Due Tu 10/08/13 (at the beginning of the class)

1. Use the (matrix) exponential series to evaluate $\mathrm{e}^{A t}$ for:
(a) $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$;
(b) $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.

Also, determine the eigenvalue decomposition (i.e., the eigenvalues and eigenvectors) of these two matrices.

Note: You are not allowed to use Matlab in this exercise.
2. Suppose $A(t)$ is an $n \times n$ time-varying matrix with continuous entries that satisfies

$$
A(t)\left(\int_{t_{0}}^{t} A(\sigma) \mathrm{d} \sigma\right)=\left(\int_{t_{0}}^{t} A(\sigma) \mathrm{d} \sigma\right) A(t)
$$

Show that the state-transition matrix $\Phi\left(t_{1}, t_{0}\right)$ can be computed as

$$
\Phi\left(t, t_{0}\right)=\exp \left(\int_{t_{0}}^{t} A(\sigma) \mathrm{d} \sigma\right)
$$

3. Find the state transition matrix $\Phi\left(t_{1}, t_{0}\right)$ for the matrix

$$
A(t)=\left[\begin{array}{rr}
\alpha(t) & \beta(t) \\
-\beta(t) & \alpha(t)
\end{array}\right]
$$

where $\alpha(t)$ and $\beta(t)$ are continuous functions of t.
4. For the Mathieu equation,

$$
\ddot{y}(t)+(\omega-\alpha \cos (2 t)) y(t)=0
$$

use Matlab to compute the state-transition matrix with $x_{1}=y, x_{2}=\dot{y}, \omega=2, \alpha=1$. You should do your computations on the time interval of length equal to three periods of oscillations for $t_{0}=0$ and $t_{0}=1$.

