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Structured distributed control
• Blue layer: distributed plant and its interaction links

structured memoryless controller

KEY CHALLENGE:

identification of a signal exchange network

performance vs sparsity
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Minimum variance state-feedback problem

dynamics: ẋ = Ax + B1 d + B2 u

objective function: J = lim
t→∞

E
(
xT (t)Qx(t) + uT (t)Ru(t)

)

memoryless controller: u = −F x

• CLOSED-LOOP VARIANCE AMPLIFICATION

J(F ) = trace

(∫ ∞

0

e(A−B2F )T t
(
Q + FTRF

)
e(A−B2F )t dt B1B

T
1

)

? no structural constraints

globally optimal controller:

ATP + P A − P B2R
−1BT2 P + Q = 0

Fc = R−1BT2 P
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SDP formulation

minimize
X,F

trace
(
(Q + FTRF )X

)

subject to (A − B2F )X + X (A − B2F )T = −B1B
T
1

X � 0

• CHANGE OF VARIABLES: FX = Y

minimize
X,Y � 0

trace (QX) + trace
(
R Y X−1 Y T

)

subject to (AX − B2 Y ) + (AX − B2 Y )
T

+ B1B
T
1 = 0

SDP characterization:

minimize
X,Y, Z

trace (QX) + trace (RZ)

subject to (AX − B2 Y ) + (AX − B2 Y )
T

+ B1B
T
1 � 0

[
Z Y
Y T X

]
� 0
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• STRUCTURAL CONSTRAINTS F ∈ S
centralized fully decentralized localized



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗







∗
∗
∗
∗







∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗




CHALLENGE:

convex characterization in the face of structural constraints



D
ra

ft

5

An example

u(t) = −
[
Fp Fv

] [ p(t)

v(t)

]

• Objective: design
[
Fp Fv

]
to minimize steady-state variance of p, v, u

OPTIMAL CONTROLLER – LINEAR QUADRATIC REGULATOR



u1(t)

u2(t)

u3(t)

u4(t)


 = −




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




︸ ︷︷ ︸
Fp




p1(t)

p2(t)

p3(t)

p4(t)


 −




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




︸ ︷︷ ︸
Fv




v1(t)

v2(t)

v3(t)

v4(t)



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Structure of optimal controller

position feedback matrix: position gains for middle mass:

• OBSERVATIONS

? Diagonals almost constant (modulo edges)

? Off-diagonal decay of a centralized gain

Bamieh, Paganini, Dahleh, IEEE TAC ’02

Motee & Jadbabaie, IEEE TAC ’08
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Enforcing localization?
• One approach: truncating centralized controller

• POSSIBLE DANGERS

? Performance degradation

? Instability
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Outline

• SPARSITY-PROMOTING OPTIMAL CONTROL

? identification and design of sparse feedback gains

? tools from control theory, optimization, and compressive sensing

• ALGORITHM

? Alternating Direction Method of Multipliers

• EXAMPLES

• SUMMARY AND OUTLOOK
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SPARSITY-PROMOTING OPTIMAL CONTROL
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Sparsity-promoting optimal control

minimize J(F ) + γ card (F )

←
−

←
−

variance

amplification

sparsity-promoting

penalty function

? card (F ) – number of non-zero elements of F

F =




5.1 −2.3 0 1.5
0 3.2 1.6 0
0 −4.3 1.8 5.2


 ⇒ card (F ) = 8

? γ > 0 – performance vs sparsity tradeoff

Fardad, Lin, Jovanović, ACC ’11

Lin, Fardad, Jovanović, IEEE TAC ’13
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Convex relaxations of card (F )

`1 norm:
∑

i, j

|Fij|

weighted `1 norm:
∑

i, j

Wij |Fij|, Wij ≥ 0

• CARDINALITY VS WEIGHTED `1 NORM

{Wij = 1/|Fij|, Fij 6= 0} ⇒ card (F ) =
∑

i, j

Wij |Fij|

RE-WEIGHTED SCHEME

? Use feedback gains from previous iteration to form weights

W+
ij =

1

|Fij| + ε

Candès, Wakin, Boyd, J. Fourier Anal. Appl. ’08
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A non-convex relaxation of card (F )

sum-of-logs:
∑

i,j

log

(
1 +

|Fij|
ε

)
, 0 < ε � 1

Candès, Wakin, Boyd, J. Fourier Anal. Appl. ’08
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CLASSES OF CONVEX PROBLEMS
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Optimal actuator/sensor selection

• OBJECTIVE: identify row-sparse feedback gain

minimize J(F ) + γ
∑

i

‖eTi F‖2

←
−

←
−

variance

amplification

row-sparsity-promoting

penalty function
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• CHANGE OF VARIABLES: Y := F X

? convex dependence of J on X and Y

? row-sparse structure preserved

• OPTIMAL CONTROL PROBLEM

? admits SDP characterization

Polyak, Khlebnikov, Shcherbakov, ECC ’13

Dhingra, Jovanović, Luo, CDC ’14
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Consensus by distributed computation

• RELATIVE INFORMATION EXCHANGE WITH NEIGHBORS

? simplest distributed averaging algorithm

ẋi(t) = −
∑

j ∈Ni

(
xi(t) − xj(t)

)

connected network ⇒ convergence to the average value
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Consensus with stochastic disturbances

ẋi(t) = −
∑

j ∈Ni

(
xi(t) − xj(t)

)
+ di(t)

←
−

white noise
• NETWORK AVERAGE

? undergoes random walk

connected network ⇒
{

each xi(t) fluctuates around x̄(t)

deviation from average: x̃i(t) := xi(t) − x̄(t)
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Design of undirected consensus networks

dynamics: ẋ = d + u

control: u = − F x

objective: J = lim
t→∞

E
(
xT (t)Qx(t) + uT (t)Ru(t)

)

SDP characterization:

minimize trace (X + RF ) + γ 1T Y 1

subject to

[
X Q1/2

Q1/2 F + 11T/N

]
� 0

−Yij ≤ Wij Fij ≤ Yij

F 1 = 0

Lin, Fardad, Jovanović, Allerton ’12

Wu & Jovanović, ACC ’14
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Parameterized family of feedback gains

F (γ) := argmin
F

(J(F ) + γ g(F ))
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EXAMPLES

www.umn.edu/∼mihailo/software/lqrsp/

http://www.ece.umn.edu/users/mihailo/software/lqrsp/
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Mass-spring system

diag (Fv):

γ = 10−4 γ = 0.03 γ = 0.1
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• Performance comparison: sparse vs centralized

(J − Jc) /Jc:

γ

card (F ) /card (Fc) (J − Jc) /Jc

10% 0.75%
6% 2.4%
2% 7.8%
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Network with 100 nodes

[
ṗi
v̇i

]
=

[
1 1

1 2

] [
pi
vi

]

︸ ︷︷ ︸
unstable
dynamics

+
∑

j 6= i

e−α(i,j)
[
pj
vj

]

︸ ︷︷ ︸
coupling

+

[
0

1

]
(di + ui)

α(i, j): Euclidean distance between nodes i and j

Motee & Jadbabaie, IEEE TAC ’08
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• Performance comparison: sparse vs centralized

(J − Jc) /Jc: (J − Jc) /Jc:

γ card (F ) /card (Fc)
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identified communication graph:

γ = 5

card (F ) /card (Fc) = 8.8%

(J − Jc) /Jc = 24.6%
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identified communication graph:

γ = 11

card (F ) /card (Fc) = 5.1%

(J − Jc) /Jc = 40.9%
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identified communication graph:

γ = 18

card (F ) /card (Fc) = 3.4%

(J − Jc) /Jc = 48.7%
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identified communication graph:

γ = 30

card (F ) /card (Fc) = 2.4%

(J − Jc) /Jc = 54.8%
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communication graph of a truncated centralized gain:

card (F ) = 7380 (36.9%)

non-stabilizing
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Wide area control of power networks
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},





(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0), ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ, ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability

!"#$%&'''%()(*%(+,-.,*%/012-3*%)0-4%5677*%899: !"#$%&'

(')$
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10

single wide-area comm link

single long range interaction ⇒ nearly centralized
performance
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Performance vs sparsity

(J − Jc) /Jc card (F ) /card (Fc)

10−4 10−3 10−2 10−1 100
0

0.4

0.8

1.2

1.6

γ

pe
rc

en
t

10−4 10−3 10−2 10−1 100
0

20

40

60

80

γ

γ = 1
relative to Fc−−−−−−−−−−→

{
1.6 % performance loss

5.5 % non-zero elements in F
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• Signal exchange network

γ = 0.0289, card (F ) = 90

γ = 1, card (F ) = 37

Dörfler, Jovanović, Chertkov, Bullo, IEEE TPWRS ’14
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Sparsity-promoting consensus algorithm

local performance graph: identified communication graph:

Q = Qloc +

(
I − 1

N
11T

)
J − Jc
Jc

≈ 11%

Lin, Fardad, Jovanović, Allerton ’12
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ALGORITHM
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Alternating direction method of multipliers

minimize J(F ) + γ g(F )

• Step 1: introduce additional variable/constraint

minimize J(F ) + γ g(G)

subject to F − G = 0

benefit: decouples J and g

• Step 2: introduce augmented Lagrangian

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F − G)

)
+

ρ

2
‖F − G‖2F



D
ra

ft

36

• Step 3: use ADMM for augmented Lagrangian minimization

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F −G)

)
+
ρ

2
‖F −G‖2F

ADMM:

F k+1 := argmin
F

Lρ(F ,Gk,Λk)

Gk+1 := argmin
G

Lρ(F k+1, G,Λk)

Λk+1 := Λk + ρ (F k+1 − Gk+1)

MANY MODERN APPLICATIONS

? distributed computing

? distributed signal processing

? image denoising

? machine learning

Boyd et al., Foundations and Trends in Machine Learning ’11
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• Step 4: Polishing – back to structured optimal design

? ADMM

{
identifies sparsity patterns

provides good initial condition for structured design

? NECESSARY CONDITIONS FOR OPTIMALITY OF THE STRUCTURED PROBLEM

(A − B2F )TP + P (A − B2F ) = −
(
Q + FTRF

)

(A − B2F )L + L (A − B2F )T = −B1B
T
1[(

RF − BT2 P
)
L
]
◦ IS = 0

Newton’s method with conjugate gradient

IS - structural identity

F =




∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗


 ⇒ IS =




1 1
1 1 1

1 1 1
1 1



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Solution to G-minimization problem

minimize
Gij

∑

i, j

(
γ Wij |Gij| +

ρ

2

(
Gij − V kij

)2)

V kij := F k+1
ij + (1/ρ)Λkij

separability ⇒ element-wise analytical solution

soft-thresholding

a = (γ/ρ)Wij
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Solution to F -minimization problem

minimize
F

J(F ) +
ρ

2
‖F − Uk‖2F

Uk := Gk − (1/ρ)Λk

NECESSARY CONDITIONS FOR OPTIMALITY:

(A − B2F )L + L(A − B2F )T = −B1B
T
1

(A − B2F )TP + P (A − B2F ) = − (Q + FTRF )

FL + ρ(2R)−1F = R−1BT2 PL + ρ(2R)−1Uk

• ITERATIVE SCHEME

Given F0 solve for {L1, P1} → F1 → {L2, P2} → F2 · · ·
descent direction + line search ⇒ convergence
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ALTERNATIVE FORMULATIONS?
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Optimal control in discrete time

xt+1 = Axt + B1 dt + B2 ut

ut = −F xt

• NO STRUCTURAL CONSTRAINTS

minimize
X,F

trace
(
XB1B

T
1

)

subject to X − (A − B2F )T X (A − B2F ) = Q + FTRF

X � 0

equivalent formulation:

minimize
X,Y, F,K

trace
(
XB1B

T
1

)

subject to X − (A − B2F )T Y −1 (A − B2F ) � Q + K

X � 0, K � FTRF

X Y = I
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• A POSSIBLE APPROACH

minimize
X,Y, F,K

trace
(
XB1B

T
1

)

subject to X − (A − B2F )T Y −1 (A − B2F ) � Q + K

K � FTRF, X � Y −1, Y � X−1

X � 0, Y � 0

CONVEX APPROXIMATION?

minimize
X,Y, F,K

trace (X Yk + Xk Y ) + trace
(
XB1B

T
1

)

subject to

[
X −Q−K (A−B2F )T

A−B2F Y

]
� 0

[
K FT

F R−1

]
� 0,

[
X I
I Y

]
� 0

Fardad & Jovanović, ACC ’14
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Summary
• SPARSITY-PROMOTING OPTIMAL CONTROL

? Performance vs sparsity tradeoff
Lin, Fardad, Jovanović, IEEE TAC ’13

? Software
www.umn.edu/∼mihailo/software/lqrsp/

• RELATED EFFORT

? Leader selection in large dynamic networks
Lin, Fardad, Jovanović, IEEE TAC ’14

? Optimal synchronization of sparse oscillator networks
Fardad, Lin, Jovanović, IEEE TAC ’14

? Optimal dissemination of information in social networks
Fardad, Zhang, Lin, Jovanović, CDC ’12

? Sparse or infrequently changing (in time) control signals
Jovanović & Lin, ECC ’13

http://www.ece.umn.edu/users/mihailo/software/lqrsp/
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