Due Tuesday 09/24/13 (at the beginning of the class)

1. Problem 5.2 from the book (page 45 ; attached).
2. Problem 6.2 from the book (page 54; attached).
3. (a) Suppose that A and B are constant square matrices. Show that the state transition matrix for the time-varying system described by

$$
\dot{x}(t)=e^{-A t} B e^{A t} x(t)
$$

is

$$
\Phi(t, s)=e^{-A t} e^{(A+B)(t-s)} e^{A s}
$$

(b) If A is an $n \times n$ matrix of full rank, show using the definition of the matrix exponential that

$$
\int_{0}^{t} e^{A \sigma} d \sigma=\left[e^{A t}-I\right] A^{-1}
$$

Using this result, obtain the solution to the linear time-invariant equation

$$
\dot{x}=A x+B \bar{u}, \quad x(0)=x_{0}
$$

where \bar{u} is a constant r-dimensional vector and B is an $(n \times r)$-dimensional matrix.
4. Consider the discrete-time system

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B u_{k} \\
y_{k} & =C x_{k}+D u_{k} \\
x\left(k_{0}\right) & =x_{0}
\end{aligned}
$$

with constant matrices A, B, C, and D.
(a) Prove that this system is linear and time-invariant.
(b) Using the definition of the \mathcal{Z}-transform prove that $\mathcal{Z}\left(A^{k}\right)=z R(z)$, where $R(z):=(z I-A)^{-1}$ is the resolvent of the matrix A.
(c) For

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-0.5 & 0.3
\end{array}\right]
$$

determine $R(z)$. From the resulting expression for the resolvent compute the state transition matrix of the above system at $k=9$.

P5.6 For every fixed $t_{0} \geq 0$, the i th column of $\Phi\left(t, t_{0}\right)$ is the unique solution to

$$
x(t+1)=A(t) x(t), \quad x\left(t_{0}\right)=e_{i}, \quad t \geq t_{0}
$$

where e_{i} is the i th vector of the canonical basis of \mathbb{R}^{n}.
This is just a restatement of Property P5.5 above.
P5.7 For every $t \geq s \geq \tau \geq 0$,

$$
\Phi(t, s) \Phi(s, \tau)=\Phi(t, \tau)
$$

Attention! The discrete-time state transition matrix $\Phi\left(t, t_{0}\right)$ may be singular. In fact, this will always be the case whenever one of $A(t-1), A(t-2), \ldots, A\left(t_{0}\right)$ is singular.

Theorem 5.3 (Variation of constants). The unique solution to

$$
x(t+1)=A(t) x(t)+B(t) u(t), \quad y(t)=C(t) x(t)+D(t) u(t)
$$

with $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}, t \in \mathbb{N}$, is given by

$$
\begin{array}{ll}
x(t)=\Phi\left(t, t_{0}\right) x_{0}+\sum_{\tau=t_{0}}^{t-1} \Phi(t, \tau+1) B(\tau) u(\tau), & \forall t \geq t_{0} \\
y(t)=C(t) \Phi\left(t, t_{0}\right) x_{0}+\sum_{\tau=t_{0}}^{t-1} C(t) \Phi(t, \tau+1) B(\tau) u(\tau)+D(t) u(t), & \forall t \geq t_{0}
\end{array}
$$

where $\Phi\left(t, t_{0}\right)$ is the discrete-time state transition matrix.

5.4 EXERロISES

5.1 (Causality and linearity). Use equation (5.7) to show that the system

$$
\begin{equation*}
\dot{x}=A(t) x+B(t) u, \quad y=C(t) x+D(t) u \tag{CLTV}
\end{equation*}
$$

is causal and linear.
5.2 (State transition matrix). Consider the system

$$
\dot{x}=\left[\begin{array}{ll}
0 & t \\
0 & 2
\end{array}\right] x+\left[\begin{array}{l}
0 \\
t
\end{array}\right] u, \quad y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x, \quad x \in \mathbb{R}^{2}, u, y \in \mathbb{R}
$$

(a) Compute its state transition matrix
(b) Compute the system output to the constant input $u(t)=1, \forall t \geq 0$ for an arbitrary initial condition $x(0)=\left[\begin{array}{ll}x_{1}(0) & x_{2}(0)\end{array}\right]^{\prime}$.
6.2 (Matrix powers and exponential). Compute A^{t} and $e^{A t}$ for the following matrices

$$
A_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \tag{6.7}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right], \quad A_{3}=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 3
\end{array}\right] .
$$

