Due Tuesday 09/24/13 (at the beginning of the class)

- 1. Problem 5.2 from the book (page 45; attached).
- 2. Problem 6.2 from the book (page 54; attached).
- 3. (a) Suppose that A and B are constant square matrices. Show that the state transition matrix for the time-varying system described by

$$\dot{x}(t) = e^{-At} B e^{At} x(t)$$

is

$$\Phi(t,s) = e^{-At} e^{(A+B)(t-s)} e^{As}$$

(b) If A is an $n \times n$ matrix of full rank, show using the definition of the matrix exponential that

$$\int_0^t e^{A\sigma} d\sigma = [e^{At} - I]A^{-1}.$$

Using this result, obtain the solution to the linear time-invariant equation

$$\dot{x} = Ax + B\bar{u} , \quad x(0) = x_0$$

where \bar{u} is a constant r-dimensional vector and B is an $(n \times r)$ -dimensional matrix.

4. Consider the discrete-time system

$$x_{k+1} = A x_k + B u_k$$

$$y_k = C x_k + D u_k$$

$$x(k_0) = x_0$$

with constant matrices A, B, C, and D.

- (a) Prove that this system is linear and time-invariant.
- (b) Using the definition of the \mathcal{Z} -transform prove that $\mathcal{Z}(A^k) = z R(z)$, where $R(z) := (z I A)^{-1}$ is the resolvent of the matrix A.
- (c) For

$$A = \left[\begin{array}{cc} 0 & 1 \\ -0.5 & 0.3 \end{array} \right]$$

determine R(z). From the resulting expression for the resolvent compute the state transition matrix of the above system at k = 9.

P5.6 For every fixed $t_0 \ge 0$, the *i*th column of $\Phi(t, t_0)$ is the unique solution to

$$x(t+1) = A(t)x(t),$$
 $x(t_0) = e_i,$ $t \ge t_0,$

where e_i is the *i*th vector of the canonical basis of \mathbb{R}^n . This is just a restatement of Property P5.5 above.

P5.7 For every
$$t \ge s \ge \tau \ge 0$$
,

$$\Phi(t, s)\Phi(s, \tau) = \Phi(t, \tau).$$

Attention! The discrete-time state transition matrix $\Phi(t, t_0)$ may be singular. In fact, this will always be the case whenever one of A(t-1), A(t-2), ..., $A(t_0)$ is singular. \Box

Theorem 5.3 (Variation of constants). The unique solution to

$$x(t+1) = A(t)x(t) + B(t)u(t), \qquad y(t) = C(t)x(t) + D(t)u(t),$$

with $x(t_0) = x_0 \in \mathbb{R}^n$, $t \in \mathbb{N}$, is given by

$$\begin{aligned} x(t) &= \Phi(t, t_0) x_0 + \sum_{\tau = t_0}^{t-1} \Phi(t, \tau + 1) B(\tau) u(\tau), & \forall t \ge t_0 \\ y(t) &= C(t) \Phi(t, t_0) x_0 + \sum_{\tau = t_0}^{t-1} C(t) \Phi(t, \tau + 1) B(\tau) u(\tau) + D(t) u(t), & \forall t \ge t_0 \end{aligned}$$

$$\tau = \iota_0$$

where $\Phi(t, t_0)$ is the discrete-time state transition matrix.

5.4 EXERCISES

5.1 (Causality and linearity). Use equation (5.7) to show that the system

$$\dot{x} = A(t)x + B(t)u,$$
 $y = C(t)x + D(t)u$ (CLTV)

is causal and linear.

5.2 (State transition matrix). Consider the system

$$\dot{x} = \begin{bmatrix} 0 & t \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ t \end{bmatrix} u, \qquad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x, \qquad x \in \mathbb{R}^2, \ u, y \in \mathbb{R}.$$

- (a) Compute its state transition matrix
- (b) Compute the system output to the constant input u(t) = 1, $\forall t \ge 0$ for an arbitrary initial condition $x(0) = [x_1(0) \ x_2(0)]'$.

6.2 (Matrix powers and exponential). Compute A^t and e^{At} for the following matrices

$$A_{1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{3} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$
(6.7)