
ANRV294-FL39-07 ARI 12 December 2006 6:2

Nonmodal Stability Theory
Peter J. Schmid
Laboratoire d’Hydrodynamique (LadHyX), CNRS-École Polytechnique,
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Abstract
Hydrodynamic stability theory has recently seen a great deal of de-
velopment. After being dominated by modal (eigenvalue) analysis
for many decades, a different perspective has emerged that allows
the quantitative description of short-term disturbance behavior. A
general formulation based on the linear initial-value problem, thus
circumventing the normal-mode approach, yields an efficient frame-
work for stability calculations that is easily extendable to incorporate
time-dependent flows, spatially varying configurations, stochastic in-
fluences, nonlinear effects, and flows in complex geometries.
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1. INTRODUCTION

The emergence of spatial patterns, the observation of consistent temporal behavior,
and the interplay of coherent structures in fluid flows have provided the basic mo-
tivation for the development of hydrodynamic stability theory. As evidenced in the
early drawings of Leonardo da Vinci, which illustrate the intricate details of vortex
patterns forming in the wake of rocks in a stream, the question of why, when, and
how fluid motion deviates from its ordered state to exhibit more complex behavior
has fascinated scientists and laymen alike.

1.1. Historical Perspective

As the first controlled scientific experiment, the setup of Reynolds (1883) is often
acknowledged, and frequently cited, as the beginning of modern hydrodynamic sta-
bility theory, introducing the now familiar Reynolds number Re as a critical nondi-
mensional parameter that distinguishes stable from unstable flows. In the decades
following Reynolds, hydrodynamic stability theory evolved and matured significantly,
and important accomplishments were achieved. These early accomplishments pre-
dated the advent of computational means and thus relied on simplifying assumptions
and sophisticated asymptotic techniques (Drazin & Reid 1981). Some of the now
classical results in stability theory, obtained throughout the past century, include
the formulation of the viscous stability problem for parallel shear flows (Orr 1907,
Sommerfeld 1908), which had to await its accurate numerical solution for plane
Poiseuille flow many years later (Orszag 1971), bounds on maximum energy
growth ( Joseph 1976), the theoretical prediction (Schlichting 1933, Tollmien 1929)
and experimental observation of Tollmien-Schlichting waves (Klebanoff et al. 1962),
their secondary instability (Herbert 1988, Orszag & Patera 1983), the identification
of instability waves in compressible boundary layers (Mack 1963), the discovery and
description of Taylor rolls (Taylor 1923), a mathematical framework for spatially
growing disturbances (Gaster 1965), the derivation of rigorous criteria for absolutely
growing disturbances (Huerre & Monkewitz 1990), the discovery of elliptical insta-
bilities (Bayly 1986, Pierrehumbert 1986), the description of complex flow situations
by the parabolized stability equations (Bertolotti et al. 1992, Chang & Malik 1994),
and many more.

Despite these remarkable accomplishments, many questions were left unanswered,
including the discrepancy between the computed critical Reynolds number and the
observed transitional Reynolds number in many wall-bounded shear flows, the inter-
play between linear energy amplification and nonlinear energy conservation in the
subcritical regime, the nonexistence of finite critical Reynolds numbers for pipe or
plane Couette flow, and a frequent failure to observe theoretically predicted structures
in unforced experiments.

A common simplification in many stability calculations has been the assumption
of an exponential time dependence, also referred to as the normal-mode approach.
This ansatz allows the transformation of the linear initial-value problem into a cor-
responding eigenvalue problem. The computed eigenvalues are then investigated
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as to their exponential growth rate, and the basic flow is subsequently labeled un-
stable if an eigenvalue is found in the unstable complex half-plane. The limiting
nature of this modal approach was recognized and linked to the above-mentioned
shortcomings in the late 1980s, and a novel way of describing fluid stability has
quickly emerged (see, e.g., Boberg & Brosa 1988, Butler & Farrell 1992, Gustavsson
1991, Reddy et al. 1993, Reddy & Henningson 1993, Schmid & Henningson 2001,
Trefethen et al. 1993). This new approach—the subject of this review—has enjoyed
substantial success in furthering a more complete understanding of instabilities and
in providing the missing mechanisms of transition in a variety of wall-bounded shear
flows.

1.2. Short-Term Stability Analysis

In general, linear stability theory is concerned with a quantitative description of flow
behavior involving infinitesimal disturbances superimposed on a base flow. Tradi-
tionally, the description of this behavior was inferred from the spectrum or eigenval-
ues of the governing linear operator. However, for most wall-bounded shear flows
the spectrum is a poor proxy for the disturbance behavior as it only describes the
asymptotic (t → ∞) fate of the perturbation and fails to capture short-term char-
acteristics (Schmid & Henningson 2001). The many decades-long concentration on
eigenvalues in hydrodynamic stability theory has accordingly resulted in a disregard
for short-time perturbation dynamics and its consequences on scale selection and
transition scenarios. As an example, the maximum growth rate for plane Poiseuille
flow is about 0.04 (nondimensionalized by the half-channel height and the centerline
velocity) for two-dimensional streamwise perturbations. At this growth rate, it would
take the least stable mode about 57 time units to grow by one order of magnitude.
Experimental observations report instabilities and transition scenarios on a substan-
tially shorter timescale. In fact, the time-asymptotic fate, as well as the shape of the
least stable mode, may be irrelevant to the overall perturbation dynamics, as this limit
may never, or only under artificial conditions, be reached.

To accurately describe the disturbance behavior for all times, it appears necessary
to introduce a finite-time horizon over which an instability is observed. In addi-
tion, a general, unbiased analysis should determine the most amplified perturbations
and describe their evolution in time. Finite-time stability analysis markedly deviates
from the traditional Lyapunov stability concept (Khalil 2002), and it is not surprising
that the disturbance that grows the most over a short timescale differs significantly
from the least stable mode. By limiting the time horizon, new concepts and techniques
have to be employed to quantitatively describe the perturbation dynamics (Schmid
& Henningson 2001); at the same time, these new tools reveal a very different and
remarkably rich picture of linear disturbance behavior.

Stability is redefined in a broader sense as the response behavior of the governing
equations to general (deterministic or random) input variables, whether they be in
the form of initial conditions, an external disturbance environment, internal uncer-
tainties, or geometric constraints (Figure 1). No a priori selection of a time horizon
or perturbation shape is made.
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Initial
condition
(2.3)

External excitation
• Harmonic (2.4, 2.5)
• Impulsive (2.6)
• Random (4.1)

Output

System

Deterministic
• Time-independent (2.1–2.6)
• Time-dependent (3)
• Spatially varying (5)

Stochastic (4.2)

Figure 1
Sketch of a system subject to external and internal perturbations. The system is governed by a
deterministic or stochastic operator and, for stability calculations, acts as a mapping of initial
conditions or external excitations onto output variables. The numbers in parentheses refer to
section numbers in this review.

A concise introduction to the central techniques of nonmodal stability theory is
given. This review begins with classical plane Poiseuille flow, then adds periodic and
aperiodic time dependence, and assesses the influence of stochastic forcing stemming
from both external and internal sources; extensions to treat complex geometries,
remarks on nonlinear problems, and a speculative outlook for future developments
conclude this review.

2. DESCRIBING DISTURBANCE BEHAVIOR:
THE NONMODAL APPROACH

Two general approaches can be distinguished: the response to initial conditions,
and the response to external forcing. The first approach is central to hydrody-
namic stability theory, whereas the second ventures into the closely related field
of receptivity analysis (Choudhari 1993, Crouch 1994, Goldstein & Hultgren
1989, Morkoovin 1960). The two distinct viewpoints are treated within the same
framework.

2.1. Governing Equations and General Solutions

We start by concentrating on the linearized incompressible Navier-Stokes equations
describing the evolution of infinitesimal perturbations in a simple three-dimensional
geometry with two homogeneous and one inhomogeneous directions. The concepts
underlying the nonmodal approach to stability theory can readily be developed and
illustrated in this simple flow situation. In subsequent sections additional features
and effects, such as unsteadiness, spatial inhomogeneity, etc. are treated; as a starting
point, however, the flow between parallel plates, i.e., plane Poiseuille flow, will suffice
to demonstrate the nonmodal approach.
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The set of governing equations is conveniently written in the form

∂

∂t

(
v

η

)
=

(
LOS 0

LC LSQ

)
︸ ︷︷ ︸

A

(
v

η

)
+

(
iαM−1D M−1k2 iβM−1D

iβ 0 −iα

)
︸ ︷︷ ︸

B

⎛
⎜⎜⎝

uin(t)

vin(t)

win(t)

⎞
⎟⎟⎠ , (2.1a)

⎛
⎜⎝uout

vout

wout

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

iα
k2

D − iβ
k2

1 0
iβ
k2

D
iα
k2

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C

(
v

η

)
,

⎛
⎜⎝u

v

w

⎞
⎟⎠

∣∣∣∣∣∣∣
t=0

=

⎛
⎜⎝u0

v0

w0

⎞
⎟⎠ , (2.1b)

where LOS, LSQ , and LC are the familiar Orr-Sommerfeld, Squire, and coupling
operators, respectively, v and η stand for the wall-normal velocity and vorticity, and
u, w describe the velocity components in the streamwise and spanwise coordinate
directions. A Fourier transform in the two homogeneous (x, z) directions has been
assumed, with α denoting the streamwise wave number, β denoting the spanwise wave
number, and k =

√
α2 + β2 as the modulus of the wave vector. The nondimensional

form of the base profile is given as U( y) = 1−y2, and the Reynolds number Re is based
on the centerline velocity and the half-channel height. In the above formulation, it is
assumed that the wall-normal y-direction has been appropriately discretized, yielding
the differentiation matrix denoted by D. The matrix M is given as k2 − D2. Besides
the governing parameters, the evolution of infinitesimal disturbances is influenced
by the initial conditions (u0, v0, w0) as well as by the external (time-dependent) forcing
functions (uin, vin, win). The output variables are given by (uout, vout, wout). Both the
initial conditions and external forcing functions have a specified shape in the wall-
normal direction.

The solution to this forced initial-value problem is given in general form by⎛
⎜⎝uout

vout

wout

⎞
⎟⎠ = C exp(tA)B

⎛
⎜⎝u0

v0

w0

⎞
⎟⎠ + C

∫ t

0
exp((t − τ )A)B

⎛
⎜⎝uin(τ )

vin(τ )
win(τ )

⎞
⎟⎠ dτ. (2.2)

This general solution clearly distinguishes the response to initial conditions and the
response to external forcing. Expression 2.2 represents the general dynamics of the
system (Expression 2.1) and thus completely describes the behavior of disturbances
governed by Expression 2.1. No approximations regarding the shape of disturbances
or their temporal behavior have been introduced so far.

2.2. Choice of Measure

In any hydrodynamic stability analysis of a given flow one must first decide on an ap-
propriate measure of the disturbance size. As seen below, the necessity for this exercise
does not stem only from physical considerations, as the mathematical framework into
which the analysis is cast also requires a measure of size (norm) as well as a measure of
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angle (scalar product). Physically motivated measures are, of course, greatly preferred
as they suggest realizability and observability for numerical simulations and physical
experiments. This restriction, however, still leaves many options, and, in general, a
clear and obvious choice is seldom available. For simple incompressible flows the ki-
netic energy of the perturbation is a convenient and defensible choice. But as soon as
additional effects (free surfaces or compressibility, for example) or slightly more com-
plex base flows (e.g., swept attachment-line flow) come into play, the definition of a
scalar product and associated norm has to be reassessed. Despite some shortcomings,
physically motivated disturbance measures are still the best choice; it is important,
however, to interpret the results of the stability analysis with this choice in mind.

The weight necessary to convert an energy measure to the more standard Eulerian
L2 norm is not explicitly specified. Expressing the energy E of a disturbance given
by the state vector q = (u, v, w)T as E = qHWq with W containing the appropriate
integration weights, we can easily derive an energy-based norm for the state vector
as ‖q‖E = ‖Fq‖2 and for matrices as ‖A‖E = ‖FAF−1‖2, with F arising from a
Cholesky decomposition of W = FHF (Reddy et al. 1993, Schmid & Henningson
2001, Trefethen & Embree 2005). In what follows, the subscript E is omitted.

2.3. Response to Initial Conditions

The most common approach to hydrodynamic stability theory is dominated by the
quest for the most dangerous initial condition that results in the maximum amplifica-
tion of its kinetic energy, or, in other words, the maximum response to varying initial
conditions. We are thus interested in the maximum amplification G(t) of initial en-
ergy over a specified time interval, which, based on Equation 2.2, can be formulated
as

G(t) = max
q0

‖q(t)‖2

‖q0‖2
= max

q0

‖C exp(tA)Bq0‖2

‖q0‖2
= ‖C exp(tA)B‖2. (2.3)

Note that the quantity G(t) includes an optimization over all initial conditions and
that for each choice of t a different initial condition may yield the maximum possible
energy amplification.

Traditionally, the amplification of disturbances has been characterized in terms
of the least stable mode of A. This specific perturbation is often thought to domi-
nate the dynamics governed by Equation 2.1. Concentrating on only the least stable
mode is equivalent to replacing the norm of the operator G(t) = ‖C exp(tA)B‖2 by
g(t) = exp(2tλr ) with λr as the real part of the least stable eigenvalue of A. Using the
eigenvalue decomposition of A, i.e., A = V�V−1, it should become obvious that no
information about the eigenfunctions of A, contained in V, is considered when only
the least stable mode is taken as a representation of the operator exponential

G(t) = ‖C exp(tA)B‖2 = ‖CV exp(t�)︸ ︷︷ ︸
spectral
analysis

V−1B‖2. (2.4)

Spectral analysis thus only concentrates on parts of the full evolution operator. Only
for unitary matrices V, i.e., for a set of orthogonal eigenfunctions, does the real part
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Φ1

Φ1

Φ1 Φ1

Φ2

Φ2

Φ2
Φ2

f
f

f

Figure 2
Vector example of transient growth. Starting on the left, the vector f is defined as the
difference between the nearly collinear vectors 	1 and 	2. During iteration (proceeding to
the right of the figure), the vector 	1 decreases in length by 20% whereas vector 	2 shrinks
by 50%. The vector f gradually turns into the direction of 	1 (sketch on the right), but
increases substantially in length, before decaying to zero. Thus, the superposition of decaying
nonorthogonal eigenfunctions can produce, in the short term, growth in the norm of a
perturbation. The same scenario with orthogonal vectors 	1 and 	2 would have resulted in
monotonic decay of the norm of f.

of the least stable eigenvalue accurately describe the norm of the matrix exponential
for all time. In this case, the similarity transformation has no effect on the value of
the norm.

Matrix operators with a set of orthogonal eigenvectors are referred to as normal
(Trefethen 1997, Trefethen & Embree 2005). Unfortunately, many operators in fluid
dynamics and, specifically, the above matrix operator A are non-normal and thus have
a set of nonorthogonal eigenfunctions (Reddy et al. 1993). Consequently, the tem-
poral behavior of G(t) substantially deviates from the temporal behavior of g(t). Any
conclusions drawn from λr can easily misrepresent the general disturbance behavior
over the course of time, and the dynamics of the least stable mode are, at worst,
entirely irrelevant to the temporal behavior of the linear system at finite time.

Systems governed by non-normal matrices can exhibit a large transient ampli-
fication of energy contained in the initial condition. A simple geometric example
illustrates this (Figure 2). Assume a unit-length initial condition f, represented in
a nonorthogonal eigenvector basis. As time progresses the eigenvector components
decrease by 20% and 50%, respectively, over each time interval depicted in Figure 2.
The vector f transiently increases in length and aligns itself with the least stable eigen-
vector direction. Only in the large-time limit will f decrease to zero. It is important to
realize that the nonorthogonality of the eigenvector basis is a crucial component in
the short-time amplification of the norm of f. It is equally important to acknowledge
that any conclusions drawn from the decay rates along the eigenvector directions
misrepresent the dynamics of the motion illustrated in Figure 2 as they only describe
the asymptotic fate of f, but fail to capture its transient behavior.

This simple geometric example of transient growth induced by a superposition of
exponentially decaying nonorthogonal eigenvectors equally applies to the description
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of disturbance behavior governed by the Navier-Stokes equations. The linearized
Navier-Stokes equations for plane Poiseuille flow are non-normal; the eigenvectors
form a nonorthogonal set. Following the argument above, large transient growth of
energy is possible even in a parameter regime where all eigenvalues are confined to
the stable half-plane, thus predicting large-time asymptotic decay.

To capture the true behavior of infinitesimal disturbances the analysis has to con-
centrate on the norm of the matrix exponential G(t), which carries the full dynamical
information without any restrictive assumptions. In the large-time limit, this analysis
recovers the least stable mode; for intermediate time, however, the dynamics and
spatial pattern selection may be significantly different.

Just as eigenvalues are used to quantitatively describe the asymptotic t → ∞
behavior, one needs to introduce a different quantity to describe the behavior for
t = 0+. A simple expansion of the energy growth rate about t = 0+, using the matrix
exponential solution above, yields the following result (Farrell & Ioannou 1996a,
Schmid & Henningson 2001, Trefethen & Embree 2005):

max
q

1
‖q‖2

d‖q‖2

dt

∣∣∣∣
t=0+

= max
q

1
‖q‖2

d
dt

‖C(I + At + A2 t
2!

+ · · ·)Bq0‖2
∣∣∣∣
t=0+

(2.5a)

= λmax

(
1
2

(QH + Q)
)

, (2.5b)

with Q = CAB and λmax(·) denoting the largest eigenvalue. The quantity λmax(QH +
Q)/2 is often referred to as the numerical abscissa (Trefethen & Embree 2005). It
can alternatively be computed by determining the boundary of the numerical range
of Q (Horn & Johnson 1991). The maximum protrusion of the numerical range into
the unstable half-plane is equivalent to the numerical abscissa and thus determines
the maximum energy growth at t = 0+. In Figure 3b1 the boundary of the numerical
range is displayed as the red line; it reaches into the unstable half-plane, and its
maximum protrusion (indicated by the red dot) can be computed using Equation
2.5b.

With eigenvalues describing the asymptotic limit (t → ∞) and the numerical
abscissa governing the energy growth for t = 0+, one may ask whether a third
set in the complex plane can give information about the maximum transient energy
growth. An extension of eigenvalues, known as ε-pseudospectra (Trefethen 1997), fills
this role, although only in an approximate sense. The ε-pseudospectra are defined as
regions in the complex plane, parameterized by ε, where the resolvent norm ‖C(zI−
A)−1B‖ is larger than 1/ε. An alternative definition states that ε-pseudoeigenvalues
are exact eigenvalues of the operator A+E, where E is a random perturbation of norm
ε. The usual spectrum is recovered as ε tends to zero (Trefethen 1997, Trefethen &
Embree 2005).

1Rather than considering the eigenvalues {λ} of A, it is customary in hydrodynamic stability theory to visualize
the complex frequencies {ω} stemming from an assumed temporal behavior of the form ∼ exp(−iωt). This
convention yields asymptotically unstable modes when at least one complex frequency ω lies in the upper
half-plane (ωi > 0), which is equivalent to finding at least one eigenvalue of A in the right half-plane (λr > 0).
To avoid confusion, the unstable domain is shaded gray when spectra are displayed.
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a b
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0
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100

-0.20 5 10 20 25 30 0.2 0.4 0.6 0.8 1 1.20

0

-0.2

-0.4

-0.6

-0.8

-1

ωrt

G(t)

Figure 3
Transient growth of perturbation energy for two-dimensional plane Poiseuille flow at
Re = 1000 and α = 1. (a) Energy growth vs time. (b) Contour plot (blue lines) of the resolvent
norm. The contour levels are 100.25, 100.5, . . . , 104. The eigenvalues ω (blue dots) predict
asymptotic decay as all of them are confined to the stable half-plane. The red line denotes the
boundary of the numerical range. The red dot represents the numerical abscissa, i.e., the point
of maximum protrusion of the numerical range into the unstable half-plane. The black dot
indicates the location in the complex plane that results in the Kreiss constant (see text); this
location provides a lower bound for the maximally achievable energy amplification over time.
The inset in (a) together with the colored lines illustrates the significance of the various
spectral variables during various stages of the temporal evolution of the energy growth.

Figure 3b shows the three sets—spectrum, ε-pseudospectrum, numerical range—
for two-dimensional plane Poiseuille flow. The boundary of the numerical range is
indicated in red; the ε-pseudospectrum is visualized by contours of the resolvent
norm for various values of ε; the eigenvalues are displayed as blue symbols. Various
conclusions can be drawn from this figure: All eigenvalues are confined to the stable
half-plane, thus predicting asymptotic decay according to the least stable eigenvalue.
The numerical range protrudes into the unstable half-plane, which indicates that en-
ergy growth can be expected for small times. Finally, a lower bound for the maximum
attainable transient growth in time can be deduced by measuring the amount by which
the resolvent contours extend into the unstable half-plane. For example, if for some z
with Re(z) = 0.1 the resolvent norm ‖C(zI − A)−1B‖ is 102, transient energy growth
of at least (0.1 × 102)2 = 102 should be expected. To be more precise (Trefethen &
Embree 2005), a constant, known as the Kreiss constant K, can be defined according
toK = supRe(z)>0 Re(z)‖C(zI−A)−1B‖, which can be used to provide a lower estimate
for the maximum amplification of energy over time, i.e., maxt>0 G(t) ≥ K2. The black
dot in Figure 3b shows the location in the complex plane that results in the Kreiss
constant K.

Figure 3a, which displays the maximum energy growth G(t), confirms our pre-
dictions: We observe an initial growth of energy (with a slope given by the numerical
abscissa), culminating in a peak near t = 10 bounded from below by the square of
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Figure 4
Parameter study of transient growth for two- and three-dimensional plane Poiseuille flow. (a)
The neutral curve of two-dimensional plane Poiseuille flow (blue line) delimiting the area of
asymptotic growth (dark gray) from the area of asymptotic decay (light gray and white), and the
curve (red line) delimiting the area of transient growth, but asymptotic decay (light gray) from
the area of no transient growth (white). The well-known critical Reynolds number
Recrit = 5772 can be easily determined from the graph. In the light gray area, the contour
levels of Gmax range from 10 to 170 in steps of 10. (b) Maximal transient growth of energy for
plane Poiseuille flow at Re = 10000 as a function of the streamwise (α) and spanwise (β) wave
number. The largest transient growth occurs for perturbations with no streamwise
dependence (α = 0). The gray area in the α − β-plane indicates parameter combinations for
which asymptotic exponential growth is found. The contour levels are 250, 500, 1000, 2000,
. . . , 16000.

the Kreiss constant K, which is ultimately followed by exponential decay given by
the least stable eigenvalue.

Varying the governing parameters, in particular the streamwise wave number α and
the Reynolds number Re, and evaluating the maximum transient growth maxt>0 G(t)
produces Figure 4a. Not only do we reproduce the familiar neutral curve (blue line),
delineating parameter combinations for which an eigenvalue crosses into the unstable
half-plane, we also observe a second (red) line separating parameter combinations for
which the numerical range crosses into the unstable half-plane. The smallest Reynolds
number for which an unstable eigenvalue is encountered is the well-known critical
Reynolds number Recrit = 5772; the largest Reynolds number below which the initial
perturbation energy for two-dimensional disturbances decays monotonically is given
by Reener = 89. The latter Reynolds number has traditionally been determined using
energy stability theory ( Joseph 1976). For Reynolds numbers that fall between Reener

and Recrit, significant transient growth (eventually followed by asymptotic decay)
prevails (Reddy et al. 1993).

Note that, for normal systems, the numerical range and the spectrum cross into
the unstable half-plane at the same Reynolds number. Thus, the two critical Reynolds
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numbers coincide, i.e., Recrit = Reener. This is, for example, the case for Rayleigh-
Bénard convection. Although not a necessary feature, the wide gap between Recrit

and Reener is characteristic of many non-normal fluid systems (Schmid & Henningson
2001, Trefethen & Embree 2005).

For three-dimensional perturbations, traditional stability theory (Drazin & Reid
1981) states that for each unstable three-dimensional perturbation a spanwise in-
dependent unstable perturbation can be found at a lower Reynolds number. This
statement, known as Squire’s theorem, has generally led to an over-emphasis on two-
dimensional studies. Evaluating the potential for transient energy growth reveals
a different picture. Even though perturbations without a spanwise dependence ex-
hibit the largest exponential growth, it is the streamwise independent disturbances
(which are asymptotically stable at all Reynolds numbers) that best exploit the tran-
sient amplification of energy (Figure 4b). The transient energy growth can reach
many orders of magnitude—certainly significant enough to dominate the selection
of coherent flow structures (Reddy & Henningson 1993).

Given that the function G(t) describes the energy amplification maximized over all
possible initial conditions, it is interesting to ask which specific initial perturbation is
responsible for the maximum amplification G(T ) at a given time T. This initial con-
dition is easily recovered via a singular value decomposition of the matrix exponential
evaluated at time t = T (Trefethen & Embree 2005).

2.4. Response to External Forcing

The general solution (Equation 2.2) to the governing equation (Equation 2.1) has
two components: the homogeneous solution, which incorporates the effects of initial
conditions, and the particular solution, which describes the influence of external forc-
ing. Both parts fully describe the general dynamics of perturbations. Physically, the
particular solution provides a model for receptivity processes. The external forcing
may represent free-stream turbulence, wall roughness, or other nonsmooth geome-
tries, body forces, or even neglected terms, such as nonlinearities, in the governing
equations (Equation 2.1). The study of particular solutions then quantifies the outside
influence on disturbance growth, resonance behavior, and pattern selection. Although
Equation 2.2 is valid for arbitrary temporal forcing, we only consider the special cases
of time-harmonic, impulsive, and stochastic external forcing.

In the time-harmonic case, the mapping of the input forcing qin = (uin, vin, win)T

onto the long-term output response qout = (uout, vout, wout)T is given, according to the
Fourier transform of Equation 2.1, by the resolvent C(iωI − A)−1B with ω as the
forcing frequency. Define the maximum response R(ω) as the ratio of the energy of
the output response to the energy of the input forcing, optimized over all possible
spatial forcing profiles (Trefethen et al. 1993):

R(ω) = max
qin

‖qout(t)‖2

‖qin‖2
= max

qin

‖C (iωI − A)−1 Bqin exp(iωt)‖2

‖qin‖2
(2.6a)

= ‖C (iωI − A)−1 B‖2. (2.6b)

This result should be contrasted to the familiar measure of response behavior based
on spectral theory: the shortest distance of the forcing frequency to the eigenvalues
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of the forced system. Resonance is expected as the forcing frequency ω approaches
an eigenvalue of the matrix A. According to the eigenvalue decomposition of A

R(ω) = ‖C (iωI − A)−1 B‖2 = ‖CV (iωI − �)−1︸ ︷︷ ︸
spectral
analysis

V−1B‖2. (2.7)

As in the case of the matrix exponential norm (Equation 2.4), the simplified spectral
analysis ignores all information contained in the eigenvector structure V. It gives a
criterion for a large response based on eigenvalues only. For normal matrix operators
A this is appropriate; for nonnormal matrices, however, large resonant behavior to
external excitation can be observed even though the forcing frequency is nowhere near
an eigenvalue of A. This phenomenon is referred to as pseudoresonance (Trefethen
et al. 1993). The specific spatial shape of the forcing qin can be recovered via a singular
value decomposition (Schmid & Henningson 2001).

2.5. Componentwise Transfer Function

The resolvent introduced above is closely related to the concept of a transfer function.
Transfer functions are commonly used in control theory (Skogestad & Postlethwaite
1996) to describe the relation between inputs and outputs of a linear time-invariant
(LTI) system, and the zeros and poles of transfer functions determine the long-time
dynamic behavior of linear systems. The resolvent above is now recast in terms of
the transfer function to further probe the response of infinitesimal disturbances to
external harmonic excitation ( Jovanović & Bamieh 2005). According to Equation 2.1,
the transfer function is given by

H(α, β, ω) = C (iωI − A)−1 B so that qout = H(α, β, ω) qin. (2.8)

The decision of what measure to use to quantify the transfer function is important.
In this case, we are interested in the worst-case amplification of deterministic inputs.
For this reason, H is maximized over all temporal frequencies ω and all wall-normal
shapes. The latter is accomplished by taking the norm. We thus define

‖H‖∞(α, β) = max
−∞ < ω < ∞

σmax(H), (2.9)

where σmax(·) denotes the largest singular value. The above measure is referred to as
the H∞-norm (Zhou et al. 1996), indicated by the ∞ subscript. As previously seen,
the worst possible shape of the external forcing qin at the worst frequency may be
recovered by performing a singular value decomposition.

The H∞-norm of the transfer function contains a great deal of information and
allows a detailed analysis of the response to external influences. In particular, a com-
ponentwise analysis (Jovanović & Bamieh 2005), which restricts the input and out-
put variables to predetermined components of the state vector, gives significantly
more insight into the underlying mechanisms of the observed disturbance dynamics.
For example, to probe the influence of perturbations in the wall-normal velocity on
streamwise disturbances, the operators B and C in Equation 2.8 need to be modified
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according to

Bv =
(

0 M−1k2 0

0 0 0

)
, Cu =

⎛
⎜⎜⎝

iα
k2

D − iβ
k2

0 0
0 0

⎞
⎟⎟⎠ . (2.10)

The Hv→u component of the transfer function, Cu(iωI − A)−1Bv, can then be com-
puted with this choice of operators. According to the magnitude of the nine com-
ponents of the transfer function, important information about specific velocity com-
ponents, as well as evidence for the dominance of particular flow structures, can be
gained ( Jovanović & Bamieh 2005). Figure 5 displays the H∞-norm of the nine
components of the transfer function as a function of the streamwise and spanwise
wave number. A logarithmic scaling and the same color map has been used for all
subplots to allow a quantitative comparison. In addition, the largest response within
each subplot is indicated by a black dot.

Among the nine possible combinations, the largest response by far is observed in
the streamwise velocity component when forced by either the normal or spanwise
component. The maximum amplification of external excitations in these components
is exhibited in streamwise independent flow structures. These structures are com-
monly referred to as streaks. From this information, one can identify a viable and
efficient mechanism that transforms low-amplitude streamwise vortices (v-w-input)
into large-energy streaks (u-output) and favors the emergence of coherent flow pat-
terns elongated in the streamwise direction (Reddy & Henningson 1993). Any other
mechanism, such as the one based on oblique waves (dominant for spanwise velocities
forced by spanwise perturbations,Hw→w) or the one involving a Tollmien-Schlichting
wave (dominant for normal velocities forced by streamwise perturbations, Hu→v),
shows maximum amplification factors at least an order of magnitude smaller. Thus,
it is not normally observed, unless specific constraints are enforced in numerical
simulations or physical experiments.

The dominance of streamwise elongated structures, emerging via a transient
mechanism from streamwise vorticity, stands in stark contrast to classical results
from modal stability analysis, which predicts the prevalence of Tollmien-Schlichting
waves. Experimental observations (e.g., Alfredsson & Matsubara 2000), as well as
direct numerical simulations (e.g., Berlin & Henningson 1999, Jacobs & Durbin
2001), of many wall-bounded shear flows, however, provide abundant evidence for
the streamwise-vortices-streaks scenario under natural conditions.

2.6. Impulse Response

The H∞-norm of the transfer function, split in its various components, furnishes a
rich and interesting picture of energy amplifications caused by external disturbances.
This information is displayed after a Fourier transform in space (wave vector) and time
(frequency). An alternative, and equivalent, representation of the same information
in physical space and time is given by the impulse response of the system described in
Equation 2.1 (Jovanović & Bamieh 2001). Mathematically, this impulse response is
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Figure 5
Componentwise H∞-norm of the transfer function (logarithmic scaling) as a function of the
streamwise (α) and spanwise (β) wave number for plane Poiseuille flow at Re = 2000. In each
of the nine plots the black dot indicates the largest H∞-response to harmonic external forcing.
The largest response is observed in a forcing scenario that converts perturbations in the v- and
w-components into perturbations in the streamwise u-component. Other combinations show
markedly lower response amplitudes.

the Green’s function of the linear system. By choosing qin = (δ(x), δ(y − y0), δ(z))Tδ(t)
and applying an inverse Fourier transform back to physical space, we obtain⎛

⎜⎝uout

vout

wout

⎞
⎟⎠ = 1

4π2

∫∫
C exp

[
i

(
α

x
t

+ β
z
t

− iA

)
t

]
Bδ(y − y0) dα dβ. (2.11)
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Figure 6
Impulse response (visualized
using the streamwise
velocity component) for
plane Poiseuille flow at
Re = 1000 at time t = 30
(top), t = 60 (middle), and
t = 120 (bottom). The
predominance of
streamwise elongated
structures inside the wave
packet is demonstrated.

A numerical evaluation of the impulse response for plane channel flow is depicted
at three representative times in Figure 6. The evolution of a localized wave packet
displays an interior structure that is clearly dominated by streamwise elongated struc-
tures. These features are the most amplified, according to the frequency response
(Figure 5). As time progresses, streaky structures eventually decay; in the short term,
however, they govern the disturbance dynamics within the regime of validity of linear
theory.

Only in the limit t → ∞ can the operator A be replaced by its largest eigenvalue.
The argument of the matrix exponential then reduces to iΨt with Ψ = αx/t +
βz/t − ωmax(α, β), and the resulting integral can be evaluated asymptotically by the
method of steepest descent (Bender & Orszag 1978). This evaluation requires the
deformation of the integration path through a saddle point or, more precisely, a pinch
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point (Briggs 1964, Chomaz 2005, Huerre & Monkewitz 1990), the position of which
in the complex ω-plane determines the convective or absolute instability character of
the underlying flow. Absolutely unstable flows typically display upstream propagating
disturbances emanating from an impulsive point source. For plane Poiseuille flow, the
wave packet propagates downstream, thus indicating a convective stability behavior.

The analysis of absolutely or convectively unstable flow behavior has tradition-
ally been performed semianalytically, based on the numerical computation of the
dispersion relation of the underlying flow. The numerical evaluation of the impulse
response, i.e., the Green’s function, of the flow and its subsequent analysis regarding
propagation direction was introduced by Delbende et al. (1998) and has since been
applied to a variety of open flows (see Brandt et al. 2003, Gallaire et al. 2006, Le Gal
& Croquette 2000, Ravier et al. 2006).

It is worth pointing out that the internal structure of the wave packet is reminiscent
of the structures observed in turbulent spots (Riley & Gad-el Hak 1985). Although
the scales deviate quantitatively from experiments and numerical simulations of spots,
the emergence of streaky structures may be attributed to a strong underlying linear
mechanism that is radically different from the classical Tollmien-Schlichting wave
framework (Gaster & Grant 1975).

2.7. Summary of Nonmodal Stability Tools

In summary, the nonmodal stability analysis based on the matrix exponential, the
resolvent (or ε-pseudospectra), the numerical abscissa, the transfer function norm in
component form, and the impulse response, provides a consistent and relevant de-
scription of general disturbance behavior for a large variety of fluid flows. It equally
brings out the rich behavior of the dynamics governed by nonnormal linear operators
and the shortcomings of trying to describe this same behavior through conventional
eigenvalue analysis only. As such, these tools, although computationally more in-
volved, represent a valuable compendium of techniques to conduct hydrodynamic
stability calculations.

3. TIME-DEPENDENT FLOWS: ADJOINT FIELDS AND
FUNDAMENTAL SOLUTION OPERATORS

Traditional stability analysis relies on the existence of a steady base flow solution about
which perturbations are superimposed. In many realistic situations, this assumption
is violated, but the characteristics of infinitesimal disturbances superimposed on a
time-varying flow may still be of great importance and interest. Because we do not
rely on a modal approach, the concepts introduced in the previous section may readily
be generalized if a few modifications are made. In this section, we focus on a general
framework for describing disturbance growth in time-varying base flows.

3.1. Variational Formulation and Adjoint Fields

One of the more common techniques to treat the stability of unsteady flows has
been based on a reformulation of the optimal energy growth condition in terms
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of a variational principle. Standard optimization techniques (for example, conjugate
gradient algorithms) can then be employed to arrive at an optimal condition in an
iterative manner. The optimization process should respect the constraints given by
the governing equations; in other words, the admissible flow fields have to satisfy the
linearized Navier-Stokes equations and the specified boundary and initial conditions.
These constraints are enforced via Lagrange multipliers. Because the constraints have
to be enforced locally, rather than globally, the Lagrange multipliers are time- and
space-dependent fields governed by a complementary set of differential equations,
known as the adjoint equations (Hill 1995).

For stability problems, we are interested in the maximum amplification of energy
over a given time span 0 ≤ t ≤ T. The ratio of disturbance energy at time T to the
initial energy then serves as a cost functional that needs to be maximized by adjusting
the spatial shape of the initial condition. An augmented Lagrangian, consisting of
this cost functional as well as the constraints, is then defined in the form

L(q, q̃, q0, q̃0) = ‖q(T )‖2

‖q0‖2
−

∫ T

0
q̃HC

(
d
dt

− A
)

Bq dt − q̃H
0 (q(0) − q0). (3.1)

The first term represents the cost functional to be maximized, i.e., the ratio of dis-
turbance energy after T time units and the initial energy. The second and third terms
are introduced to enforce the governing equations and initial conditions, respectively.
These latter terms are premultiplied by two variables, q̃ and q̃0, which add a penalty
to the Lagrangian L if q does not satisfy Equation 2.1 or q(0) does not conform
to the initial conditions q0. The two adjoint variables therefore act as sensitivities
measuring, in the case of q̃, the influence of momentum sources in the governing
equations and, in the case of q̃0, the expected change in L due to variations in the
initial conditions (Hill 1995).

Setting to zero the first variations of L with respect to its independent variables
q, q̃, q0, q̃0 yields the following set of equations:

δL
δq̃

= 0 → C
(

d
dt

− A
)

Bq = 0, (3.2a)

δL
δq

= 0 → BH
(

d
dt

+ AH
)

CHq̃ = 0, (3.2b)

δL
δq̃0

= 0

δL
δq0

= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(0) = ‖q0‖4

2‖q(T )‖2
q̃(0),

q̃(T ) = 2
‖q0‖2

q(T ),

(3.2c)

which is amenable to an iterative solution procedure. During one cycle of this process,
the governing equations are integrated forward in time using a given initial condition.
At time t = T, the output of this integration q(T) is converted into a terminal
condition q̃(T) for the adjoint equations which are subsequently solved backward in
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time to produce q̃(0), from which a new initial condition q(0) for the direct problem
is determined. This process continues until convergence is reached.

The final result is the initial condition that maximizes the amplification of energy
over a time interval 0 ≤ t ≤ T, from which the maximum transient energy growth is
readily determined. To avoid numerical difficulties and to ensure proper convergence
for a wide range of parameters, robust optimization techniques (such as conjugate
gradient methods) have to be used (Nocedal & Wright 2000). In this case, the gra-
dient of the Lagrangian with respect to the initial condition, ∇q0L, is computed and
used as input to a standard optimization routine (abbreviated as opt( ) in the sketch
above).

It is important to realize that by varying the time T over which the optimization is
performed, the above procedure yields the maximum growth curve G(t); however, no
steady base flow has to be assumed because the forward (and backward) integration of
the governing (and adjoint) equations easily accommodates a time-varying velocity
profile.

The above technique has been successfully implemented in various complex flows,
such as, e.g., in Corbett & Bottaro (2001), Guégan et al. (2006), Luchini & Bottaro
(2001), Pralits et al. (2000).

3.2. The Fundamental Solution Operator

As an alternative to the adjoint formulation outlined in the previous section, the
fundamental solution operator may be efficiently used to characterize perturbation
growth superimposed on an unsteady base flow. For steady operators A the fundamen-
tal solution operator is the familiar matrix exponential; for nonautonomous systems,
however, this operator has to be determined—or approximated—numerically. Vari-
ous methods, e.g., based on the Magnus method, are available (Iserles et al. 1999).
Once the fundamental solution operator X(t) is known, the tools of nonmodal stability
analysis can easily be adapted to address the disturbance behavior for time-varying
flows. It simply suffices to replace the matrix exponential exp(tA) by the operator
X(t) (Farrell & Ioannou 1996b, Schmid & Kytömaa 1994). The general solution of
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Figure 7
(a) Transient perturbation energy amplification for three-dimensional inlet channel flow at
Re = 1000 with streamwise wave number α = 0 and spanwise wave number β = 2. Constant
mass flux has been enforced. The inset presents a sketch of the base flow at four distinct time
instances. (b) Optimal energy growth over a time interval T = 45 as a function of the
streamwise (α) and spanwise (β) wave number. The predominance of streamwise independent
structures is observed.

Equation 2.1 for time-varying A(t) then reads⎛
⎜⎝uout

vout

wout

⎞
⎟⎠ = CX(t)B

⎛
⎜⎝u0

v0

w0

⎞
⎟⎠ + CX(t)

∫ t

0
X−1(τ )B

⎛
⎜⎝uin(τ )

vin(τ )
win(τ )

⎞
⎟⎠ dτ. (3.3)

The use of this solution is demonstrated by considering the inlet flow, which devel-
ops as uniform flow enters a parallel channel. The base flow is modeled as a time-
dependent velocity profile (see inset in Figure 7a) in an infinite channel. The initial
stage of the base flow development is characterized by a sharp shear layer near the wall
and a rather uniform flow profile in the center of the channel, which over time relaxes
into a parabolic velocity profile. The mass flux across the channel is enforced to be
constant. The growth of energy, maximized over all initial conditions, and given by
G(t) = ‖CX(t)B‖2, is displayed in Figure 7a. A significant amount of amplification
is observed during the evolution of the base velocity profile from plug flow to an ulti-
mately parabolic shape. The maximum amplification ‖CX(T)B‖2 as a function of the
streamwise and spanwise wave numbers is plotted in Figure 7b at a specific time. It
again demonstrates the significantly larger amplification of streamwise independent
perturbations; structures elongated in the streamwise direction experience an energy
amplification that is about one order of magnitude larger than the amplification of
purely streamwise traveling waves over the specified time interval.
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Other time-dependent configurations, such as start-up flows or relaxation flows,
may be treated in a similar manner. The stability analysis of time-dependent flows
requires only a modestly larger effort directed toward the computation of the funda-
mental solution operator X(t); the insight gained from the stability analysis, however,
more than justifies this effort.

3.3. Floquet Theory: A Special Case

Systems characterized by a periodic time dependence, i.e., A(t + T ) = A(t), where T
denotes the period, constitute a special case of time-varying flows that has attracted
considerable attention. Flows of this type are ubiquitous in industrial applications,
where oscillatory pressure gradients imposed by pumps or other rotating turboma-
chinery are nonnegligible, in coastal engineering problems concerned with sediment
transport and erosion of beaches due to waves, or in biomedical applications deal-
ing with pulmonary or circulatory flow. The substantial body of literature for time-
periodic problems stems not only from the prominence of such flows in applications,
but also from their mathematical tractability.

Floquet theory is the tool of choice for analyzing linear systems that involve time-
periodic coefficients. According to the Floquet theorem (see Liu 2003, Verhulst 2006),
the fundamental solution operator X(t) can be decomposed into the product of a T-
periodic part P with P(t + T ) = P(t) and a remainder part that can be described in
matrix exponential form exp(tF). Attention is usually focused on the amplification of
disturbances over a single period. If the energy of the disturbance at the end of one
period is larger than the energy at the outset, one concludes that the system is unsta-
ble. If the energy decays over one period, the system is deemed stable. Thus, common
practice concentrates on the eigenvalues of exp(TF ), referred to as the monodromy
matrix. The eigenvalues {μ} of the monodromy matrix are known as Floquet multi-
pliers. If at least one Floquet multiplier lies outside the unit disk, instability arises. At
parameter values for which all Floquet multipliers are inside the unit disk, stability is
expected. Just as eigenvalues for non-normal autonomous problems only describe the
asymptotic limit of large times, the Floquet multipliers of a nonnormal monodromy
matrix only predict the behavior of periodic systems in the limit of an infinite number
of periods. In the same spirit as in previous sections, the full evolution operator reads

G(T ) = ‖CP(T ) exp(T F)B‖2 = ‖CP(T )V exp(T�)︸ ︷︷ ︸
spectral
Floquet
analysis

V−1B‖2. (3.4)

Within the framework of nonmodal stability theory, a more general approach
needs to be taken that does not rely exclusively on eigenvalues (or Floquet multipli-
ers). We proceed by applying the fundamental solution operator X(t) = P(t) exp(tF)
over one period and probe the maximum energy amplification ‖CX(t)B‖2 over this
interval. Pulsatile channel flow is chosen as a base flow. A sketch of the base profile is
included as an inset in Figure 8a. The maximum energy amplification shows a sig-
nificant peak within one period, even though at the end of the period a more modest
amplification has been accomplished. It is interesting to note that the largest rise in
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energy amplification coincides with the backstroke where reverse flow is dominant.
This phenomenon is in agreement with experimental (Obremski & Fejer 1967) and
computational ( Juarez & Ramos 2003) results, although precise quantitative studies
need to be performed. Over more than one period, increasingly larger amplitudes
are observed, as shown in the polar plot of Figure 8b displaying G(t) over three and
a quarter periods.

For the chosen parameters, all Floquet multipliers are confined to the unit disk,
therefore predicting that perturbations will eventually decay to zero. The Floquet
multipliers are displayed in Figure 8c together with contours of the resolvent norm
‖(zI − CX(T )B)−1‖, a representation of ε-pseudo-Floquet multipliers. Although the
Floquet multipliers lie within the unit disk—thereby describing an asymptotically
contracting operator CX(T )B—the resolvent contours reach the region outside the
unit disk. Consequently, we conclude that short-time behavior may significantly de-
viate from the asymptotic fate of disturbances. This conclusion can be made more
precise (Trefethen & Embree 2005) by computing the Kreiss constantK, this time for
powers of matrices. Transient energy amplification over many periods is confirmed
in Figure 8d; although asymptotically we observe a decay rate predicted by the least
stable Floquet multiplier, a substantial amount of energy growth prevails over many
periods.

In summary, two sources of nonmodal energy growth have been identified that are
not captured by traditional Floquet theory: a strong amplification of energy within
one fundamental period T, and a transient growth of energy from period to period
that is due to the nonnormal nature of the monodromy matrix. Estimates of the latter
can be derived from the ε-pseudo-Floquet multipliers.

4. ADDING UNCERTAINTY: A STOCHASTIC VIEWPOINT

In the previous sections the disturbance behavior governed by a deterministic system
was investigated under the influence of deterministic forcing or deterministic initial
conditions. Under realistic conditions—in natural environments or even under well-
controlled laboratory conditions—a certain amount of stochastic effects should be
expected. In this section, we present techniques to characterize and quantify stability
properties within a statistical framework. Two stochastic scenarios are considered:
(a) the response of a deterministic system operator A driven by an external stochastic
process qin, and (b) the energy amplification potential of a system operator A that is
perturbed by a stochastic process.

Besides the intrinsic merit of this analysis, there is a second motivation for looking
at hydrodynamic stability from a stochastic point of view: It will provide a measure of
the robustness of results obtained from a deterministic study. Growth rates, energy
amplifications, or pattern selection principles would not carry much weight if a small
perturbation, caused, for example, by low levels of external turbulence, minute wall
roughness, non-negligible end-wall effects, weak compressibility, or a small perturba-
tion in the base profile—all of them neglected in a standard analysis—would show an
appreciable effect on the obtained results. Only results that are robust to reasonable
levels of internal or external perturbations may be expected to be observable under
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natural conditions. In this sense, a stochastic analysis of hydrodynamic stability sys-
tems adds a layer of confidence to results that have been obtained in the context of
highly idealized assumptions.

4.1. External Stochastic Forcing and the Lyapunov Equation

Assume that in the governing Equation 2.1 the forcing qin = (uin, vin, win)T is stochas-
tic in nature and, to signify this change, replace the variable qin by the stochastic
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variable η(t) with 〈η(t1)ηH(t2)〉 = Rδ(t1 − t2), 〈·〉 denoting an ensemble average and
R the spatial correlation matrix. With a zero initial condition, the solution of the
forced problem then reads qout = C

∫ t
0 exp((t − s )A)B η(s ) ds . Due to the stochastic

nature of qout, the quantitative description of the output has to involve statistical tech-
niques. For this reason, we form the correlation matrix of the forced solution qout to
obtain (Farrell & Ioannou 1993)〈

qout qH
out

〉
=

〈
C

∫ t

0

∫ t

0
exp(A(t − s ))Bη ηHBH exp(AH(t − s ′))CHds ′ds

〉
(4.1a)

= C
∫ t

0
exp(A(t − s ))BRBH exp(AH(t − s )) ds︸ ︷︷ ︸

G(t)

CH. (4.1b)

The matrix G(t) contains the second-order statistics of the flow field. It can be com-
puted by evaluating the integral in Expression 4.1b or, alternatively, by deriving an
evolution equation for G(t) by differentiating Expression 4.1b with respect to time
(Farrell & Ioannou 1993, Hoepffner 2006). For stable systems and in the limit of
large times, the steady-state matrix G∞ = limt→∞ G(t) is governed by the algebraic
Lyapunov equation

AG∞ + G∞AH + BRBH = 0 (4.2)

from which G∞ can be determined using standard numerical techniques. It is an
established fact from control systems theory (Zhou et al. 1996) that the H2-norm of
the transfer function H defined as

‖H‖2
2(α, β) = 1

2π

∫ ∞

−∞
trace{H(α, β, ω)HH(α, β, ω)} dω = trace{CG∞CH} (4.3)

bears a stochastic interpretation, as it measures the output statistics of a deterministic
system to random forcing. The transfer function H(α, β, ω) has been introduced
in Equation 2.8, and we observe that the choice of norm (H∞ versus H2) provides

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 8
Floquet analysis of two-dimensional pulsatile channel flow at Re = 1200, α = 1 driven by an
oscillatory pressure gradient of amplitude P = 4 and frequency ω. The Womersley number is
Wo = h

√
ω/ν = √

2a/δ = 5, where δ denotes the Stokes-layer thickness and a the channel
width. (a) Maximum transient energy amplification over one period demonstrating significant
growth of disturbance energy; most of this growth is encountered during the backstroke. Base
velocity profiles for selected times are given as an inset. (b) Maximum transient energy
amplification over three and a quarter periods, displayed in polar coordinates
(r, θ ) = (G(t), 2π t/T). (c) Spectrum (blue symbols) and ε-pseudospectrum (blue contours) of the
monodromy matrix CX(T )B. The contour levels correspond to 100.75, 101, 101.25, . . . , 105.

Even though all eigenvalues are confined to the stable domain, i.e., the unit disk, the
ε-pseudospectrum protrudes into the unstable domain ( gray area). Transient growth effects
should therefore be expected in the norm of powers of the monodromy matrix. (d ) Norm of
(CX(T )B)k as a function of k confirming the transient growth of energy from period to
period, before the asymptotic decay rate, predicted by the least stable Floquet multiplier, is
observed. The powers of the least stable Floquet multiplier (blue symbols) are included for
comparison. The first four red symbols in (d ) correspond to the four red symbols in (b).
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Figure 9
Componentwise H2-norm of the transfer function (logarithmic scaling) as a function of the
streamwise (α) and spanwise (β) wave number for plane Poiseuille flow at Re = 2000. In each
of the three plots the black dot indicates the largest H2-response to stochastic external forcing
in all three momentum components. The three figures show the response to random forcing
in the (a) streamwise, (b) normal, and (c) spanwise velocity component. The largest response is
observed in the streamwise u-component. The response in the other two components is
significantly lower.

a measure of either the worst-case response to harmonic forcing or the maximum
variance produced by random input. The central quantity G∞ needed to compute the
latter is referred to as the controllability Gramian in the control literature (Skogestad
& Postlethwaite 1996, Zhou et al. 1996).

The H2-norm of the transfer function H, computed via the Lyapunov Equation
4.2, is displayed in Figure 9. For stochastic perturbations in all three velocity com-
ponents, the response in the streamwise, normal, and spanwise velocity is given as a
function of the streamwise wave number α and the spanwise wave number β. The simi-
larity with the deterministic case, depicted in Figure 5, is remarkable. The streamwise
velocity component shows the largest overall response to stochastic forcing, with the
peak value attained for perturbations that show a weak or vanishing streamwise depen-
dence ( Jovanović & Bamieh 2005). Other structures, and other velocity components,
are much less amplified. This confirms that the conclusions drawn from an analysis of
the deterministic system hold even in the presence of external stochastic excitation.

In the special case of streamwise independent perturbations, Bamieh & Dahleh
(2001) exploited scaling laws and the block-triangular structure of the system matrix
A to demonstrate that the H2-norm of the transfer function depends cubically on the
Reynolds number.

Note that the matrix CG∞CH is, by construction, Hermitian. Each of its mu-
tually orthogonal eigenvectors describes a flow pattern that contributes optimally
(measured by the corresponding eigenvalue) to the variance of the statistically steady
state (Farrell & Ioannou 1993, Hoepffner 2006). The eigenvalue decomposition of
the matrix CG∞CH is known as the Karhunen-Loève (KL), or proper orthogo-
nal decomposition (POD), which has been applied to various turbulent flow fields
(Aubry 1991, Berkooz et al. 1993, Sirovich 1987). A backward KL-decomposition can
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similarly be constructed in which the forcing, rather than the output, is decomposed
as to its contribution to the variance of the statistically steady state (see Farrell &
Ioannou 1993).

4.2. Internal Uncertainty and Covariance Dynamics

A different kind of stochastic effect stems from uncertainties in the operator itself
(Farrell & Ioannou 2002). For example, the base flow may be influenced by small
fluctuations, thus compromising the assumption of a steady profile. The underlying
system matrix A should hence be modeled as a stochastic matrix operator. For our
case, we take A to be of the form

A(t) = AS + εμ(t)S (4.4)

with AS denoting the statistically steady part of A, and S the matrix containing
the terms influenced by uncertainty. The stochastic process μ(t) is taken as dμ =
−νμ dt + d W, with dW a Wiener process of zero mean and unit standard deviation.
The amplitude of the stochastic perturbations is given by the parameter ε. The quan-
tity ν is related to the auto-correlation time via 1/ν, i.e., 〈μ(t1)μ(t2)〉 = exp(−ν|t1−t2|),
and it sets the standard deviation of μ.

After some algebra (details of which are given in Farrell & Ioannou 2002), we
arrive at an evolution equation for the solution

d
dt

(
V
E

)
= εμ(t)exp(−ASt)S exp(ASt)︸ ︷︷ ︸

H(t)

(
V
E

)
, (4.5)

where V and E are defined by exp(ASt)(V, E)T = (v, η)T , which, via an integrating
factor, removes the solution components associated with the steady operator AS and
allows the concentration on uncertain effects governed by εμ(t)S. The fundamental
solution operator X(t) corresponding to the time-dependent operator εμ(t) H(t) de-
scribes the evolution of the stochastic variable (V, E)T. Its mean value describes the
evolution of the mean value of (V, E)T and thus (v, η)T. It is advantageous to use a
moment expansion of the solution operator X(t) since we can take advantage of the
fact that moments beyond the quadratic one vanish for Gaussian distributions.

As discussed in the previous section, the correlation matrix K(t) = 〈q qH〉 carries
second-order statistics, among them the root-mean-square values of the velocities.
For uncertain systems governed by Equation 4.4, an evolution equation for the cor-
relation matrix can be derived in the form (Farrell & Ioannou 2002)

d
dt

K =
(
AS + ε2SD

)
K + K

(
AH

S + ε2DHSH
)

+ ε2(SKDH + DKSH) (4.6)

with

D =
∫ t

0
exp(ASτ )S exp(−ASτ ) exp(−ντ ) dτ. (4.7)

The largest eigenvalue of K(t) corresponds to the largest contribution of a coherent
flow structure (given by the associated eigenvector) to the variance of the uncertain
system.
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Figure 10
Energy growth of plane Poiseuille flow with a perturbed base velocity profile. The uncertainty
in the base profile is given by a random superposition of four deterministic local velocity
perturbations, governed by a stochastic process with ν = 0.2 and ε = 0.2 (see the inset for an
instantaneous profile). The remaining parameters are Re = 2000, α = 0.2, and β = 2. (a) The
black curve shows the optimal energy growth; the blue line represents the mean of 100
Monte-Carlo simulations starting with the optimal initial condition of the unperturbed base
profile at tspec = 50. The error bars (light blue) indicate one standard deviation. (b) Maximum
energy growth (using logarithmic scaling) for the above parameters as a function of streamwise
and spanwise wave number, α and β, respectively. Again, a strong favoring of streamwise
elongated structures (α ≈ 0) is observed, even for a stochastically perturbed base velocity
profile.

To demonstrate the above, the parabolic channel flow profile is perturbed by su-
perimposing four localized Gaussian functions multiplied by four coefficients that are
governed by a temporal stochastic process μ(t) with an autocorrelation time 1/ν = 5
and an amplitude of ε = 0.2. The results are shown in Figure 10. A significant
amount of energy amplification can be observed that is confirmed by Monte-Carlo
simulations starting with an optimal disturbance. A parameter study assessing the
largest energy growth as a function of the streamwise and spanwise wave number
shows again the dominance of streamwise elongated structures. Both statistical anal-
yses, based on stochastic external excitation and on a stochastic perturbation of the
underlying system matrix operator, have produced evidence of a remarkable robust-
ness of a linear nonmodal mechanism that clearly favors flow patterns with a weak or
vanishing streamwise dependence (Figure 10b).

The same robustness cannot be claimed for the eigenvalues (spectrum) of the
underlying operator. As demonstrated for many non-normal hydrodynamic stability
operators, a minute perturbation added to A can cause the displacement of eigenvalues
by orders of magnitude larger than the size of the perturbation (Reddy et al. 1993,
Schmid et al. 1993, Trefethen & Embree 2005). It is important to realize that the
disturbance behavior governed by the linearized Navier-Stokes equations is robust,
even though its representation in terms of eigenvalues may not be.
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5. FLOWS IN COMPLEX GEOMETRIES: WAVE PACKETS
AND GLOBAL MODES

The assumption of a parallel base flow greatly simplifies any stability analysis, but at
the same time introduces a constraint that misrepresents many realistic configura-
tions. Even simple flows such as jets and wakes consist of a base velocity profile that
varies in the normal as well as the streamwise direction. For weakly diverging flow
fields, a locally parallel flow assumption within a Wentzel-Kramer-Brillouin-Jeffreys
(WKBJ) framework can lead to meaningful results (Chomaz 2005). However, for
highly nonparallel flows or flows in complex geometries, an alterative method of
stability analysis has to be employed.

5.1. Arbitrary Spatial Dependence, Global Modes,
and Their Superposition

The examples given in this review have mostly considered plane Poiseuille flow where
two homogeneous coordinate directions resulted via a Fourier transform in a stream-
wise and spanwise wave number parameterizing the problem. For flows with multiple
inhomogeneous directions, say x and y, eigenfields 	(x, y) have to be determined
together with the corresponding eigenvalues (Theofilis 2003). Even though the lin-
ear stability problem can be formulated for complex flow configurations, the size of
the resulting discretized system in general becomes prohibitively large to allow for a
direct calculation of the spectrum or nonmodal stability measures. At the same time,
flows in complex geometries show intricate disturbance dynamics that could benefit
(even more so than in simple geometries) from a systematic decomposition of the
flow field and a breakdown into dynamically relevant flow structures.

Iterative techniques, borrowed from computational linear algebra, are becoming
better suited to extract information from highly complex and/or three-dimensional
flow fields. Krylov techniques (Edwards et al. 1994) are quickly rising in popular-
ity in analyzing fluid dynamical systems, and, with the size of computations steadily
increasing, they should be expected to feature prominently in the stability analyses
of complex flows. The general idea of Krylov iterative schemes is the formation of
a lower-dimensional orthonormalized space V composed of snapshots of an evolv-
ing flow field, V ∈ span{q, Aq, A2q, . . . , AN−1q}, with each Akq obtained from a
direct numerical simulation at a given time. Using orthogonal similarity transfor-
mations and proceeding from column to column in V, one can reduce the matrix
A to a N × N upper Hessenberg matrix H using the Arnoldi process. A projection
of the flow dynamics, represented, for example, by the matrix exponential, onto this
low-dimensional space will result in a significantly smaller system that can again be
analyzed by direct methods,

exp(At) ≈ V exp(Ht)VH = VD exp(Rt)D−1VH =

where R is a diagonal matrix of Ritz values and D containing the corresponding Ritz
vectors. Each flow field VD, expressed as a linear combination of orthonormalized
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Figure 11
Three-dimensional visualization of the least stable global mode for a jet in cross flow. The
global mode appears in the form of a localized wave packet at a location where a local
Kelvin-Helmholtz instability is the strongest. The global modes have been determined from a
direct numerical simulation via an iterative eigenvalue procedure.

fields from a direct numerical simulation, represents a global mode of the system.
As an example, Figure 11 shows the dominant global mode extracted from a direct
numerical simulation of a jet in cross flow (Blossey & Schmid 2002). This least stable
mode takes on the shape of a localized three-dimensional wave packet located on
the upper shear layer where simulations and experiments report a strong Kelvin-
Helmholtz-type instability.

The central message conveyed in this review is the importance of a multimodal
viewpoint where the superposition of modal solutions can result in a markedly dif-
ferent disturbance behavior that could not be obtained by considering solely indi-
vidual modes. Only the superposition of global modes can ensure that the relevant
dynamics of the complex flow has been adequately captured and quantitatively de-
scribed (Chomaz 2005). The shape and associated eigenvalues of the global modes
may carry little information about the behavior of linear disturbances. An example
of this phenomenon can be found in Schmid & Henningson (2002), where the char-
acteristic timescale of an oscillating liquid sheet is given by the collective beating of
global modes. The individual frequencies of the global modes have no relevance for
the dynamics.

6. NONLINEAR EFFECTS: EXTENDING ADJOINTS

Any analysis based on the fundamental solution operator assumes that the gov-
erning equations are linear. Even though nonautonomous operators (such as the
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time-dependent flows discussed in Section 3) can be treated, the description of non-
linear effects is out of reach of this technique. The framework based on a variational
formulation of the stability problem, introduced above, however, can accommodate
nonlinear governing equations.

To recapitulate, the formulation of stability calculations in the form of a varia-
tional principle consists of two parts: the cost functional that describes the quantity
we wish to optimize (e.g., the growth of initial energy over a given time interval),
and the constraints that are added using adjoint variables and that enforce the gov-
erning equations as well as initial conditions. No restrictions on the characteristics of
the governing equations are given and the nonlinear Navier-Stokes equations could
easily be enforced via an adjoint variable (Corbett 2000). However, some additional
features arise when an iterative scheme is derived by setting the first variations of
the Lagrangian to zero. Due to the nonlinear terms appearing in the Lagrangian, for
example,

∫
ũv ∂u

∂y d y, a first variation with respect to δu will lead to the following term
in the adjoint equation: − ∫

∂

∂y (vũ)δu d y , which demonstrates that the adjoint partial
differential equation will be linear in the adjoint variables, but its coefficients will
depend on the direct variables (in the above case, on v). This introduces additional
complications for the numerical solution of the nonlinear optimization problem via
an iterative scheme. During the forward sweep using the direct (nonlinear) equa-
tions, the flow fields have to be saved as they are needed (in reverse order) for the
backward sweep using the (linear) adjoint equations (Zuccher et al. 2006). For long
integration times and three-dimensional problems this can put significant strain on
memory requirements and computational speed. Various techniques to improve these
computational difficulties have been devised such as check pointing (Berggren 1998,
Hinze et al. 2005) where only a few flow fields are stored during the forward sweep
and interpolation is used to reconstruct flow fields for times in between the stored
ones. An alternative technique uses sparsely time-staggered flow fields as initial con-
ditions to advance the direct flow fields to the desired time. In any case, additional
computational effort has to be exerted to extract stability information governed by
nonlinear equations.

7. CONCLUSIONS, REMARKS, AND FUTURE DIRECTIONS

At the core of nonmodal stability theory lies the recognition that the linearized
Navier-Stokes operator applied to most wall-bounded shear flows is nonnormal.
As a consequence, the spectrum of the linearized equations reduces to an asymp-
totic tool describing only the long-term behavior of disturbances. More sophisti-
cated approaches have to be taken, and more involved methods have to be employed,
to accurately capture short-time behavior, which, in most cases, is more relevant
to the overall flow physics. The matrix exponential (Equation 2.3) and resolvent
(Equation 2.6b) (and their variants) are central to the analysis of nonmodal stability
for deterministic problems, whereas the Lyapunov Equation 4.2 and the equation for
the covariance matrix (Equation 4.6) probe the influence of stochastic effects on the
evolution of linear perturbations. With minor modifications, these tools can address
spatially varying flows or even nonlinear disturbances.
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The exact location of eigenvalues is of little importance when characterizing the
short-time behavior of nonnormal evolution processes. Moreover, it is often ob-
served that eigenvalues of nonnormal operators are highly sensitive to perturbations,
whereas the global behavior is not, thus lending additional support to the necessity
for nonspectral analysis tools. The importance of inexact solutions, such as described
by pseudospectra, resolvent norm contours, or pseudowave packets, expounds on the
fact that “nearly solutions” (which are not necessarily near solutions) may be more
relevant to the disturbance behavior than eigensolutions.

The approach outlined in this review, which describes stability characteristics
based on the general response behavior of the linearized Navier-Stokes equations
to initial conditions, external forcings, or internal perturbations (Figure 1), yields
a rich and complete picture of disturbance behavior and paves the way for a more
focused exploration of fluid processes in which instabilities are a crucial component.
Admittedly, the introduced tools require a higher computational effort. However, the
resulting wealth of information goes far beyond the dynamics of the least stable mode
and more than justifies this effort.

Owing to ever increasing computational resources, direct numerical simulations
of flows dominated by a wide range of scales and physical processes are now common.
Large-scale simulations furnish an impressive amount of data, which is sometimes
difficult to comprehend or analyze. Any systematic attempt at distilling the essential
mechanisms and effective transport processes from these data should be welcomed
and encouraged. It is reasonable to anticipate that direct numerical simulations will
play an important role in hydrodynamic stability theory—not so much as a confirming
tool but, rather, as a source of input data for a global mode decomposition. This de-
composition will help in identifying dynamically relevant subregions (see Figure 11),
while an appropriate superposition of the modes will capture the dominant pertur-
bation dynamics.

Modern iterative schemes, such as Krylov subspace methods, will feature more
prominently and will become as ubiquitous as the direct eigenvalue routines in cur-
rent use. The symbiosis of direct numerical simulations (providing snapshots of dis-
turbance dynamics), iterative techniques (extracting physically relevant bases), and
nonmodal stability analysis (quantifying the dominant short-term disturbance be-
havior) will, in principle, enable the analysis of any flow amenable to a description by
large-scale computations. Related fields, such as flow control and model reduction,
will take the same direction.

The concept of stability is generally acknowledged to play a pivotal role in the
transition from laminar to turbulent fluid motion; it has important technological con-
sequences as air, marine, and automotive vehicles continue to push the limits of their
operational envelope; in meteorology and environmental fluid dynamics, instabilities
affect the formation of weather patterns or the efficiency of mixing processes—in
short, due to the range of its applicability and the relevance of its predictions for
many fluid transport processes, hydrodynamic stability theory will continue to oc-
cupy a central position within fluid dynamics research and be an integral part of many
scientific inquiries. The tools of nonmodal stability theory are designed to help in this
effort by correctly identifying preferred structures, detect important mechanisms, and
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thus help gain the necessary insight and understanding that leads to a more targeted
effort in the design and management of fluid dynamic processes.

ACKNOWLEDGMENTS

I wish to thank Dan Henningson and Nick Trefethen, who, long ago, got me in-
terested in hydrodynamic stability and pseudospectra and generously supported me
on my path over many years. I am also grateful to Patrick Huerre for welcoming
me into LadHyX and for his kind support. I am indebted to Patrick Huerre, Nick
Trefethen, Dan Henningson, Jörn Sesterhenn, and Christoph Mack for giving me
many thoughtful comments that helped improve this review. The Alexander-von-
Humboldt Foundation is warmly thanked for its generous and flexible support of
part of this work. Finally, I wish to thank Donna Calhoun for useful hints regarding
the visualization.

LITERATURE CITED

Alfredsson P, Matsubara M. 2000. Freestream turbulence, streaky structures and
transition in boundary layer flows. AIAA Pap. 2000–2534

Aubry N. 1991. On the hidden beauty of the proper orthogonal decomposition. Theor.
Comput. Fluid Dyn. 2:339–52

Bamieh B, Dahleh M. 2001. Energy amplification in channel flows with stochastic
excitation. Phys. Fluids 13:3258–69

Bayly B. 1986. Three-dimensional instability of elliptical flow. Phys. Rev. Lett.
57:2160–63

Bender C, Orszag S. 1978. Advanced Mathematical Methods for Scientists and Engineers.
New York: McGraw-Hill

Berggren M. 1998. Numerical solution of a flow-control problem: vorticity reduction
by dynamic boundary action. SIAM J. Sci. Comput. 19:829–60

Berkooz G, Holmes P, Lumley J. 1993. The proper orthogonal decomposition in the
analysis of turbulent flows. Annu. Rev. Fluid Mech. 25:539–75

Berlin S, Henningson D. 1999. A nonlinear mechanism for receptivity of freestream
disturbances. Phys. Fluids 11:3749–60

Bertolotti F, Herbert T, Spalart P. 1992. Linear and nonlinear stability of the Blasius
boundary layer. J. Fluid Mech. 242:441–74

Blossey P, Schmid P. 2002. Global stability analysis of a jet in cross flow. Bull. Am.
Phys. Soc. 47(10):92

Boberg L, Brosa U. 1988. Onset of turbulence in a pipe. Z. Naturforsch. Teil A 43:697–
726

Brandt L, Cossu C, Chomaz J-M, Huerre P, Henningson DS. 2003. On the con-
vectively unstable nature of optimal streaks in boundary layers. J. Fluid Mech.
485:221–42

Briggs R. 1964. Electron-Stream Interaction with Plasmas. Cambridge, MA: MIT Press
Butler KM, Farrell BF. 1992. Three-dimensional optimal perturbations in viscous

shear flows. Phys. Fluids A 4:1637–50
Chang C-L, Malik M. 1994. Oblique mode breakdown and secondary instability in

supersonic boundary layers. J. Fluid Mech. 273:323–60

www.annualreviews.org • Nonmodal Stability Theory 159

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
7.

39
:1

29
-1

62
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
- 

L
aw

 L
ib

ra
ry

 o
n 

07
/2

2/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV294-FL39-07 ARI 12 December 2006 6:2

Chomaz J-M. 2005. Global instabilities in spatially developing flows: nonnormality
and nonlinearity. Annu. Rev. Fluid Mech. 37:357–92

Choudhari M. 1993. Boundary layer receptivity due to distributed surface imperfec-
tions of a deterministic or random nature. Theor. Comput. Fluid Dyn. 4:101–17

Corbett P. 2000. Nonmodal growth in boundary layers and its optimal control. PhD thesis.
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