzc(y) cos (2w, ) + Uszs(y) sin (2%@))

+ O(a?)



e DESIRED EFFECTS OF CONTROL
*~ het efficiency ~

x fluctuations’ energy \,
het efficiency %

75

o0r

RELATIVE TO: 257

uncontrolled 0

turbulent flow J
Kl benefit

-00

75 | | |
0 002 004 006 008 0.

wave amplitude
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Nonlinear simulations: avoidance/promotion of turbulence

Z

energy

downstream

10 7t

10 ¢

4

500

time

1000

,/’//, ,/’//,
G
no control upstream
TN 4
. i), .
o~
1

0
0 2 4 5}
T
- fr
107"} | 107"}
0 .560 1000 0 .560 1000
time time

Lieu, Moarref, Jovanovic, J. Fluid Mech. '10
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Frequency representation of controlled flow

LINEARIZATION AROUND

_ _ =  periodic coefficientsinz := = — ¢t
U(z,y), V(z,y), 0)

( white intandy
forcing: < harmonic inz

\ Bloch wave inzZ

d(z,y,z,t) = eF* x elfT X Z d,(0,y,k.,t)e"w=T
exponential periodic
modulation function
(in x) (in x)

Odeh & Keller 64, J. Math. Phys.



e Evolution model

* parameterized by spatial wavenumbers = (6, k,)

~

A—1,—1 A—l,O A—1,1
A = Ao,—l Ao,o Ao,1
A1,—1 A1,0 A1,1

bi-infinite
(periodicity in x)
operator-valued
(iny)

bk t) = [AR) Bk, - 1)] (1) +

~

d(k,y,t)

47
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e Simulation-free approach to determining energy density

= Lyapunov equation

Ak) X (k) + X(k) A*(k) = -1
FE (k) = trace (X (k))

*~ effect of small wave amplitude

energy density with control -
energy density w/o control

o 92(K; Re; wy, ) + O(a”)
small

~ computationally efficient way for determining g-

Moarref & Jovanovic, J. Fluid Mech. '10
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Variance amplification: controlled flow with Re = 2000

explicit formula:

energy density with control
energy density w/o control

~ 1 + a2g2(97kz; wx,C)

upstream downstream
(c = —2, w, = 0.5) (c = 5, w, = 2)

0.25

0.2

I-O.5

-1
0.15

-1.5

0.1
2
0.05

0.1

2.5
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Summary

e CONTROLLING THE ONSET OF TURBULENCE

facts revealed by perturbation analysis:

DOWNSTREAM WAVES: reduce variance amplification v/

UPSTREAM WAVES: promote variance amplification

e POWERFUL SIMULATION-FREE APPROACH TO PREDICTING
FULL-SCALE RESULTS

= verification in simulations of nonlinear flow dynamics

Moarref & Jovanovic, J. Fluid Mech. '10

Lieu, Moarref, Jovanovic, J. Fluid Mech. '10



SUMMARY AND OUTLOOK
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Summary: Early stages of transition

STABILITY AMPLIFICATION

Y, = Ay v = Hd
e-values of A singular values of H

e CHALLENGES

» Complex fluids
x Complex geometries
=~ Later stages of transition

= Control-oriented modeling of turbulent flows



e COMPLEX FLUIDS

*x dynamics of viscoelastic fluids

body forcing

fluctuations

Equations of motion

velocity
fluctuations

polymer stress

Constitutive equations -

fluctuations  5\,rce of uncertainty)

* Lieu, Jovanovi¢, Kumar, J. Fluid Mech. '13

* Jovanovi¢ & Kumar, JINNFM 11

x Jovanovic & Kumar, Phys. Fluids 10

* Hoda, Jovanovi¢, Kumar, J. Fluid Mech. '08, ‘09
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e COMPLEX GEOMETRIES

* iterative schemes for computing singular values

e LATER STAGES OF TRANSITION

= interplay between flow sensitivity and nonlinearity

/ velocity

disturbances | streamwise-varying linearized | fluctuations
1 dynamics around streaks

streak quadratic
evolution interactions

l——

e CONTROL-ORIENTED MODELING OF TURBULENT FLOWS

*x reproduce turbulent statistics by shaping forcing statistics
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Outlook: Feedback flow control

technology: shear-stress sensors; surface-deformation actuators
application: turbulence suppression; skin-friction drag reduction

challenge: distributed controller design for complex flow dynamics
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Outlook: Model-based sensor-free flow control

Geometry modifications Wall oscillations Body forces
riblets N oscillatory forces
: transverse oscillations .
super-hydrophobic surfaces traveling waves

e USE DEVELOPED THEORY TO DESIGN GEOMETRIES AND WAVEFORMS FOR

* control of transition/skin-friction drag reduction

e CHALLENGE

* optimal design of periodic waveforms Fluctuations’ energy

_|_
Cost of control

Flow disturbances )
|Spatially Invariant PDE

P>

Spatially Periodic
Multiplication
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Outlook: Network design
e SPARSITY-PROMOTING OPTIMAL CONTROL

* Performance vs sparsity tradeoff
Lin, Fardad, Jovanovi¢, IEEE TAC ’13 (also: arXiv:1111.6188)

*x Software
www.umn.edu/~mihailo/software/lgrsp/

e ONGOING EFFORT

*x Leader selection in large dynamic networks
Lin, Fardad, Jovanovi¢, IEEE TAC ’'13 (conditionally accepted; arXiv:1302.0450)

x Optimal synchronization of sparse oscillator networks
Fardad, Lin, Jovanovi¢, IEEE TAC ’13 (submitted; arXiv:1302.0449)

*x Optimal dissemination of information in social networks
Fardad, Zhang, Lin, Jovanovi¢, CDC 12

* Wide-area control of power networks
Dérfler, Jovanovic, Chertkov, Bullo, ACC ’13


http://arxiv.org/abs/1111.6188
http://www.ece.umn.edu/users/mihailo/software/lqrsp/
http://arxiv.org/abs/1302.0450
http://arxiv.org/abs/1302.0449
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Outlook: Performance of large-scale networks

e OPEN QUESTION: fundamental limitations for networks with

spatially-varying

dynamic ; controllers

nonlinear

formations with a leader

|- improved scaling trends in 1D!

spatially-varying O (VM) vs O (M)

nearest-neighbor feedback

’ Lin, Fardad, Jovanovic, IEEE TAC 12
VEHICULAR STRINGS
*x need global interactions to address coherence

*x even then, convergence of Merge & Split Maneuvers scales poorly with size
Jovanovic, Fowler, Bamieh, D’Andrea, Syst. Control Lett. ‘08



