
EE/AEM 5231 HW 1 Fall 2013

Due Friday 09/13/13 (5pm; Xiaofan’s office, Keller Hall 5-149)

1. Problem 2.2 from the book (page 20; attached).

2. Consider the unforced mass-spring system

mÿ + g(y) = 0

with three different models for the spring force

• hardening spring: g(y) = k
(
1 + y2

)
y;

• softening spring: g(y) = k
(
1 − y2

)
y;

• linear spring: g(y) = k y,

and k > 0.

(a) Determine a state-space representation of this system.

(b) Find equilibrium points of the above systems. Discuss your observations for three different spring
force models.

(c) Is this system

• causal,

• time-varying,

• linear,

• memoryless,

• finite-dimensional?

Explain.

(d) For three different spring force models with m = k = 1, use Matlab to simulate systems’ responses
from different initial conditions. Plot corresponding results in the phase plane (horizontal axis
determined by position y(t), vertical axis determined by velocity ẏ(t)) and discuss your observa-
tions.

3. The system shown in Figure 1 is composed of a first order system followed by a saturation element.
Which of the following properties does this system have a) causality, b) linearity c) time-invariance?
Is the system memoryless? Compute the output y that corresponds to the periodic input in Figure 1.

Note: The saturation function works as follows: if the two signals g and y are related by y(t) =
Saturation (g(t)), then

y(t) =

 g(t) if |g(t)| ≤ 1
1 if g(t) > 1
−1 if g(t) < −1

- -- Saturation
yu

∫ ∞
−∞

e−(t− τ) u(τ) dτ

Figure 1: System in Problem 3.
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Does such an equilibrium point always exist?

(d) Assume that b = 1/2 and mg# = 1/4. Compute the torque T (t) needed for
the pendulum to fall from θ(0) = 0 with constant velocity θ̇ (t) = 1, ∀t ≥ 0.
Linearize the system around this trajectory. !

2.2 (Local linearization around a trajectory). A single-wheel cart (unicycle) mov-
ing on the plane with linear velocity v and angular velocity ω can be modeled by the
nonlinear system

ṗx = v cos θ, ṗy = v sin θ, θ̇ = ω, (2.11)

where (px , py) denote the Cartesian coordinates of the wheel and θ its orientation.
Regard this as a system with input u :=

[
v ω

]′ ∈ R2.

(a) Construct a state-space model for this system with state

x =




x1
x2
x3



 :=




px cos θ + (py − 1) sin θ

−px sin θ + (py − 1) cos θ
θ





and output y :=
[
x1 x2

]′ ∈ R2.

(b) Compute a local linearization for this system around the equilibrium point xeq =
0, ueq = 0.

(c) Show that ω(t) = v(t) = 1, px (t) = sin t , py(t) = 1 − cos t , θ(t) = t , ∀t ≥ 0
is a solution to the system.

(d) Show that a local linearization of the system around this trajectory results in an

Attention! Writing
the system in the
carefully chosen
coordinates x1, x2, x3
is crucial to getting an
LTI linearization. If
one tried to linearize
this system in the
original coordinates
px , py , θ with
dynamics given by
(2.11), one would get
an LTV system.

LTI system. !

2.3 (Feedback linearization controller). Consider the inverted pendulum in Figure
2.6.

(a) Assume that you can directly control the system in torque, i.e., that the control
input is u = T .

Design a feedback linearization controller to drive the pendulum to the upright
position. Use the following values for the parameters: # = 1m, m = 1 kg,
b = 0.1N m−1 s−1, and g = 9.8m s−2. Verify the performance of your system
in the presence of measurement noise using Simulink r©.

(b) Assume now that the pendulum is mounted on a cart and that you can control
the cart’s jerk, which is the derivative of its acceleration a. In this case,

T = −m # a cos θ, ȧ = u.

Design a feedback linearization controller for the new system.

What happens around θ = ±π/2?

Note that, unfortunately, the pendulum needs to pass by one of these points for
a swing-up, i.e., the motion from θ = π (pendulum down) to θ = 0 (pendulum
upright). !


