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Example: heat equation
e Distributed input and output fields

(Y, 1) = pyy(y,t) + d(y,?)
p(y,0) = 0
o(+1,t) = 0

* Harmonic forcing

. steady-state response .
d(y,t) = d(y,w) e ! pyt) = ply,w)e

* Frequency response operator

py,w) = [T(w)d(-,w)](y)

— [(jWI — 8yy)_1 d(',w)] (y)

1
= / Ter(y,m;w) d(n,w) dn
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Two point boundary value realizations of 7 (w)

e Input-output differential equation

T(w):{ o'y, w) — jwely,w) = —dy,w)
o(+l,w) = 0
e Spatial state-space realization
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Frequency response operator

e Evolution equation

E o)) (y) = [Fol, 1) (y) + Gd(-,1)](y), v € |a, ]
po(y,t) = [Ho(,1)] (v), t € |0, oo)

* Spatial differential operators

nw dk
F = |Fy] = Zfzgk(y)d—yk
k=0

* Frequency response operator

T = H(jwE — F)'G



Example: channel flow
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e Streamwise-constant fluctuations
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Singular value decomposition

e Schmidt decomposition of a compact operator 7 (w): H;,, — Hous

o(y,w) = [T(w)d( Z O (w) tn (Y, w) (vn, d)

n=1

e Left and right singular functions

[T (W) T (w) un(-,w)] () = on(w) unly, w)
[T (w) T (W) v, w)] (y) = oq(w) vn(y,w)

{u,} orthonormal basis of H,

{v,} orthonormal basis of Hj,



¢ Right singular functions

= identify input directions with simple responses

o1(w) > o2(w) > -+ >0

pw) = TW)dw) = Y oulw)un(w) (n(w), dw))

n=1

| dw) = vmn()

pw) = om(w) um(w)

o1(w): the largest amplification at any frequency



Worst case amplification
e H., norm: an induced L, gain (of a system)
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Robustness interpretation

d Nominal '
] ) L.

| Dynamics |
S R -

modeling uncertainty
(can be nonlinear or time-varying)

small-gain theorem:

stability for all I" with , 1
maxo?(Tw)) <~2 < 7 <@

LARGE —

worst case amplification stability margins

closely related to pseudospectra of linear operators



Pseudo-spectral methods
e MATLAB Differentiation Matrix Suite

T(w) = (jwl — D@)™"

Q

N

e Advantages

* superior accuracy compared to finite difference methods
* ease-to-use MATLAB codes

e Disadvantages

= 1ll-conditioning of high-order differentiation matrices

* implementation of boundary conditions may be non-trivial

Weideman & Reddy, ACM. TOMS. 00



Alternative method

1. Frequency response operator: two-point boundary value problem
2. Integral form of differential equations

3. State-of-the-art automatic spectral collocation techniques

A/ \e/ N/
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Advantages of Chebfun

e Superior accuracy compared to currently available schemes
e Avoids ill-conditioning of high-order differentiation matrices
e Incorporates a wide range of boundary conditions

e Easy-to-use MATLAB codes

Lieu & Jovanovic

“Computation of frequency responses of linear time-invariant PDEs on a compact
interval”, submitted to J. Comput. Phys., 2011

Also arXiv:1112.0579v1
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2D inertialess flow of viscoelastic fluids
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T, = Vv + (V) — 7+ We(r-Vv + 7 Vv
+ (7 V)" + (r-VV)' = v.VF — v.V7)
I I ion ti
We polymer relaxation time

B characteristic flow time
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Input-output differential equations

e Frequency response operator

Ao d] (y) = [Bod] (y)
T (w) p(y) = [Cod] (y)
0 = Noo(y)

e Adjoint of the frequency response operator

AS Y] (y) = [Co f] ()
T (w) : gy) = [Bs ] (y)
0 = Ng¥(y)

15



Composition of 7 with 7~

e Cascade connection

g N2

—_— T — ] —>

AL (y)
TT™: ()
0

B f](y)
C&](y)
N &(y)

x Do e-value decomposition of 7 7* and 7*7 in Chebfun

T (W) T*(w) un(-w)| (y) = o5 (w) un(y, w)

[T (w) T (W) vn (-, w)] (y) = o5 (w) vn(y, w)

2
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Example: 1D heat equation

¢t(y7t) — ¢yy(y7t) -+ d(y7t)7 Yy € [_17 1]
¢(:|:1,t) = 0

e Frequency response and adjoint operators

( ¢"(y) —jwely) = —d(y)
([ E)ow = [0]

' P (y) + jwi(y) = fy)
T*(w) : ¢ 1 O 9(y) = —zé(y)

([o]z [V]2)w = 5]
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Integral form of a differential equation
Driscoll, J. Comput. Phys., 2010

e 1D diffusion equation: differential form

|
|
S
VS
<
N—"

(PP — jwl) 6(y)

(LoJee [3 ] 7)o =[]

Auxiliary variable: v(y) = [DP 3] (y)

Integrate twice



e 1D diffusion equation: integral form

(1 = @) v(y) - jwK@k = — d(y)

e le] o ([o)Er [V ]E) e

Eliminate k from the equations to obtain

1
(z SERCINEE FHORt 1>E1J<2>) W) = —d(y)

iz More suitable for numerical computations than differential form
integral operators and point evaluation functionals are well-conditioned
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Online resources
e Chebfun

http:// www2.maths.ox.ac.uk/chebfun/

Go gle: “chebfun”

e Computing frequency responses of PDEs

http://www.umn.edu/~mihailo/software/chebfun-svd/

Go gle: “frequency responses pde”
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Summary

e method for computing frequency responses of PDEs

e easy-to-use mini-toolbox in MATLAB

* enabling tool: Chebfun

e two major advantages over currently available schemes
* avoids ill-conditioning of high-order differentiation matrices

* easy implementation of boundary conditions
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