Due Friday 09/13/13 (5pm; Xiaofan's office, Keller Hall 5-149)

1. Problem 2.2 from the book (page 20; attached).
2. Consider the unforced mass-spring system

$$
m \ddot{y}+g(y)=0
$$

with three different models for the spring force

- hardening spring: $g(y)=k\left(1+y^{2}\right) y$;
- softening spring: $g(y)=k\left(1-y^{2}\right) y$;
- linear spring: $g(y)=k y$,
and $k>0$.
(a) Determine a state-space representation of this system.
(b) Find equilibrium points of the above systems. Discuss your observations for three different spring force models.
(c) Is this system
- causal,
- time-varying,
- linear,
- memoryless,
- finite-dimensional?

Explain.
(d) For three different spring force models with $m=k=1$, use Matlab to simulate systems' responses from different initial conditions. Plot corresponding results in the phase plane (horizontal axis determined by position $y(t)$, vertical axis determined by velocity $\dot{y}(t))$ and discuss your observations.
3. The system shown in Figure 1 is composed of a first order system followed by a saturation element. Which of the following properties does this system have a) causality, b) linearity c) time-invariance? Is the system memoryless? Compute the output y that corresponds to the periodic input in Figure 1. Note: The saturation function works as follows: if the two signals g and y are related by $y(t)=$ Saturation $(g(t))$, then

$$
y(t)=\left\{\begin{array}{rlrl}
g(t) & \text { if } & |g(t)| & \leq \\
1 & \text { if } & g(t) & > \\
-1 & \text { if } & g(t) & < \\
\hline
\end{array}\right.
$$

Figure 1: System in Problem 3.

Attention! Writing the system in the carefully chosen coordinates x_{1}, x_{2}, x_{3} is crucial to getting an LTI linearization. If one tried to linearize this system in the original coordinates p_{x}, p_{y}, θ with dynamics given by (2.11), one would get an LTV system.

Does such an equilibrium point always exist?
(d) Assume that $b=1 / 2$ and $m g \ell=1 / 4$. Compute the torque $T(t)$ needed for the pendulum to fall from $\theta(0)=0$ with constant velocity $\dot{\theta}(t)=1, \forall t \geq 0$. Linearize the system around this trajectory.
2.2 (Local linearization around a trajectory). A single-wheel cart (unicycle) moving on the plane with linear velocity v and angular velocity ω can be modeled by the nonlinear system

$$
\begin{equation*}
\dot{p}_{x}=v \cos \theta, \quad \dot{p}_{y}=v \sin \theta, \quad \dot{\theta}=\omega, \tag{2.11}
\end{equation*}
$$

where (p_{x}, p_{y}) denote the Cartesian coordinates of the wheel and θ its orientation. Regard this as a system with input $u:=\left[\begin{array}{ll}v & \omega\end{array}\right]^{\prime} \in \mathbb{R}^{2}$.
(a) Construct a state-space model for this system with state

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]:=\left[\begin{array}{c}
p_{x} \cos \theta+\left(p_{y}-1\right) \sin \theta \\
-p_{x} \sin \theta+\left(p_{y}-1\right) \cos \theta \\
\theta
\end{array}\right]
$$

and output $y:=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\prime} \in \mathbb{R}^{2}$.
(b) Compute a local linearization for this system around the equilibrium point $x^{\mathrm{eq}}=$ $0, u^{\mathrm{eq}}=0$.
(c) Show that $\omega(t)=v(t)=1, p_{x}(t)=\sin t, p_{y}(t)=1-\cos t, \theta(t)=t, \forall t \geq 0$ is a solution to the system.
(d) Show that a local linearization of the system around this trajectory results in an LTI system.
2.3 (Feedback linearization controller). Consider the inverted pendulum in Figure 2.6 .
(a) Assume that you can directly control the system in torque, i.e., that the control input is $u=T$.
Design a feedback linearization controller to drive the pendulum to the upright position. Use the following values for the parameters: $\ell=1 \mathrm{~m}, m=1 \mathrm{~kg}$, $b=0.1 \mathrm{~N} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$, and $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$. Verify the performance of your system in the presence of measurement noise using Simulink ${ }^{\circledR}$.
(b) Assume now that the pendulum is mounted on a cart and that you can control the cart's jerk, which is the derivative of its acceleration a. In this case,

$$
T=-m \ell a \cos \theta, \quad \dot{a}=u
$$

Design a feedback linearization controller for the new system.
What happens around $\theta= \pm \pi / 2$?
Note that, unfortunately, the pendulum needs to pass by one of these points for a swing-up, i.e., the motion from $\theta=\pi$ (pendulum down) to $\theta=0$ (pendulum upright).

