EE 8215 HW 4 Spring 2014
Due Tu 04/08/14 (at the beginning of the class)

1. Khalil, Problem 3.8 (attached).
2. Khalil, Problem 3.13 (attached). For [ T10 %20 }T = [ 1 -1 }T, simulate sensitivity equations and
plot the time dependence of the corresponding sensitivity functions.

3. Khalil, Problem 4.14 (attached).

4. What kind of equilibrium stability (stable (in the sense of Lyapunov), or AS, or GAS) if any, is exhibited
by the state representation of

(a) The S% plant with no input, i.e. &1 = xo, T = 0.

T = T
(b) The magnetically suspended ball: jjl _ 2c L with @ = \/™2Y = const.

2 = z
mxl

5. The Morse oscillator is a model that is frequently used in chemistry to study reaction dynamics. The
equations for an unforced Morse oscillator are given by

Ty = T,
By = —p(e” " —e ),
(a) Find the equilibrium points of the system.
(b) Investigate their stability properties.
6. Consider the system:
T1 = T2
iy = —g(kiz1 + kaza), ki, ke > 0,

where the nonlinearity g(-) is such that

gy)y >0, Vy #0
Yy

lim g(§)d§ = +

ly| =00

(a) Using an appropriate Lyapunov function, show that the equilibrium = = 0 is globally asymptoti-
cally stable.

(b) Show that the saturation function sat(y) = sign(y) min{1, |y|} satisfies the above assumptions for
g(+). What is the exact form of your Lyapunov function for this saturation nonlinearity?

(c) Parts (a) and (b) imply that a double integrator with a saturating actuator

Sbl = T2
o = sat(u)
can be stabilized with the state-feedback controller u = —kjx1 — koxo. Design k1 and ks to place

the eigenvalues of the linearization at —1 4 j, and simulate the resulting closed-loop system both
with, and without, saturation. Compare the resulting trajectories. (Please provide plots of x1 ()
and xo(t) rather than phase portraits.)
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3.6 Let f(t,x) be piecewise continuous in t, locally Lipschitz in , and

WF@E o)l <kt kolzll, ¥ (t,z) € [to,00) x R"

(a) Show that the solution of (3.1) satisfies

(&)} < llaoll explia(t = to)] + %{exp[kz(t —to)] — 1}

for all t > to for which the solution exists.
(b) Can the solution have a finite escape time?

3.7 Letg: R* — R" be continuously differentiable for all € R" and define f(z)

by .

)=
f@) = T3 @)@
Show that & = f(2), with z(0) = Zo, has & unique solution defined for all t > 0.

g9(z)

3.8 Show that the state equation

2(132
1+2%’

2:131
1428

T —x1 + z1(0) =0

T2 —x2 + CI)Q(O) =b

has a unique solution defined for all t > 0.

3.9 Suppose that the second-order system i = f(x), with a locally Lipschitz flz),
has a limit cycle. Show that any solution that starts in the region enclosed by the

limit cycle cannot have a finite escape time.

3.10 Derive the sensitivity equations for the tunnel-diode circuit of Example 2.1
as L and C vary from their nominal values.

3.11 Derive the sensitivity equations for the Van der Pol oscillator of Example 26
as ¢ varies from its nominal value. Use the state equation in the z-coordinates.

3.12 Repeat the previous exercise by using the state equation in the z-coordinates "
3.13 Derive the sensitivity equations for the system
T, = tan~*(az1) — *1%2, T = b — cT2

as the parameters a, b, ¢ vary from their nominal values ao = 1, bo =0, and ¢o =
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4.6 Consider the system

1 = Zo, ig = —(x1 +%2) — h(z1 + Z2)

e and zh(z) > 0 forall z +# 0. Using the variable

where h is continuously differentiabl
function that shows that the origin is globally

gradient method, find a Lyapunov
asymptotically stable.

where @ is & symmetric positive definite
matrix and ¢(zx) is a continuously differentiable function for which the ith compo-
nent ¢; depends only on s, that is, ¢i(z) = $i(z;). Assume that ¢;(0) = 0 and
yp;(y) > 0 in some neighborhood of y = 0, forall 1 <i<m.

function that shows that

4.7 Consider the system & = —Q¢(z),

variable gradient method, find a Lyapunov

(a) Using the
able.

the origin is asymptotically st
tically stable?

(b) Under what conditions will it be globally asympto

e Bl

(c) Apply to the case

=2, du(m) =7~ 20, o(zs) = T2+ 33, Q= [3 1]

4.8 ([72]) Consider the second-order system

_ —2(1121 —+ .’Eg)

-—6%1 .
+ 22, T = "

Ty =
u?

where uw = 1+ 3. Let V(z) = 22/(1+ ) + 3.

z) > 0 and V(z)<Oforalze€ R% —{0}.

—+/2). Show, by investigating the vectdr |
that trajectories to the right of the |

that branch.

(a) Show that V(

(b) Consider the hyperbola z2 = 2 /(z1
field on the boundary of this hyperbola,
branch in the first quadrant cannot cross

totically stable.

show that &2/&1 = —1/(1+ 94/2z1 + 277) on the hyperbola, and |
f the tangents to the hyperbola.

(c) Show that the origin is not globally asymp

Hint: In part (b),
compare with the slope o

ve definite function V(z),

4.9 In checking radial unboundedness of a positi
| — oo along the principal &

hat it is sufficient to examine V(z) as ||

appear t
as shown by the function

This is not true,

(z1+ 1102)2

2
o\ P el _
1+ (331 + $2)2 + (@ :Uz)

V(z)=
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(a) Show that V(z) — oo as ||z]| — oo along the lines z; = 0 or Ty = ().
(b) Show that V(z) is not radially unbounded.

4.10 (Krasovskii’s Method) Consider the system & = f(z) with f(0) = 0.
Assume that f(z) is continuously differentiable and its Jacobian [8f /0z] satisfies

P [_(‘3 (:c)J + [—— (x)J P<-I, VzeR y where P = pPT 5 g

(a) Using the representation flz) = fol gﬁ(am)x do, show that

T Pf(z) + fr(z)Pz < —zTz, VzeR"

(b) Show that V(z) = fT(z)Pf (z) is positive definite for a]] z € R™ and radially
unbounded.

(c) Show that the origin is globally asymptotically stable.

4.11 Using Theorem 4.3, prove Lyapunov’s first instability theorem:

For the system (4.1), if a continuously differentiable function Vi(z) can be found
in a neighborhood of the origin such that V1(0) = 0, and V; along the trajectories
of the system is positive definite, but V1 itself is not negative definite or negative
semidefinite arbitrarily near the origin, then the origin is unstable.

4.12 Using Theorem 4.3, prove Lyapunov’s second instability theorem:
For the system (4.1), if in a neighborhood D of the origin, a continuously differ-

entiable function Vi(z) exists such that V1(0) =0 and W along the trajectories of
the system is of the form Vi = AVi + W(z) where A > 0 and W(z) > 0 in D, and
if Vi(z) is not negative definite or negative semidefinite arbitrarily near the origin,

then the origin is unstable,
4.13 For each of the following systems, show that the origin is unstable:
(1) Ty = 2%+ 2z, By = —mg—l—x%-i-xlxz—xi’

) : 6
(2) T = —zf 4z, Ty = 28— g3

Hint: In part (2), show that ' = {0 < g, S1pnd{zy > 23 Nz, < z?} is a
honempty positively invariant set, and investigate the behavior of the trajectories
inside I, “

4.14 Consider the system
Iy = z2, To = *9(-’171)(1'1 + :1"2)

where ¢ is locally Lipschitz and 9(y) > 1for all y € R. Verify that V(z) =
N Y9(y) dy + 2124 + 3 is positive definite for al] = € R? and radially unbounded,
and use it to show that the equilibrium point z = 0 is globally asymptotically stable.




