Due Monday 12/09/13; by 2pm in Xiaofan's office

1. Two pendula, coupled by a spring, are to be controlled by two equal and opposite forces u applied to the pendula bobs shown in Figure 1.
The linearized equations of motion are given by

$$
\begin{aligned}
& m l^{2} \ddot{\theta}_{1}=-k a^{2}\left(\theta_{1}-\theta_{2}\right)-m g l \theta_{1}-u \\
& m l^{2} \ddot{\theta}_{2}=-k a^{2}\left(\theta_{2}-\theta_{1}\right)-m g l \theta_{2}+u
\end{aligned}
$$

(a) Determine a state-space representation of the system.
(b) Is the system controllable? Explain mathematically and physically.
(c) Determine the range space of the controllability matrix.

Hint: use singular value decomposition (Matlab's command svd).
(d) Determine the transfer function from u to θ_{1}.
(e) Assume $m=1, l=1, a=0.5, k=4, g=10$. Is the system stable?

Figure 1: Two pendula coupled by a spring.
2. Consider the following pair of matrices

$$
A=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right], \quad B=\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right]
$$

(a) Suppose λ_{1}, λ_{2}, and λ_{3} are distinct, what are the conditions on γ_{1}, γ_{2}, and γ_{3} for the pair (A, B) to be controllable?
(b) For a discrete-time system with the above given matrices A and $B,\left\{\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3\right\}$, and $\gamma_{1}=\gamma_{2}=\gamma_{3}=1$, plot the energy (as a function of time for $k \geq 3$) of the minimum energy control necessary to reach the final state $x_{f}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$. Comment your results.
(c) Suppose λ_{1}, λ_{2}, and λ_{3} are not necessarily distinct, how does the above condition change?
(d) Generalize the results that you obtained for the above two cases to the pair (A, B) where

$$
A=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right], \quad B=\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right]
$$

3. Consider the following matrices

$$
\begin{array}{ll}
A_{1}=\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 1 \\
0 & 0 & \lambda_{1}
\end{array}\right], \quad B_{1}=\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right], \\
A_{2}=\left[\begin{array}{ccc}
\lambda_{2} & 1 & 0 \\
0 & \lambda_{2} & 1 \\
0 & 0 & \lambda_{2}
\end{array}\right], & B_{2}=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right] .
\end{array}
$$

(a) What are the conditions on γ_{1}, γ_{2} and γ_{3} for the pair $\left(A_{1}, B_{1}\right)$ to be reachable?
(b) Using the matrices A_{1}, A_{2}, B_{1} and B_{2} we can construct the following pair of matrices

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right] .
$$

i. Suppose λ_{1} and λ_{2} are distinct, what are the conditions on $\gamma_{1}, \gamma_{2}, \gamma_{3}, \beta_{1}, \beta_{2}$, and β_{3} for the pair (A, B) to be reachable?
ii. Suppose $\lambda_{1}=\lambda_{2}$, what are the conditions on $\gamma_{1}, \gamma_{2}, \gamma_{3}, \beta_{1}, \beta_{2}$, and β_{3} for the pair (A, B) to be reachable?
4. Suppose A is $n \times n$ matrix, and B is $n \times m$ matrix. Prove that (A, B) is controllable if and only if $(A+B K, B)$ is controllable for all $m \times n$ matrices K.
5. Let $\dot{x}=A x+B u$ be a single-input linear system with state dimension $n \geq 2$. Show that if B is an eigenvector of A then the system is not reachable.
6. Given the linear time-invariant system

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{ccc}
-7 & -2 & 6 \\
2 & -3 & -2 \\
-2 & -2 & 1
\end{array}\right] x+\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right] u=: A x+B u \\
y & =\left[\begin{array}{ccc}
-1 & -1 & 2 \\
1 & 1 & -1
\end{array}\right]=: C x,
\end{aligned}
$$

(a) Check controllability using:

- The controllability matrix (the Kalman rank test).
- Rows of $\hat{B}:=Q^{-1} B$, where Q is chosen such that $Q^{-1} A Q$ is diagonal.
- The PBH test.
(b) Identify the controllable and uncontrollable modes of the system, and convert the system to a Kalman controllable canonical form.

