1. Problem 2.1 from the book (page 19).

2. Problem 2.2 from the book (page 20).

3. Consider the unforced mass-spring system

\[m \ddot{y} + g(y) = 0 \]

with three different models for the spring force

- **hardening spring**: \(g(y) = k \left(1 + y^2\right) y \);
- **softening spring**: \(g(y) = k \left(1 - y^2\right) y \);
- **linear spring**: \(g(y) = k y \),

and \(k > 0 \).

(a) Determine a state-space representation of this system.

(b) Find equilibrium points of the above systems. Discuss your observations for three different spring force models.

(c) Is this system

- causal,
- time-varying,
- linear,
- memoryless,
- finite-dimensional?

Explain.

(d) For three different spring force models with \(m = k = 1 \), use Matlab to simulate systems’ responses from different initial conditions. Plot corresponding results in the phase plane (horizontal axis determined by position \(y(t) \), vertical axis determined by velocity \(\dot{y}(t) \)) and discuss your observations.