Computation of frequency responses of PDEs in Chebfun

Mihailo Jovanović

www.umn.edu/~mihailo

joint work with: **Binh K. Lieu**

2012 SIAM Annual Meeting

Example: heat equation

Distributed input and output fields

$$\varphi_t(y,t) = \varphi_{yy}(y,t) + d(y,t)$$

$$\varphi(y,0) = 0$$

$$\varphi(\pm 1,t) = 0$$

Harmonic forcing

$$d(y,t) = d(y,\omega) e^{\mathrm{j}\omega t}$$
 steady-state response $\varphi(y,t) = \varphi(y,\omega) e^{\mathrm{j}\omega t}$

* Frequency response operator

$$\varphi(y,\omega) = [\mathcal{T}(\omega) d(\cdot,\omega)](y)$$

$$= [(j\omega I - \partial_{yy})^{-1} d(\cdot,\omega)](y)$$

$$= \int_{-1}^{1} T_{ker}(y,\eta;\omega) d(\eta,\omega) d\eta$$

Two point boundary value realizations of $\mathcal{T}(\omega)$

Input-output differential equation

$$\mathcal{T}(\omega) : \begin{cases} \varphi''(y,\omega) - j\omega \varphi(y,\omega) &= -d(y,\omega) \\ \varphi(\pm 1,\omega) &= 0 \end{cases}$$

Spatial state-space realization

$$\mathcal{T}(\omega) : \begin{cases}
\begin{bmatrix} x_1'(y,\omega) \\ x_2'(y,\omega) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ j\omega & 0 \end{bmatrix} \begin{bmatrix} x_1(y,\omega) \\ x_2(y,\omega) \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} d(y,\omega) \\
\varphi(y,\omega) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(y,\omega) \\ x_2(y,\omega) \end{bmatrix} \\
0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(-1,\omega) \\ x_2(-1,\omega) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(1,\omega) \\ x_2(1,\omega) \end{bmatrix}$$

Frequency response operator

Evolution equation

$$[\mathcal{E} \phi_t(\cdot, t)](y) = [\mathcal{F} \phi(\cdot, t)](y) + [\mathcal{G} d(\cdot, t)](y), \quad y \in [a, b]$$

$$\varphi(y, t) = [\mathcal{H} \phi(\cdot, t)](y), \quad t \in [0, \infty)$$

Spatial differential operators

$$\mathcal{F} = [\mathcal{F}_{ij}] = \sum_{k=0}^{n_{ij}} f_{ij,k}(y) \frac{\mathrm{d}^k}{\mathrm{d}y^k}$$

★ Frequency response operator

$$\mathcal{T} = \mathcal{H} (j \omega \mathcal{E} - \mathcal{F})^{-1} \mathcal{G}$$

Example: channel flow

Streamwise-constant fluctuations

$$\begin{bmatrix} \Delta & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \phi_{1t} \\ \phi_{2t} \end{bmatrix} = \begin{bmatrix} (1/Re)\Delta^2 & 0 \\ \mathcal{F}_{21} & (1/Re)\Delta \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}$$

Laplacian: $\Delta = \partial_{yy} - k_z^2$

"Square of Laplacian": $\Delta^2 = \partial_{yyyy} - 2 \, k_z^2 \, \partial_{yy} + k_z^4$

Coupling: $\mathcal{F}_{21} = -jk_z U'(y)$

Singular value decomposition

• Schmidt decomposition of a compact operator $\mathcal{T}(\omega)$: $\mathbb{H}_{\mathrm{in}} \longrightarrow \mathbb{H}_{\mathrm{out}}$

$$\varphi(y,\omega) = \left[\mathcal{T}(\omega) d(\cdot,\omega)\right](y) = \sum_{n=1}^{\infty} \sigma_n(\omega) \frac{u_n}{u_n}(y,\omega) \langle v_n, d \rangle$$

Left and right singular functions

$$[\mathcal{T}(\omega) \, \mathcal{T}^{\star}(\omega) \, u_{n}(\cdot, \omega)] \, (y) = \sigma_{n}^{2}(\omega) \, u_{n}(y, \omega)$$
$$[\mathcal{T}^{\star}(\omega) \, \mathcal{T}(\omega) \, v_{n}(\cdot, \omega)] \, (y) = \sigma_{n}^{2}(\omega) \, v_{n}(y, \omega)$$

 $\{u_n\}$ orthonormal basis of $\mathbb{H}_{\mathrm{out}}$

 $\{v_n\}$ orthonormal basis of \mathbb{H}_{in}

- Right singular functions
 - * identify input directions with simple responses

$$\sigma_1(\omega) \ge \sigma_2(\omega) \ge \cdots > 0$$

$$\varphi(\omega) = \mathcal{T}(\omega) d(\omega) = \sum_{n=1}^{\infty} \sigma_n(\omega) u_n(\omega) \langle v_n(\omega), d(\omega) \rangle$$

$$\downarrow d(\omega) = v_m(\omega)$$

$$\varphi(\omega) = \sigma_m(\omega) u_m(\omega)$$

 $\sigma_1(\omega)$: the largest amplification at any frequency

Worst case amplification

• H_{∞} norm: an induced L_2 gain (of a system)

$$G = \sup_{\omega} \frac{\text{output energy}}{\text{input energy}} = \sup_{\omega} \frac{\int_{0}^{\infty} \langle \varphi(t), \varphi(t) \rangle \, \mathrm{d}t}{\int_{0}^{\infty} \langle d(t), d(t) \rangle \, \mathrm{d}t}$$
$$= \sup_{\omega} \sigma_{1}^{2} \left(\mathcal{T}(\omega) \right)$$

Robustness interpretation

modeling uncertainty

(can be nonlinear or time-varying)

small-gain theorem:

stability margins

closely related to pseudospectra of linear operators

Pseudo-spectral methods

MATLAB Differentiation Matrix Suite

- Advantages
 - * superior accuracy compared to finite difference methods
 - ★ ease-to-use Matlab codes
- Disadvantages
 - ill-conditioning of high-order differentiation matrices
 - * implementation of boundary conditions may be non-trivial

Alternative method

- 1. Frequency response operator: two-point boundary value problem
- 2. Integral form of differential equations
- 3. State-of-the-art automatic spectral collocation techniques

Advantages of Chebfun

- Superior accuracy compared to currently available schemes
- Avoids ill-conditioning of high-order differentiation matrices
- Incorporates a wide range of boundary conditions
- Easy-to-use MATLAB codes

Lieu & Jovanović

"Computation of frequency responses of linear time-invariant PDEs on a compact interval", submitted to J. Comput. Phys., 2011

Also arXiv:1112.0579v1

2D inertialess flow of viscoelastic fluids

$$0 = -\nabla p + (1 - \beta) \nabla \cdot \boldsymbol{\tau} + \beta \nabla^2 \mathbf{v} + \mathbf{d}$$

$$0 = \nabla \cdot \mathbf{v}$$

$$oldsymbol{ au}_t =
abla \mathbf{v} + (
abla \mathbf{v})^T - oldsymbol{ au} + We (oldsymbol{ au} \cdot
abla ar{\mathbf{v}} + ar{oldsymbol{ au}} \cdot
abla \mathbf{v}$$

$$+ (ar{oldsymbol{ au}} \cdot
abla \mathbf{v})^T + (oldsymbol{ au} \cdot
abla ar{\mathbf{v}})^T - \mathbf{v} \cdot
abla ar{oldsymbol{ au}} - ar{\mathbf{v}} \cdot
abla oldsymbol{ au}$$

$$We = \frac{\text{polymer relaxation time}}{\text{characteristic flow time}}$$

Largest singular value of $\mathcal T$

$$\sigma_1(\mathcal{T})$$

$$egin{array}{llll} eta &=& 0.5 \ k_x &=& 1 \ \omega &=& 0 \ N &=& 50 \ (imes) \ N &=& 100 \ (\circ) \ N &=& 200 \ (+) \ \end{array}$$

$$eta = 0.5$$
 $k_x = 1$
 $\omega = 0$
 $N = 50 (\times)$
 $N = 100 (\circ)$
 $N = 200 (+)$

Input-output differential equations

Frequency response operator

$$\mathcal{T}(\omega) : \begin{cases} \left[\mathcal{A}_0 \phi \right](y) = \left[\mathcal{B}_0 d \right](y) \\ \varphi(y) = \left[\mathcal{C}_0 \phi \right](y) \\ 0 = \mathcal{N}_0 \phi(y) \end{cases}$$

Adjoint of the frequency response operator

$$\mathcal{T}^{\star}(\omega) : \begin{cases} \left[\mathcal{A}_0^{\star} \psi \right](y) = \left[\mathcal{C}_0^{\star} f \right](y) \\ g(y) = \left[\mathcal{B}_0^{\star} \psi \right](y) \\ 0 = \mathcal{N}_0^{\star} \psi(y) \end{cases}$$

Composition of \mathcal{T} with \mathcal{T}^{\star}

Cascade connection

$$\mathcal{T}\mathcal{T}^{\star}: \left\{ \begin{array}{rcl} \left[\mathcal{A}\,\xi\right](y) &=& \left[\mathcal{B}\,f\right](y) \\ \varphi(y) &=& \left[\mathcal{C}\,\xi\right](y) \\ 0 &=& \mathcal{N}\,\xi(y) \end{array} \right.$$

***** Do e-value decomposition of $\mathcal{T}\mathcal{T}^*$ and $\mathcal{T}^*\mathcal{T}$ in Chebfun

$$\left[\mathcal{T}(\omega)\,\mathcal{T}^{\star}(\omega)\,u_{n}(\cdot,\omega)\right](y) = \sigma_{n}^{2}(\omega)\,u_{n}(y,\omega)$$

$$\left[\mathcal{T}^{\star}(\omega)\,\mathcal{T}(\omega)\,v_{n}(\cdot,\omega)\right](y) = \sigma_{n}^{2}(\omega)\,v_{n}(y,\omega)$$

Example: 1D heat equation

$$\phi_t(y,t) = \phi_{yy}(y,t) + d(y,t), \quad y \in [-1, 1]$$

 $\phi(\pm 1, t) = 0$

Frequency response and adjoint operators

$$\mathcal{T}(\omega) : \begin{cases} \phi''(y) - j \omega \phi(y) = -d(y) \\ \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} E_{-1} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} E_{1} \right) \phi(y) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{cases}$$

$$\mathcal{T}^{\star}(\omega) : \begin{cases} \psi''(y) + j \omega \psi(y) = f(y) \\ g(y) = -\psi(y) \\ \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} E_{-1} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} E_{1} \right) \psi(y) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{cases}$$

Integral form of a differential equation

Driscoll, J. Comput. Phys., 2010

1D diffusion equation: differential form

$$\left(D^{(2)} - j\omega I\right)\phi(y) = -d(y)$$

$$\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} E_{-1} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} E_{1}\right)\phi(y) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Auxiliary variable:

$$\nu(y) = \left[D^{(2)}\phi\right](y)$$

Integrate twice

$$\phi'(y) = \int_{-1}^{y} \nu(\eta_1) d\eta_1 + k_1 = \left[J^{(1)} \nu \right] (y) + k_1$$

$$\phi(y) = \int_{-1}^{y} \left(\int_{-1}^{\eta_2} \nu(\eta_1) d\eta_1 \right) d\eta_2 + \left[1 \quad (y+1) \right] \left[\begin{array}{c} k_2 \\ k_1 \end{array} \right]$$

$$= \left[J^{(2)} \nu \right] (y) + K^{(2)} \mathbf{k}$$

1D diffusion equation: integral form

$$\begin{pmatrix} I - j\omega J^{(2)} \end{pmatrix} \nu(y) - j\omega K^{(2)} \mathbf{k} = -d(y)$$

$$\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} k_2 \\ k_1 \end{bmatrix} = -\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} E_{-1} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} E_1 \right) J^{(2)} \nu(y)$$

Eliminate k from the equations to obtain

$$\left(I - j\omega J^{(2)} + \frac{1}{2}j\omega(y+1)E_1J^{(2)}\right)\nu(y) = -d(y)$$

More suitable for numerical computations than differential form integral operators and point evaluation functionals are well-conditioned

Online resources

Chebfun

http://www2.maths.ox.ac.uk/chebfun/

Google: "chebfun"

Computing frequency responses of PDEs

http://www.umn.edu/~mihailo/software/chebfun-svd/

Google: "frequency responses pde"

Summary

- method for computing frequency responses of PDEs
- easy-to-use mini-toolbox in MATLAB
 - ⋆ enabling tool: Chebfun
- two major advantages over currently available schemes
 - * avoids ill-conditioning of high-order differentiation matrices
 - * easy implementation of boundary conditions

Acknowledgments

TEAM:

Binh Lieu

SUPPORT:

NSF CAREER Award CMMI-06-44793

SOFTWARE:

http://www.umn.edu/~mihailo/software/chebfun-svd/