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Abstract— We consider the problem of finding optimal feed-
back gains in the presence of structural constraints and/or
sparsity-promoting penalty functions. Such problems are known
to be difficult due to their lack of convexity. We provide an
equivalent reformulation of the optimization problem such that
its source of nonconvexity is isolated in one nonconvex matrix
inequality of the form Y � X−1. Furthermore, we preserve the
feedback gain as an optimization variable in the reformulated
problem. Via linearizations of the nonconvex constraint, we
introduce an iterative algorithm that solves a semidefinite
program at every stage and for which the nonconvex constraint
is satisfied upon convergence. We elaborate on the modular
nature of the proposed scheme and show that it can be used
in a wide range of network control problems.

Index Terms— Communication architecture, `1 minimization,
optimization, semidefinite programming, sequential convex pro-
gramming, sparsity-promoting control, structural constraints.

I. INTRODUCTION

The problem of designing optimal state and output
feedback gains has been investigated since the 1960s [1],
[2]. The linear quadratic regulator (LQR) [1] represents
a case in which the optimal feedback gain can be found
analytically. However, LQR has turned out to be the
exception rather than the rule, in the sense that most
optimal control problems do not permit a closed-form
solution. Of particular interest are problems in which
the feedback gain is constrained in some way, e.g., it is
restricted to being an output feedback gain or adhering to
a certain structural pattern on the location of its nonzero
entries. Another problem of interest is what we refer to as
sparsity-promoting optimal control, in which the objective
function includes terms that penalize the number of nonzero
entries of the matrix gain [3], [4]. The motivation for such
problems comes from the desire to minimize the number
of communication links between the many components of
large-scale and networked control systems.

Recent work on the design of optimal controllers for
classes of linear time invariant systems includes [5]–[15].
Particular attention has been paid to the problem of optimal
structured control in [16]–[18], where the H2-norm of the
closed-loop system is minimized among all controllers that
respect a predetermined communication architecture. The
problem of optimal sparse control has been considered in
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[3], [4], [19]–[22], where a combination of H2-norm and
sparsity-promoting penalty terms are minimized with the
purpose of obtaining controllers with minimal internodal
communication links.

The main contribution of this work is the development
of a procedure for solving structured and/or sparse feedback
gain design problems. Since these optimization problems are
nonconvex in general, we propose an iterative procedure that
solves a convex approximation of the original optimization
problem at every stage. The distinctive features of our
approach are the following:
• We provide an equivalent characterization of the

optimization problem with the property that its source
of nonconvexity is isolated in one nonconvex constraint
of the form Y � X−1, where both of the positive
definite matrices X and Y are optimization variables.
This allows a variety of approximation/relaxation
schemes to be brought to bear on the reformulated
problem, in order to yield a convex program that
can be solved efficiently. We explore one such
approximation based on linearization and sequential
convex programming.

• We avoid variable transformations that result in the loss
of the feedback gain matrix as an optimization variable.
By preserving the feedback gain as an optimization
variable, we are able to directly enforce on it desired
structural constraints and/or penalize its nonzero entries
via sparsity-promoting cost functions.

In this paper we adopt a framework which resembles
that in [4], [16]. We consider a standard linear quadratic
optimal control problem in Section II and use it to develop
an alternative computational algorithm. The main results of
this work appear under Propositions 1 and Algorithm 1 in
Section III. We apply these results to various optimal control
problems of practical interest in Section IV. We offer an
illustrative example in Section V.

II. PROBLEM FORMULATION

We consider linear time invariant systems described by

xk+1 = Axk +B1wk +B2uk (1)
zk = Cxk +Duk,

where xk ∈ Rn is the state, wk ∈ Rn is the exogenous
input, uk ∈ Rm is the control input, and zk ∈ Rn+m is the
performance output, all evaluated at the discrete time instant
k. The matrices C and D are such that zk encapsulates
information about both the state and the input at every k.
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We assume C = [Q1/2 0 ]T and D = [ 0 R1/2 ]T , where
Q � 0 and R � 0. We further assume that B1B

T
1 � 0 and

that (A,B2) is stabilizable.

We seek feedback gains F ,

uk = −Fxk,
that satisfy certain structural constraints and are optimal in
the linear quadratic sense. With this choice of control, the
closed-loop system is described by

xk+1 = (A−B2F )xk +B1wk (2)

zk =

[
Q1/2

−R1/2F

]
xk.

Our work is centered around the problem of searching
for feedback gains that minimize the H2 norm [23] of the
closed-loop system (2). In particular, we search for a matrix
F that solves

minimize trace(BT
1 PB1)

subject to P − (A−B2F )
TP (A−B2F ) = Q+ FTRF

P � 0.
(H2)

Although we begin our developments by focusing on
problem (H2) and its equivalent formulations, we do this
in order to set the stage for the latter parts of the paper
where (H2) is extended to problems which include structural
constraints on F or problems in which the nonzero entries
of F are penalized so as to render a sparse feedback gain.
Indeed, while the optimal F that solves (H2) can be obtained
from standard LQR theory, the procedure for solving the
LQR problem does not lend itself to extensions which place
additional restrictions or penalties on F .

III. MAIN RESULT: AN ITERATIVE ALGORITHM FOR
SOLVING PROBLEM (H2)

In this section we reformulate (H2) such that its source of
nonconvexity is isolated in one nonconvex matrix inequality
constraint. This reformulation lends itself to approximations,
while keeping the feedback gain F as an optimization
variable. We then propose and justify an approximation
scheme, and employ it in an iterative method introduced in
Algorithm 1.

Proposition 1: The optimization problem (H2), with Q �
0 and B1B

T
1 � 0, is equivalent to

minimize trace(BT
1 XB1)

subject to
[
X −Q−K (A−B2F )

T

A−B2F Y

]
� 0[

K FT

F R−1

]
� 0,

[
X I
I Y

]
� 0

Y � X−1,

(J)

where the optimization variables are the matrix F and the
symmetric matrices K,X, Y .

Proof: See Appendix.

X

Y
Y = X�1

Y � X�1

Y ⌫ X�1

Fig. 1: The set described by the matrix inequality
[X, I; I, Y ] � 0, or equivalently Y � X−1, is convex,
whereas the one described by Y � X−1 is not.

We hereafter refer to (J) as the MI-equivalent (or matrix
inequality equivalent) of problem (H2).

The only obstacle to finding the globally optimal solution
of (J) is the nonconvex constraint Y � X−1; see Fig. 1. This
is reminiscent of the results in [24], [25]. We work our way
around the nonconvex constraint by using a method based
on sequential convex programming [26]. We reformulate (J)
by replacing the inequality constraint Y − X−1 � 0 with
the equality constraint Y − X−1 = Z+ − Z−, where Z+

and Z− are both positive semidefinite matrices. Moreover,
we penalize the positive component Z+ by adding the term
λ trace(Z+), λ > 0 to the objective. We thus have

minimize trace(BT
1 XB1) + λ trace(Z+)

subject to
[
X −Q−K (A−B2F )

T

A−B2F Y

]
� 0[

K FT

F R−1

]
� 0,

[
X I
I Y

]
� 0

Y −X−1 = Z+ − Z−, Z+ � 0, Z− � 0,

where the optimization variables are the matrices
F,K,X, Y, Z+, Z−. Clearly, as λ grows, the matrix
Z+ approaches zero and the original matrix inequality
Y − X−1 � 0 is recovered. Thus for large enough λ, the
minimizer of this problem is equal to that of (J), [26, pp. 14].

Finally, we linearize the (still nonconvex) equality con-
straint Y −X−1 = Z+−Z− around our current best estimate
X of X to obtain

Y − hX (X) = Z+ − Z−,
where

hX (X) := X−1 −X−1(X −X )X−1.
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(X , X �1)

X

Y

Fig. 2: The solid line depicts the affine approximation Y =
hX (X) of Y = X−1 around the point (X ,X−1). The dashed
lines depict the contour lines corresponding to trace(Z+);
the value of trace(Z+) increases as one moves from bottom-
left to top-right of the picture.

We now iteratively solve the problem

minimize trace(BT
1 XB1) + λ trace(Z+)

subject to
[
X −Q−K (A−B2F )

T

A−B2F Y

]
� 0[

K FT

F R−1

]
� 0,

[
X I
I Y

]
� 0

Y −X−1 + X−1(X −X )X−1 = Z+ − Z−
Z+ � 0, Z− � 0,

(RLX)
where at every iteration we take X to be the solution of
(RLX) at the previous step. Furthermore, we increase the
value of λ at every iteration by setting λ := µλ for some
fixed µ > 1. The procedure is initialized with X := I
and some small value of λ > 0. We summarize this in
Algorithm 1.

Algorithm 1 Iterative algorithm for solving (J)

1: given λ0 > 0, µ > 1, and ε > 0.
2: for i = 1, 2, . . . do
3: If i = 1, set λ := λ0, set X := I .
4: If i > 1, set λ := µλ, set X equal to optimal X

from previous iteration.
5: Solve (RLX) to obtain X∗, Y ∗.
6: If ‖X∗ −X‖ < ε, ‖Y ∗ − (X∗)−1‖ < ε, quit.
7: end for

We next elaborate on the operation of Algorithm 1. Let
XJ denote the optimal value of X resulting from the
solution of (J). Then, for small enough values of λ the
feasible set of (RLX) contains that of (J), and in particular
contains XJ . (This is due fact that when λ is very small,
there is no penalty on the size of Z+, and the equality
constraint in (RLX) can be eliminated without affecting the
solution of the optimization problem.) Hence, during the
initial iterations of Algorithm 1, when λ has small values,

the optimal value of (RLX) renders a lower bound on the
optimal value of (J). As the iterations progress and the value
of λ grows, the matrix Z+ approaches zero and the equality
constraint in (RLX) implies Y − hX (X) = −Z− � 0. This,
together with Y −X−1 � 0, forces Y = X−1; see Fig. 2.

We make no claim on the convergence of Algorithm 1
or the global optimality of the solution that results from
it. However, in our extensive numerical experiments this
algorithm always converges and its solution is identical to
that of (H2). We emphasize that there is no requirement on
the open-loop stability of the system in order for our results
to hold.

At this point, one may wonder what is the advantage of
reformulating (H2) as (J), in particular since the solution
of (H2) – the standard LQR gain, obtained by solving an
algebraic Riccati equation – has been known for decades.
To justify the formulation (J) and its relaxation (RLX), we
note that even though the nonconvex problem (H2) can be
solved using LQR theory, it is not at all obvious how to
obtain optimal solutions once either the objective function
or the constraints of (H2) are modified.

As an example of such a modification, consider the
problem of obtaining a sparse feedback gain F by including
additional terms in the objective that penalize the nonzero
entries of F so as to promote its sparsity [3], [4], [20],
[27]. As another example, one may be interested in obtaining
a structured feedback gain F by including additional con-
straints that enforce a desired architecture on the zero entries
of F , [16], [18]. In the new framework proposed here, any
convex penalty functions or constraints can be incorporated
into (RLX) without affecting the iterative optimization al-
gorithm. In Section IV we give concrete instances of such
scenarios and formulate their corresponding MI-equivalent
and convex relaxations, as needed for the implementation of
Algorithm 1.

IV. DESIGN OF OPTIMAL STRUCTURED/SPARSE
FEEDBACK GAINS

A. Optimal Structured Feedback Gains

The problem of designing structured feedback gains was
considered in [16], [18], where alternating methods and
descent algorithms were used to obtain locally optimal
solutions. In this section we introduce an iterative procedure,
based on the MI-equivalent, for finding optimal structured
feedback gains.

Consider the problem

minimize trace(BT
1 PB1)

subject to P − (A−B2F )
TP (A−B2F ) = Q+ FTRF

Fij = 0 if (i, j) ∈ S,
(3)

where the set S encapsulates the structural constraints im-
posed on the matrix F . More precisely, S is composed of
index pairs such that if (i, j) ∈ S then subsystem i is not
allowed to receive information from subsystem j. This is
equivalent to the constraint Fij = 0. A notationally compact
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way to represent all such constraints on the entries of the
matrix F is

ES ◦F = 0,

where ◦ denotes elementwise matrix multiplication and ES
is a matrix of the same dimension as F and defined as

(ES)ij =

{
1 if (i, j) ∈ S,
0 if (i, j) /∈ S.

The above optimization problem is therefore equivalent to

minimize trace(BT
1 PB1)

subject to P − (A−B2F )
TP (A−B2F ) = Q+ FTRF

ES ◦F = 0.
(4)

The structural constraints ES◦F = 0 are affine and therefore
convex. Thus we can apply to (4) the same relaxation
procedure that we applied to (H2) and (J) to obtain (RLX).
Doing so, we obtain

minimize trace(BT
1 XB1) + λ trace(Z+)

subject to
[
X −Q−K (A−B2F )

T

A−B2F Y

]
� 0[

K FT

F R−1

]
� 0,

[
X I
I Y

]
� 0

Y −X−1 + X−1(X −X )X−1 = Z+ − Z−
Z+ � 0, Z− � 0, ES ◦F = 0.

(5)
We emphasize that, assuming there exist stabilizing F

that satisfy the structural constraints, every step of the proof
of Proposition 1 can be extended to show that problem (4)
can be replaced with its MI-equivalent. The latter problem
is then approximated by (5), obtained by replacing the
nonconvex constraint Y � X−1 with the convex constraint
Y − hX (X) = Z+ − Z− and penalizing trace(Z+) in the
objective. Furthermore, the iterative procedure described in
Section III can be applied to the optimal structured problem
by solving (5) in Step 5 of Algorithm 1 [rather than solving
(RLX)].

B. Optimal Sparse Feedback Gains

The problem of designing sparse feedback gains was
considered in [3], [4], [19], where the alternating direction
method of multipliers and reweighted `1 relaxations were
used to obtain locally optimal solutions. In this section we
introduce an iterative procedure, based on the MI-equivalent,
for finding optimal sparse feedback gains.

Consider the problem

minimize trace(BT
1 PB1) + γ ‖W ◦F‖`1

subject to P − (A−B2F )
TP (A−B2F ) = Q+ FTRF,

(6)
where W is a known weighting matrix of the same dimension
as F , ◦ denotes elementwise matrix multiplication, and
the weighted `1-norm in the objective function is intended
to promote the sparsity of the matrix F . Let M be a
matrix of the same dimension as F and with entries all

equal to one. Clearly, if W = M then we recover the
standard `1-norm, ‖M ◦F‖`1 = ‖F‖`1 =

∑
i,j |Fij |. The

sparsity-promoting properties of the (reweighted) `1-norm
have been demonstrated previously in [28], [29], mostly in
the context of solving underdetermined systems of linear
equations with sparse solutions.

Using standard methods used in `1 optimization problems,
it can be shown [3], [30] that the above optimization problem
is equivalent to

minimize trace(BT
1 PB1) + γ trace(MTV )

subject to P − (A−B2F )
TP (A−B2F ) = Q+ FTRF

−V ≤W ◦F ≤ V,
(7)

where the inequality constraints −V ≤ W ◦F and W ◦F ≤
V are elementwise. These inequality constraints are affine
and therefore convex, and trace(MTV ) is also convex. Thus
we can apply to (7) the same relaxation procedure that we
applied to (H2) and (J) to obtain (RLX). Doing so, we obtain

minimize trace(BT
1 XB1) + γ trace(MTV ) + λ trace(Z+)

subject to
[
X −Q−K (A−B2F )

T

A−B2F Y

]
� 0[

K FT

F R−1

]
� 0,

[
X I
I Y

]
� 0

Y −X−1 + X−1(X −X )X−1 = Z+ − Z−
Z+ � 0, Z− � 0, − V ≤W ◦F, W ◦F ≤ V.

(8)
Once again, every step of the proof of Proposition 1 can

be extended to show that problem (7) can be replaced with
its MI-equivalent. The latter problem is then approximated
with (8), obtained by replacing the nonconvex constraint
Y � X−1 with the convex constraint Y −hX (X) = Z+−Z−
and penalizing trace(Z+) in the objective. And the iterative
procedure described in Section III can be applied to the
optimal structured problem by solving (8) in Step 5 of
Algorithm 1 [rather than solving (RLX)].

In our numerical experiments of solving (8) as part
of Algorithm 1, even the simple choice W = M renders
sparse feedback gains F . However, it is possible to use a
reweighted `1 algorithm [3], [29] that iteratively adapts the
matrix W so that the least significant entries of F are forced
to become zero and the nonzero entries of F are readjusted
accordingly. We summarize this scheme in Algorithm 2.

In closing, we point out that problem (6) and Algorithm 2
can be used to ‘identify’ the most effective sparsity pattern in
F . Then, once this pattern has been identified, one can build
it into the matrix ES of Section IV-A and solve (4) to obtain
the optimal structured feedback matrix F . The latter step is
called ‘polishing’, as it further refines the optimal sparse F
found from (6). This two-step procedure was introduced in
[4], [31].

V. ILLUSTRATIVE EXAMPLE

In this section we present a simple example. All compu-
tations were performed using CVX, a package for specifying
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Algorithm 2 Reweighted `1 algorithm

1: given γ > 0, δ > 0 and ε > 0.
2: for r = 1, 2, . . . do
3: If r = 1, set F := 0, set Wij := 1, form matrix W .
4: If r > 1, set F equal to optimal F from previous

iteration, set Wij := 1/(|Fij |+ δ), form matrix W .
5: Invoke Algorithm 1, replacing (RLX) in Step 5 with

(8), to obtain F ∗.
6: If ‖F ∗ −F‖ < ε, quit.
7: end for

and solving convex programs [32], [33].
We consider problem (1) in which the state-space param-

eters are randomly selected as

A=


0.9504 0.0134 −0.0176 −0.0169 0.0231

−0.0341 1.0817 −0.0290 0.0306 −0.0446
0.0312 −0.0576 1.0635 −0.0810 0.0065

−0.0570 0.0313 0.0455 0.9892 −0.0263
−0.0368 −0.0378 −0.1045 −0.0166 0.9321

,

Q=


6.2075 2.2502 −2.9028 −0.6915 −1.9053
2.2502 7.9155 −0.2435 2.9279 −4.6740

−2.9028 −0.2435 2.2141 0.4269 0.2727
−0.6915 2.9279 0.4269 2.8999 −2.4567
−1.9053 −4.6740 0.2727 −2.4567 3.6376

,
B1=diag([ −0.3843 −0.4579 −0.2915 −0.3012 −1.5886 ]),

B2=diag([ +1.0943 +1.3242 −0.1265 −0.7372 +0.2137 ]),

and R = I . We emphasize that there is no reason for B1,
B2, or R � 0 to be diagonal, or for B2 to be square; the
proposed algorithms work just as well if these parameters
are randomly chosen matrices. We have

eig(A) =


0.9185 + 0.0278i
0.9185− 0.0278i
1.0606 + 0.0534i
1.0606− 0.0534i
1.0589

and thus the discrete-time system is open-loop unstable. For
all computations we set λ0 = 1, µ = 1.01, and ε = 5×10−4.

• Standard H2 problem: The solution of (H2) using
Algorithm 1, is

F ∗=


0.7567 0.0631 −0.3485 −0.0749 −0.1554
0.0114 0.7546 0.0419 0.1396 −0.2719

−0.0246 0.0684 −1.5510 0.1676 0.3148
0.1029 −0.1299 0.2910 −0.8162 0.3948

−0.0585 −0.0290 −0.6678 −0.0722 0.3456


which is identical to the solution of the standard LQR
problem. We have trace(BT

1 X
∗B1) = 17.50.

• Structured H2 problem: The solution of (3) using Al-
gorithm 1, in which (5) is solved in Step 5, is

F ∗=


0.7569 −0.1145 −0.3213 −0.2611 0
0.0155 0.8047 0.0333 0.1912 −0.3164

−0.0286 0.1248 −1.5600 0.2291 0.2653
0.0990 −0.0387 0.2747 −0.7290 0.3213

0 −0.0777 −0.6726 −0.1624 0.3946


where the structure imposed on F is

F1,5 = F5,1 = 0.

We have trace(BT
1 X
∗B1) = 18.07.

• Sparse H2 problem: The solution of (6) using Algo-
rithm 1 in which (8) is solved in Step 5, is

F ∗=


0.7268 0.0000 −0.2704 −0.0348 −0.1534
0.0000 0.7992 0.0000 0.1320 −0.2730
0.0000 0.0000 −1.5832 0.0707 0.3484
0.0000 −0.0000 0.1331 −0.7719 0.3816

−0.0000 −0.0000 −0.4460 −0.0416 0.2972


where the parameters γ and W are chosen to be

γ = 1/4, W = 11T − I.
We have trace(BT

1 X
∗B1) = 17.61.

VI. CONCLUSION

We propose an iterative scheme for solving optimal
control problems with structural constraints and/or sparsity-
promoting penalty functions. The scheme solves a sequence
of approximate convex optimization problems to arrive at
a suboptimal solution to the original (nonconvex) problem.
We demonstrate the effectiveness of our procedure using an
illustrative example.

In our future work we will investigate the extension of
the methods proposed here to the design of optimal output
feedback controllers subject to structural constraints and/or
sparsity-promoting penalty functions (as opposed to the state
feedback controllers considered in this work).

VII. APPENDIX: PROOF OF PROPOSITION 1

The proof can be separated it into proving each of the
following statements.

(a) Problem (H2) is equivalent to

minimize trace(BT
1 XB1)

subject to X − (A−B2F )
TX(A−B2F ) � Q+ FTRF

X � 0.
(9)

(b) Problem (9) is equivalent to

minimize trace(BT
1 XB1)

subject to X − (A−B2F )
TX(A−B2F ) � Q+K

K � FTRF, X � 0.
(10)

(c) Problem (10) is equivalent to

minimize trace(BT
1 XB1)

subject to X − (A−B2F )
TY −1(A−B2F ) � Q+K

K � FTRF, X � Y −1, Y � X−1

X � 0, Y � 0,
(11)

which follows from introducing Y = X−1 and replac-
ing the equality constraint X = Y −1 by the pair of
inequality constraints X � Y −1, X � Y −1.

(d) Problem (11) is equivalent to problem (J), which
follows from multiple applications of the Schur
complement.
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The details of each step are omitted due to space limitations
and will be reported elsewhere.
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